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ABSTRACT
The advent of next generation sequencing technologies allows one to discover nearly all rare variants in

a genomic region of interest. This technological development increases the need for an effective statistical
method for testing the aggregated effect of rare variants in a gene on disease susceptibility. The idea behind
this approach is that if a certain gene is involved in a disease, many rare variants within the gene will disrupt
the function of the gene and are associated with the disease. In this article, we present the rare variant
weighted aggregate statistic (RWAS), a method that groups rare variants and computes a weighted sum of
differences between case and control mutation counts. We show that our method outperforms the group-
wise association test of Madsen and Browning in the disease-risk model that assumes that each variant
makes an equally small contribution to disease risk. In addition, we can incorporate prior information into
our method of which variants are likely causal. By using simulated data and real mutation screening data of
the susceptibility gene for ataxia telangiectasia, we demonstrate that prior information has a substantial
influence on the statistical power of association studies. Our method is publicly available at http://genetics.
cs.ucla.edu/rarevariants.

OVER the past few years, genome-wide association
studies (GWAS) have identified many disease-

causing variants (Corder et al. 1993; Bertina et al.
1994; Altshuler et al. 2000). Most of these studies
are conducted by collecting common variants and per-
form a series of single-marker tests where each variant is
tested individually to discover associations. However,
only a small portion of disease heritability is explained
by common variants, and several recent studies con-
sider rare variants that collectively affect diseases (Cohen
et al. 2004; Fearnhead et al. 2004; Kryukov et al. 2007;
Romeo et al. 2007; Blauw et al. 2008; Bodmer and
Bonilla 2008; Gorlov et al. 2008; International

Schizophrenia Consortium 2008; Ji et al. 2008;
Walsh et al. 2008; Xu et al. 2008). Since each rare
variant is present in only a small number of individuals,
single-marker tests have low power to identify these var-
iants involved in disease. Hence, groupwise association
tests that group rare variants in genes have received
considerable attention as methods that increase the
power of studies on rare variants, and a number of
methods have been proposed such as the cohort allelic
sums test (CAST) (Morgenthaler and Thilly 2007),
the combined multivariate and collapsing (CMC)
method (Li and Leal 2008), a weighted-sum statistic

(Madsen and Browning 2009), and recently a vari-
able-threshold approach (Price et al. 2010).
A groupwise association test is more complex than

a single SNP association because there are many
different ways of combining information across multiple
variants. How the information from different variants is
combined affects the statistical power of the association
test, which also depends on the actual effect sizes of the
variants on the disease phenotype. The challenge in
developing groupwise association testing methods is that
the underlying disease-risk model is not known.
In this article, we focus on a disease-risk model that is

motivated by filling a blind spot in traditional GWAS. In
this model, all variants including common variants
make an equally small contribution to disease risk; that
is, rarer variants are assumed to have higher effect sizes
than common variants. Since each variant contributes
only a small amount to the total disease risk, the single-
marker test is not likely to detect associations in this
disease-risk model, and thus this model describes asso-
ciations usually not found in traditional GWAS. This is
the same model discussed in Madsen and Browning

(2009). Under this model, a weighted-sum statistic by
Madsen and Browning (MB) is shown to be more pow-
erful than other grouping methods such as CAST and
CMC (Madsen and Browning 2009).
We propose a new method for the groupwise association

test called the rare variant weighted aggregate statistic
(RWAS). RWAS computes a weighted sum of differences
between case and control mutation counts where weights
are estimated from data to increase power of studies. The
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optimal weights that maximize the power can be derived
when the effect sizes of variants are known. When the true
effect sizes are not known, RWAS approximates the optimal
weights under the assumption that each variant makes an
equal contribution to population disease risk. Simulations
show that RWAS outperforms MB and the approximated
weights achieve nearly the same power as the optimal
weights under this assumed disease model. We also show
how prior information on whether a variant is likely to be
involved in a disease can be incorporated into RWAS. We
first show through simulations that prior information
greatly influences the statistical power of studies. Then,
by using the real mutation screening data of the suscepti-
bility gene for ataxia telangiectasia along with information
of how likely a variant is to be deleterious (Tavtigian et al.
2009), we demonstrate that prior information plays
a key role in this association study and RWAS is able
to successfully detect the association in real data. The
software package implementing RWAS is publicly avail-
able at http://genetics.cs.ucla.edu/rarevariants.

METHODS

Optimal weighted aggregate statistic: We consider an
association study in which multiple variants within
a gene affect the trait. For each variant, a difference
in mutation counts between case and control individu-
als is computed, and a weighted sum of differences is
used as a statistic for the group. This is in fact equivalent
to computing a weighted sum of z-scores of variants
where the z-score of a variant is computed from an
allele frequency difference between cases and controls
(Eskin 2008; Han et al. 2008; Zaitlen et al. 2010).

First, we assume that there are M rare variants in
a group given N/2 case and N/2 control individuals.
Let pi denote population minor allele frequency (MAF)
of variant i, and let bp1i and bp2i denote the observed MAF
of case and control individuals in the sample, respec-
tively. Then, the z-score of variant i (or the association
statistic at variant i), denoted zi, is calculated as

zi 5
bp1
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iffiffiffiffiffiffiffiffiffi
2=N

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp6i �12bp6i �r
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where p1i and p2i are the true MAF of case and con-
trol individuals, respectively. Denoting gi as relative risk
of variant i, p1i and p2i are
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i 5 pi ðassuming the disease prevalence is very smallÞ:

(4)

Let wi be a weight of variant i. Then, a weighted sum
of z-scores (S) and its distribution are
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The greatest power is achieved when the NCP is
maximized, which is equivalent to maximizing theP

wili=
P

w2
i term. Using the Cauchy–Schwartz inequal-

ity, the NCP is maximized when wi ¼ li. Therefore, the
optimal weight for variant i is li, and we call the weighted
association method based on the optimal weights the op-
timal weighted aggregate statistic (OWAS). The OWAS is
optimal under any disease-risk models, but determining
optimal weights requires knowledge of relative risk and
population MAF of variants according to the definitions
of li ;  p1i ; and p2i (Equations 2–4). We can estimate the
population MAF from observed MAF of case and control
individuals (see supporting information, File S1 for
details), but obtaining or estimating relative risk is often
not easy. We note that if the numbers of cases (N1/2) and
controls (N2/2) are unequal, we replace

ffiffiffiffiffi
N

p
above withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2N1N2=ðN11N2Þp
and replace bp6i and p6i in Equa-

tions 1 and 2 with ðN1bpi11N2bpi2Þ=ðN11N2Þ and
ðN1pi

11N2p2i Þ=ðN11N2Þ, respectively, and the
above results hold.

RWAS: Setting the weights for OWAS requires knowl-
edge of the effect sizes that are unknown. To set the
weights for our method without knowledge of the effect
sizes, we assume a disease-risk model in which all variants
have constant population attributable risk (PAR). In this
model, each group of variants has a certain level of the
group PAR, and each variant in the group has the same
marginal PAR. Let v denote the marginal PAR that is the
group PAR divided by the number of causal variants in
a group. Given v and pi of variant i, its relative risk, gi, is

gi 5
v

ð12vÞpi 1 1: (6)

Then, it follows from Equations 3 and 4 that

pi
1 5v1 pið12vÞ (7)
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The optimal weights (Equation 2) can be written as
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Since v in Equation 8 is fixed for all variants, we can
ignore it and derive an analytically approximated form
of the optimal weights as

wi 5

ffiffiffiffiffiffiffiffiffiffiffiffi
12 pi
pi

s
: (9)

We call the weighted sum of z-scores whose weights
are approximated in Equation 9 the RWAS. The statistic
of RWAS, SRWAS, can be formulated as
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We compare SRWAS to the standard normal distribution
to obtain a P-value.

Approximation of MB to a sum of z-scores: Our
methods (OWAS and RWAS) adopt a weighted sum of z-
scores approach, and MB can also be approximated as
a weighted sum of z-scores with weights equal to 1 (or an
unweighted sum of z-scores). MB computes a statistic,
denoted as zMB, as follows. It can be decomposed into
a sum of zMBi over M variants where i corresponds to
the ith variant and M is the number of variants,

zMB 5
x2 bmbs 5

XM
i51

zMBi 5
XM
i51

xi 2 bmibsi
; (11)

where for variant i, xi is the sum of ranks or genetics
scores of cases, and bmi and bsi are the average and stan-
dard deviation of xi in the null distribution, respectively.
We use the sum of genetic scores of cases as xi since its
power is very similar to the power of the sum of ranks
(Madsen and Browning 2009).

Then, xi, bmi , and bsi can be approximated as
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(see File S1 for details) and the standardized statistic at
variant i, zMBi , can be derived as
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Finally, a sum of zMBi over M variants is equivalent
to the original statistic of MB:
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Note that Equation 13 shows MB is an unweighted
sum of z-scores. One difference between zMBi in Equa-
tion 13 and the z-score used in our methods (Equation
1) is the way the population MAF is estimated, which
appears in the denominator of the z-score; MB esti-
mates it only from control individuals, but we estimate
it from all case and control individuals (see File S1 for
details).
RWAS with prior information: RWAS can be directly

extended to incorporate prior knowledge about the
degree that each variant is believed to be causal. Note
that the underlying truth is that each variant is either
causal or not. Thus, let Vi be the variable indicating the
“causal status” of variant i, such that V i ¼ 1 if variant i is
causal and V i ¼ 0 if not. Let V ¼ {V 1, . . . , VM} denote
the causal statuses of all M variants. V can have 2M

possible values. Let yj be the jth value of 2M possible
values. That is, yj 5 fy1j ; : : : ;  yMj g is an ordered set of
0 and 1 that represents a specific scenario of causal
statuses.
Assume that we have prior knowledge that the prob-

ability of variant i being causal is ci. Then, the probabil-
ity of each scenario yj can be computed as

P
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�
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c
yij
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Then, the expected noncentrality parameter of the
weighted sum of z-score statistics is
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The Cauchy–Schwartz inequality shows that this quan-
tity is maximized when wi ¼ cili. Thus, the prior
knowledge {ci} can be easily incorporated into the
RWAS by multiplying the prior probability into each
weight.
Web resources: The software package for RWAS is

publicly available online at http://genetics.cs.ucla.edu/
rarevariants.

RESULTS

Power comparison between RWAS and MB: We
evaluate the power of our novel method, RWAS, in

Optimal Weighted Aggregated Test 183

http://www.genetics.org/cgi/data/genetics.110.125070/DC1/1
http://www.genetics.org/cgi/data/genetics.110.125070/DC1/1
http://genetics.cs.ucla.edu/rarevariants
http://genetics.cs.ucla.edu/rarevariants
http://genetics.cs.ucla.edu/rarevariants


the constant PAR disease-risk model where all variants
have the same PAR. This was the model used to esti-
mate the power of MB, and MB was shown to be more
powerful than other competing methods (Madsen and
Browning 2009). Throughout all experiments, we use
the sum of genetic scores of case individuals as a statistic
for MB, rather than using the sum of ranks of cases
suggested by Madsen and Browning. One reason is that
both sums yield similar results (Madsen and Browning

2009), and another reason is that the sum of genetic
scores allows RWAS and MB to be compared in the
same sum of z-scores framework (see METHODS for
approximation of MB to a sum of z-scores method).
The power of RWAS is also compared to the power of
OWAS that is the optimal weighted sum of z-scores and
from which the weights of RWAS are derived. OWAS
uses the effect sizes of variants for its weights, and hence
the power of OWAS can be thought of as the upper
bound of power that can be achieved in the weighted
sum of z-scores approach. In this experiment, OWAS
knows the group PAR that generated data sets (see be-
low), computes relative risk of each variant using Equa-
tion 6, and estimates population MAF as described in
File S1.

We use exactly the same simulation parameters as in
Madsen and Browning to estimate the power of meth-
ods. In the simulations, a total of 10,000 data sets are gen-
erated, each with 1000 case and 1000 control
individuals having 100 variants. The power of
a method is estimated as the number of significant
data sets among the 10,000 data sets using a signifi-
cance threshold of 2.5 · 1026 based on the Bonfer-

roni correction assuming 20,000 genes genome-wide.
Among 100 variants, 50 variants are disease-risk con-
tributing variants (D variants) and 50 variants are dis-
ease-risk neutral variants (N variants). For each
variant, we sample its MAF in controls using Wright's
formula (Wright 1931; Ewens 2004) with the same
parameter values as in Madsen and Browning (see
Madsen and Browning 2009 for details). According
to Equation 6, relative risk of D variants is calculated
from MAF of variants in controls and the marginal
PAR that is the group PAR divided by the number
of D variants while relative risk of N variants is 1.
MAF of variants in cases can then be calculated using
relative risk and MAF of variants in controls according
to Equation 3. We independently sample mutations of
each variant in case and control individuals according
to its MAF in cases and controls, respectively.

The results of power simulations demonstrate that
RWAS consistently outperforms MB when the group
PAR varies from 1% to 5% (Figure 1). For example, at
the group PAR of 3%, RWAS has 78% power while
MB has 40% power. The power simulations also show
that the power of RWAS is very close to the power of
OWAS. Although OWAS has higher power than
RWAS at all group PAR levels, the difference in
power between the two methods is small; the power
of RWAS is �2–4% smaller than that of OWAS.
Therefore, the analytical approximation of the opti-
mal weights in RWAS reduces its power by only a small
amount in this disease model, and it can achieve high
power even if it is not given the true effect sizes of
variants.

Figure 1.—Power comparison in the constant
PAR model. There are five group PAR levels (1%,
2%, 3%, 4%, and 5%), and for each group PAR,
10,000 data sets were generated. Each data set
contained 1000 case and 1000 control individuals
having 100 variants (50 D variants and 50 N var-
iants). Four different methods (RWAS, OWAS,
MB, and the single-marker test) were tested, and
their power was estimated as the number of sig-
nificant data sets among the 10,000 data sets using
a significance threshold of 2.5 · 1026.
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Type I error rates of RWAS and OWAS: To check
whether type I error rates (false positive rates) of RWAS
and OWAS are correctly controlled, we create 100
million data sets without any causal variant. Each data
set has 1000 cases and 1000 controls with 100 variants,
and we measure type I error rates of RWAS and OWAS
on the 100 million null data sets under three different
significance thresholds: 0.05, 0.01, and 2.5 · 1026. The
reason why we use a very large number of data sets is
because the significance threshold for power is very low
(2.5 · 1026). The proportion of significant data sets is
an estimate of the type I error rate for each method.

The type I error rates for RWAS are 0.0503, 0.0089,
and 1.2 · 1027, and those for OWAS are 0.0502, 0.0091,
and 1.8 · 1027 for the significance thresholds of 0.05,
0.01, and 2.5 · 1026, respectively. This indicates that the
type I error rates are correctly controlled for RWAS and
OWAS when the significance thresholds are 0.05 and
0.01. When the significance threshold is 2.5 · 1026,
RWAS and OWAS both have lower type I error rates
than the expected rate.

Power of RWAS with the different numbers of
variants: Since the number of variants in a gene may
be .100, we evaluate effects of the number of variants
in a gene on the power of groupwise tests. We create
five different data sets with five different numbers of
total variants: 100, 200, 300, 400, and 500. In all five
data sets, the number of causal variants is 50, and the
group PAR is 3%. The number of case and control
individuals is the same as in the previous experiment.

Figure 2 shows that as the number of total variants in
a gene increases, the power of all methods decreases.

For example, when a gene contains 100 variants, RWAS
achieves 78% power while it has 6% power when there
are 500 variants in a gene. This is because there are
more noncausal variants in a gene as the number of
variants increases. A large number of noncausal variants
reduce our ability to detect causal variants and power of
the groupwise tests.
Power of RWAS with prior information: Prior in-

formation can reduce or remove the influence of
noncausal variants, and in this experiment we observe
how prior information influences the power of RWAS.
The prior information we consider is the probability of
a variant being causal to a disease, denoted as ci. We
generate data sets with predefined true ci values, and
we evaluate how the power of RWAS changes when dif-
ferent prior information is given to RWAS. We first gen-
erate data sets that contain 100 variants split into two
groups, each with 50 variants. We set ci of the first group
to 0.8 and ci of the second group to 0.2. Then, five
different types of prior information are given to RWAS:
(1) “correct ci” that is equivalent to true ci of data sets,
(2) “uniform incorrect ci” in which ci ¼ 1 for all variants,
(3) “three-fourths correct ci” that corresponds to three-
fourths of true ci of the first and second groups, (4)
“one-half correct ci” that matches one-half of true ci of
the first and second groups, and (5) “very incorrect ci”
in which ci of the first and second groups is 0.2 and 0.8,
respectively, which is opposite to true ci of data sets. The
single-marker test and MB are also tested to compare
their power to RWAS.
We follow the same experimental framework as in the

previous experiment in this power simulation with two

Figure 2.—Power comparison with the differ-
ent numbers of total variants in a gene. We simu-
lated five different numbers of total variants: 100,
200, 300, 400, and 500. All simulations had 50
causal variants, the group PAR of 3%, and 1000
case and 1000 control individuals. We created
10,000 data sets for each of five different simula-
tions. The plot shows the power of RWAS, OWAS,
MB, and the single-marker test.
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changes. The first change is that we have two different ci
values assigned to the two groups of variants as men-
tioned earlier. For each data set, a variant is causal with
the probability proportional to its ci . Relative risk of
a causal variant is given by Equation 6 whereas a non-
causal variant has relative risk of 1. The other change is
that the same set of control MAFs is assigned to the two
groups: MAFs of 50 variants in control individuals are
sampled using Wright’s formula and assigned to each
group. The reason is that we want to observe only the
effect of prior information on the power of studies, but
the power is also dependent on MAF of variants.

Results show that the power of RWAS with correct ci
is always the highest among different prior information
applied to RWAS (Figure 3). By knowing the correct
prior information, the power increases as much as 7%;
at the group PAR of 3%, the power of RWAS with cor-
rect ci is 84% while the power of RWAS with uniform
incorrect ci is 77%. However, if RWAS is given incorrect
prior information, it may suffer power loss as the power
of RWAS with very incorrect ci is .70% lower than the
power of RWAS with correct ci at the group PAR of 3%
and 4%. This shows that when prior information is not
very accurate, RWAS may achieve higher power by as-
suming that every variant is causal. The results also in-
dicate that as RWAS is given more correct prior
information, its power increases: the power of RWAS
with three-fourths correct ci is higher than the power
of RWAS with one-half correct ci. Results of the exper-
iment demonstrate that prior information may consid-
erably influence the power of studies and higher power
can be achieved by knowing correct prior information.

RWAS with prior information on real mutation
screening data: To evaluate RWAS and effects of prior
information on real sequencing data, we use mutation
screening data of the susceptibility gene for ataxia
telangiectasia (Tavtigian et al. 2009). This gene is
called ATM, and it is also known as an intermediate-risk
gene for breast cancer. Tavtigian et al. (2009) col-
lected data from seven ATM mutation screening studies
in breast cancer cases and controls as well as data from
their own mutation screening, which resulted in collect-
ing 2531 case and 2245 control individuals (called “bona
fide case–control studies”). They further increased the
number of cases and controls by adding 17 case-only or
control-only mutation screening studies, but we focus
on the bona fide case–control studies in our experiment
because adding the case-only and control-only studies
does not yield substantial changes in results (Tavtigian
et al. 2009).

Tavtigian et al. discovered 170 rare missense variants
in the ATM data set and used the missense analysis
programs, Align-GVGD (Tavtigian et al. 2006) and
SIFT (Ng and Henikoff 2003), to find how likely each
variant is to be deleterious. Align-GVGD categorizes var-
iants into seven grades: C0 (most likely neutral), C15,
C25, C35, C45, C55, and C65 (most likely deleterious).
Since the absolute deleteriousness of grades is not
reported, we arbitrarily assign ci of 0.05, 0.2, 0.35, 0.5,
0.65, 0.8, and 0.95 to the seven grades, respectively.
SIFT yields scores for variants ranging from 1.00 (most
likely neutral) to 0.00 (most likely deleterious) in steps
of 0.01. There is a predefined threshold (0.05) in SIFT
scores such that variants whose SIFT scores are #0.05

Figure 3.—Power of RWAS with different prior
information. For each group PAR, 10,000 data
sets were generated, and each data set contained
1000 case and 1000 control individuals having 100
variants with predefined true ci values. ci of 50
variants was 0.8, and ci of the other 50 variants
was 0.2. Five different types of prior information
were given to RWAS: “correct ci” (same ci as true ci
of data sets), “uniform incorrect ci” (ci ¼ 1 for all
variants), “three-fourths correct ci” (three-fourths
of true ci), “one-half correct ci” (one-half of true
ci), and “very incorrect ci” (opposite ci to true ci of
data sets). The single-marker test, MB, and RWAS
with the five different types of prior information
were tested.
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are considered deleterious while other variants are con-
sidered neutral. Hence, we assigned ci of 1 to variants
with SIFT scores #0.05 and ci of 0 to other variants.

We first apply RWAS to the case–control studies with-
out prior information, and RWAS yields a P-value of
0.3946. The P-value indicates no significant difference
in mutation counts between cases and controls, and
Tavtigian et al. also reported that they did not find a sig-
nificant association by comparing frequency in cases vs.
controls or by using CMC (Tavtigian et al. 2009). How-
ever, when RWAS is applied with prior information
from Align-GVGD, it yields a P-value of 0.0078, which
indicates a significant association between rare variants
and the disease. The result is consistent with the results
of Tavtigian et al. (2009); a significant P-value was
obtained by performing a log-linear trend test with out-
put of Align-GVGD. Therefore, this suggests that prior
information may be useful in association studies and
that RWAS can be applied to detect an association in
real data.

Interestingly, RWAS reports a nonsignificant P-value
of 0.0881 when using SIFT scores as prior information
while Tavtigian et al. (2009) found a significant asso-
ciation with SIFT scores. It may be because the binary
classification of variants according to SIFT scores is not
as informative as output of Align-GVGD in predicting
how likely each variant is to be causal. In other words,
variants that are considered deleterious (SIFT scores
#0.05) may be deleterious to different degrees, but
SIFT scores do not capture this. The relative degree
of a variant’s deleteriousness is important in RWAS be-
cause more deleterious variants receive higher weights.
Hence, this experiment shows that methods to deter-
mine prior information of variants play a key role in the
real data analysis, and different prior information may
yield different results.

DISCUSSION

In this article, we presented the RWAS to detect
associations with a group of rare variants. We first
developed the OWAS that maximizes the power of
studies under the weighted sum of z-score statistics, but
we need to know the effect sizes of variants to use
OWAS. We then developed RWAS by analytically ap-
proximating the optimal weights, and it can be applied
without the knowledge of effect sizes. The simulations
demonstrate that RWAS outperforms a weighted sum
statistic by Madsen and Browning (2009) in the same
disease-risk model discussed in Madsen and Browning

(2009). The simulations also show that the power of
RWAS is very close to the power of OWAS, suggesting
that RWAS achieves nearly optimal power in the disease-
risk model we focused on.

We then extended RWAS to incorporate prior in-
formation of variants, and we considered the probability
of a variant being causal to a disease as prior in-

formation in this article. To determine effects of prior
information on association studies, we used both
simulated data and real mutation screening data for
the susceptibility gene for ataxia telangiectasia. The
results of simulated data show that power can be
increased by incorporating correct prior information,
and this is confirmed in the real data since RWAS is able
to detect an association in the real data with prior
information while it is not able to do so without the
information. Hence, this suggests that it would be
advantageous to incorporate prior information into
association studies and RWAS can be used to find
associations in such association studies.
Many studies suggest that rare variants are not in

linkage disequilibrium with each other (Pritchard
2001; Pritchard and Cox 2002; Li and Leal 2008).
To compute the P-values, our statistic assumes that
these variants are independent. However, in the case
that the rare variants are linked, we can apply a permu-
tation test to obtain P-values to apply the method.
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FILE S1 

MATERIALS AND METHODS 

 

Estimation of population MAF in OWAS  

There can be several ways to estimate population MAF. For example, MB estimates it from control individuals  (MADSEN and 

BROWNING 2009). We choose to estimate population MAF in the following way. Denoting  pi  as population MAF of variant i, 

we first assume that its true overall sample frequency is equal to observed overall sample frequency. 

  pi
+ + pi

− = p̂i
+ + p̂i

−                                                                                          (17)  

 pi
+  and  pi

−  are defined in terms of  pi  (Equations 3, 4), and we can rewrite (Equation 17) as 

  

γ i pi

(γ i −1) pi +1
+ pi = 2 p̂i

± where p̂i
± =

p̂i
+ + p̂i

−

2









                                                             (18)  

We can compute  pi  in terms of  γ i  and   p̂i
±  by finding the root of (Equation 18). 

  
pi =

b+ b2 + 8(γ i −1) p̂i
±

2(γ i −1)
where b = 2 p̂i

± (γ i −1) − (γ i +1)                                                       (19)  

 

Approximation of  xi ,   µ̂ i and   σ̂ i of MB 

In this section, we show that xi ,   µ̂ i and   σ̂ i of MB can be approximated as (Equation 12). First, MB calculates a weight of variant i 

(  ŵi ) as 

  
ŵi = N·qi (1− qi ) where qi =

mi
U +1

2ni
U + 2

                                                                           (20)  

N is the total number of case and control individuals,  mi
U  is the number of mutations for variant i in control individuals, and  ni

U  

is the number of control individuals. 

MB then calculates the genetic score (
 
γ j ) of each individual j. 

  
γ j =

I ij

ŵii=1

M

∑  

where M is the number of variants, and 
 
I ij  is the number of mutations observed in individual j at variant i. MB ranks all 

individuals (both cases and controls) by their genetic scores and calculates the sum of the ranks of cases as its test statistic (x). 

  
x = rank

j∈cases
∑ (γ j )  
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Madsen and Browning reports that x can also be computed using the sum of genetic scores instead of the sum of ranks, and the 

two methods have very similar power. Hence, we will compute x as the sum of genetic scores.  

  
x = γ j

j∈cases
∑  

First, we observe that the sum of genetic scores of cases is equivalent to the sum of observed MAF of each variant in cases divided 

by the weight of the variant. In other words, we sum the number of mutations per variant instead of the number of mutations per 

individual. 

  

γ j
j∈cases
∑ =

N /2· p̂i
+

Nqi (1− qi )i=1

M

∑                                                                                          (21)  

Assuming   qi ≈ p̂i
−  since  qi  is an estimate of MAF of variant i in controls, the statistic of variant i,  xi , in (Equation 21) is 

  

xi =
N
2

p̂i
+

p̂i
− (1− p̂i

− )
                                                                                            (22)  

Next, we derive the statistic of the null distribution denoted as   xi
* . First  p̂i

+ and   p̂i
−  have the following distribution under the null 

distribution. 

   
p̂i
+ ~ N pi ,

pi (1− pi )

N /2









                                                                                          (23)  

   
p̂i
− ~ N pi ,

pi (1− pi )

N /2









                                                                                          (24)  

By multiplying   p̂i
+  in (Equation 23) by 

  

N

2 p̂i
− (1− p̂i

− )
 and assuming   p̂i

− ≈ pi , we can derive   xi
*  that is approximately equivalent 

to  xi  in (Equation 22).   xi
*  and its distribution are then 

   
xi

* =
N
2

p̂i
+

p̂i
− (1− p̂i

− )
≈

N
2

p̂i
+

pi (1− pi )
~ N N

2

pi

pi (1− pi )
,
1
2









                                                           (25)  

Thus, the mean (  µ̂ i ) of   xi
*  is 

  

N
2

pi

pi (1− pi )
, the standard deviation (  σ̂ i ) is  1/2 , and  xi is (Equation 22). 
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