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Abstract

The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the
relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range
of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag
beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As
with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results
from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle
mandibles (or indeed any insect structure) remain largely unknown. Here, we demonstrate that during the development of
male stag beetles (Cyclommatus metallifer), juvenile hormone (JH) titers are correlated with the extreme growth of an
exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the
nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH
analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal
period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the
exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same
period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in
this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of
the evolutionary diversification of the insects.
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Introduction

Insects display an astounding variety of forms. Much of this

diversity can be understood as the result of evolutionary changes in

the proportional sizes of body parts [1,2]. Stag beetles (Coleoptera,

Lucanidae) exemplify the extremes that insect proportions can

take. Male stag beetles wield some of the most extraordinary

weapons of any animal, a pair of grotesquely enlarged mandibles,

which they use in combat with rival males over females [3,4].

Mandible size varies extensively among males (Fig. 1A), and this

variation is driven by nutrition so that only the largest, best-fed

individuals produce full-sized weapons (Fig. 1B–1D). Nutrition-

sensitive growth is characteristic of all exaggerated animal

structures yet studied (e.g. the ornaments and weapons of sexual

selection [5–7]), and this has generated interest in the physiological

mechanisms generating nutrition-dependent phenotypic plasticity

and exaggerated, or disproportionate, trait growth [8,9]. Yet, the

mechanisms responsible for coupling nutrition with growth of

these (or indeed any) insect structures remain largely unknown. In

this study, we capitalize on vast among-individual variation in the

extent of mandibular development, because males possess much

longer mandibles in comparison with females, and because large

males develop with longer mandibles than smaller males. These

individual differences in the amount of mandible growth can be

visualized as scaling relationships between mandible length and

body size, and using both direct measurement of hormone titers in

these divergent individuals, and augmentation of hormone levels,

we demonstrate that during the prepupal period, juvenile

hormone exerts quantitative effects on the relative amount of

mandible growth. Our findings suggest that juvenile hormone may

be an integral part of the mechanism generating nutrition-

dependent (i.e. ‘conditional’) expression of exaggerated sexually

selected structures in insects.

Results and Discussion

Histological background of mandible growth
Stag beetles are complete metamorphic developers. Larvae

undergo three instars and increase in weight over a combined

feeding period of several months. At this point they have
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completed all growth in body size, and they begin the complex

process of metamorphosis including gut purge, regression of larval-

specific tissues, and rapid growth of adult structures. Eyes, wings,

legs, genitalia and mouthparts all undergo rapid growth during

this prepupa period, and in males, mandible growth is especially

prolific at this time. Histological examination of the mandibles of

both large and small males showed huge differences in epithelial

proliferation during development (Fig. 2A and 2B). Under the

larval cuticle of males, we found extensive folding of the epidermis

and cuticle of the newly forming pupal mandibles. Among-male

variation in the structure of these folds (density and depth of

furrow, Fig. 2D and 2E) results in differences in mandible sizes of

pupae. In contrast, for females with relatively small mandible sizes,

we observed smooth mandibular epithelial surfaces lacking any

folding in developing female prepupae (Fig. 2C and 2F). The

complex folding resulting from epithelial growth and proliferation

has also been reported in the development and formation of other

exaggerated structures extending directly from the body walls such

as the horns of horned beetles [10,11] and the mandibles and

nasus of termite soldiers [12,13].

Juvenile hormone regulates mandible growth
It is during the prepupa period that physiological signals are

predicted to modulate the amount of growth in adult structures in

response to nutrition. One proposed mechanism suggests that JH

acts as a nutrition-sensitive regulator of trait growth [14,15]. JH

has long been known to influence alternative patterns of insect

growth, including the seasonal onset of diapause and wing

development in response to overcrowding [16]. JH is also thought

to regulate the nutrition-dependent expression of traits such as

caste-specific morphologies in ants and bees [17], and size-

dependent production of horns in beetles [10]. Recently, Truman

et al (2006) showed that JH is crucial for coupling nutrition with

the growth of adult traits in the hornworm Manduca sexta [18].

In this study, we provide correlative evidence that JH regulates

the exaggerated growth of male stag beetle mandibles. To test the

role of JH during adult mandible development, we increased

hemolymph titers of JH by application of the JH analog (JHA)

fenoxycarb during both larval and prepupal development. Because

growth in overall body size has ceased by the prepupal period, we

predicted that perturbation of JH signaling during the prepupal

period would affect growth of the adult structures without altering

body size –i.e. it would alter the proportional sizes of body parts.

As predicted, increasing JH signaling during the early prepupal

period increased the proportional size of body parts, and this was

especially pronounced in male mandibles (P,0.001, ANCOVA,

Fig. 3A and 3C). In females, mandibular elongation was not

observed regardless of the developmental stage, the type of JHA

applied or the JHA application dose.

The direction of the response to ectopically expressed JHA in

male beetles was consistent with the measured titers for JH during

this same period (Fig. 4A and 4B). Significant differences in JHIII

titers and body size were found between small and large males for

the early prepupal period (small male: 0.28260.033, large male:

0.41360.034 ng/ml hemolymph, P,0.01, Tukey-Kramer; Fig. 4A

and P = 0.012, Pearson correlation coefficient test; Fig. 4B). In

contrast, perturbing JH during the end of the prepupal period did

not influence exaggerated mandible growth (Fig. S1).

Regulation of condition-dependent trait proliferation by JH

signaling depends on the precise deployment of JH [19]. Topical

application of JHA to male stag beetle larvae prior to the prepupal

period significantly prolonged the larval periods (Fig. S2) resulting

in large pupae (Fig. 3B). However, these males did not show

disproportionate growth of condition dependent traits as trait size

and mandible size of these males scaled with that of normally

reared males (Fig. 3B and S3). This result suggests that a high JH

titer during the larval period contributes to increased total body

Figure 1. Intraspecific morphological variation in Cyclommatus
metallifer and condition dependent effects of high and low
food availability. (A) Intraspecific morphological variation in Cyclom-
matus metallifer. Large male (left), small male (center), and female (right)
are shown. (B–D) Larval period duration, pupal weight and mandible
length of stag beetle pupae reared under high and low nutritional
regimes. (B) Males reared under high food conditions spent significantly
more time as third instar larvae than males reared under low food
conditions (P,0.001, student t-test). (C) Male stag beetles were
significantly larger as pupae when reared under high food conditions
(P,0.001, student t-test). (D) Adult mandible length was significantly
longer in males reared under high food conditions (P,0.001, student
t-test). The means 6 SEs (N=10) are shown.
doi:10.1371/journal.pone.0021139.g001
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size, while an increased JH titer at the early prepupal stage con-

tributes to increased mandibular growth regardless of body size. We

have shown that the mandibles of these male stag beetles are

undergoing their maximal rate of growth during the early prepupal

period (Fig. 2) and are expected to be most sensitive to perturbations

in JH during this time. In addition, we found that male prepupal

mandibles responded to perturbations of JH signaling more strongly

than other adult male structures, suggesting that these are especially

sensitive to this endocrine signal.

Taken together, these results suggest that in male stag beetles, JH

signaling during the early prepupal period influences exaggerated

mandible growth through the regulation of epidermal proliferation.

To confirm this hypothesis, further analysis of the function of JH

through JH knockdown experiments such as the artificial degrada-

tion of JH titers with anti-JH agents [20] or knock-down of JH

signaling factors by RNAi [21], will be necessary.

Mandible size varies extensively among male stag beetles in

response to nutrition. We have used a combination of experiments

to manipulate JH and to directly measure JH titers during

mandible development to establish hormonal differences. The

results of this study suggest that a physiological mechanism

generating nutrition-dependent phenotypic plasticity and exag-

gerated, or disproportionate, trait growth is JH signaling at a

specific developmental window during mandibular growth. Our

results are a first step in elucidating the physiological and genetic

mechanisms responsible for coupling nutrition with growth of

these exaggerated weapons of sexual selection.

Materials and Methods

Additional Materials and Methods can be found in the

Materials and Methods S1.

Insect Husbandry
All individuals were reared in the laboratory under 24-hour

darkness at 2462uC. Stag beetles were purchased from Hercules-

Hercules, Sapporo, Japan.

Larval food manipulation
Third instar larvae were collected within 3 days of molting and

were transferred into two experimental groups: a low nutrition

group (reared in 120 ml cups) and a high nutrition group (reared

in 430 ml cups). They were kept within an incubator under

constant darkness at 2560.5uC. Growth cup size affects the

amount of available food and limits space for growth, affecting

larval and adult body size. Growth between the two conditions was

measured as time to pupation, pupal weight, and adult left-

mandible length. Statistical analyses between the two groups were

carried out with Student’s t-test.

Scanning electron microscopy (SEM)
The structure of the newly-formed mandibles of large males,

small males, and females was observed by scanning electron

microscopy (SEM) as described in Materials and Methods S1.

Larval JHA treatment
The juvenile hormone analog (JHA) fenoxycarb (Wako Pure

Chemical Industries Ltd., Japan), were diluted in acetone and

topically applied to male third instar larva 3 days after molting in

doses of 50 and 100 mg/larva). Ten ml of the JHA solution was

applied to the dorsal thorax surface of each larva. Immediately

after JHA application, the treated larvae were placed into

individual 430 ml plastic cups filled with decaying wood flakes.

They were reared in an incubator under 24-hour darkness at

Figure 2. SEMs of the newly-formed stag beetle mandibles dissected from the prepupal cuticle immediately before pupation. (A–C)
SEMs of the left side of newly-formed stag beetle heads and mandibles. (A) Small male, (B) large male, (C) female. Mandibles are indicated in blue. (D–
F) Magnified images of the mandibular regions indicated by the white boxes in A, B, and C. The surface structures of the mandibles are different
among the three types of individuals.
doi:10.1371/journal.pone.0021139.g002
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2560.5uC until pupation. Larval period (in days), weight (g) and

mandible length of pupae and adults (prothorax width and left

mandible length) were recorded. The control groups included an

untreated group and a group that received an application of 10 ml

of acetone.

Prepupal JHA treatment
Male and female individuals in the early half of the prepupal

period (staged as between pupal cell construction to termination of

gut purge) and males in the late half of the prepupal period (staged

from termination of gut purge to pupation) were treated with 10 ml

of 5 mg fenoxycarb diluted in acetone as described above (Wako

Pure Chemical Industries Ltd., Japan). Control groups were

untreated, and acetone-only, early and late prepupae. Mandible

length and total weight of all pupae was recorded. Statistical

analyses for the relationship of mandible length to pupal weights

among all groups were conducted using ANCOVA (JMP version

6.0, SAS Institute, Cary, NC).

Hemolymph collection and JH extraction
Hemolymph was collected from the early prepupal periods of

experimentally manipulated small and large individuals of both

sexes. As mentioned, low food rearing containers with a limited

food supply produce small beetles whereas larvae reared in large

containers with over three times as much food develop into

significantly larger individuals. Prepupae were anaesthetized on ice

and hemolymph was collected by dissection at the base of the legs,

with a glass Pasteur pipette. Aliquots of collected hemolymph were

extracted by using methanol and iso-octane with 30 ng fenoxycarb

(Wako Pure Chemical Industries Ltd., Osaka, Japan,) as an

internal standard. See the Materials and Methods S1 for more

detail.

Liquid chromatography-mass spectrometry (LC-MS)
To quantify juvenile hormone titers in the stag beetle, the

experimental methods of LC-MS were modified based on

Figure 3. Effects of JHA treatment on male prepupae and
larvae. (A, B) The relationship between body weight (X-axis) and
mandible length (Y-axis) of male pupae treated with acetone or JHA at
the prepupal period and the larval period. (C) Pupal phenotype of a JHA
treatment at the early half of the prepupal period which has abnormally
exaggerated mandibles (right), compared with untreated individual of
the same weight (left).
doi:10.1371/journal.pone.0021139.g003

Figure 4. Comparison of JH titer between large and small
males during the early prepupal period. (A) JH titer during the
early prepupal period (mean 6 SE). A significant difference in JH titer
was found between large and small males. Numbers above each
column denote the number of examined individuals. (B) The
relationship between body weight and JH titer in males in the early
prepupal period. The shaded circles represent the average value of the
three measurements for a single individual with a standard error bar.
Among individuals under high food conditions (i.e. large males), a
significant positive correlation between weight and JH titer was found
(P = 0.012, R2 = 0.55, Pearson correlation coefficient test). However,
individuals reared under low food conditions (i.e. small males) showed
no significant correlation between weight and hormone titer, possibly
due to a much narrower range of body weights observed (P.0.1,
R2 = 0.21, Pearson correlation test).
doi:10.1371/journal.pone.0021139.g004
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Westerlund et al. 2004 and Cornette et al. 2008 [22,23]. 5 ml from

each 20 ml extracted sample was separated on a 15062 mm2 C18

reverse-phased column (YMC-Pack Pro C-18.5 mm, YMC Co.,

Ltd., Kyoto, Japan) protected by a guard column (YMC-Pack Pro,

sphere ODS, YMC Co., Ltd., Kyoto, Japan) with gradient elution

of water/methanol (0–15 min 80–100% methanol, 15–20 min

100% methanol) at a flow rate of 0.2 ml/min, utilizing an Agilent

1100 HPLC system with autosampler. Mass Spectrometry analysis

was performed by electrospray ionization (ESI) in the positive

mode on a microTOF-HS (Bruker Daltonics Inc., Billerica, MT)

under the following conditions: the electrospray capillary was set at

4.5 kV and the dry temperature was 200uC. The nitrogen pressure

was 1.2 Bar for the nebulizer and the drying gas nitrogen low-rate

was 4 L/min. The Ionization of standard JH III generated

[M+CH2O]+, [M+OH]+, [M+H]+ and [M+Na]+ ions. In

hemolymph samples, [M+H]+ and [M+Na]+ were the major ions

observed. To confirm these ions were JHIII generated, the HRMS

(high resolution of mass spectrum) of these ions were compared

with the HRMS of JHIII (C16H26O3) with DataAnalysis analysis

software (Bruker Daltonics Inc., Billerica, MT). In order to

diagnose the presence of additional JH homologs, JHI (m/z, 295,

317) and JHII (m/z, 281, 303) were also investigated. There were

two candidate peaks for JH homologs in the chromatogram of the

hemolymph extracts. One peak of m/z = 295, 317, corresponded

with JHI and the other m/z = 267, 289 to JH III. HRMS analysis

indicated that m/z = 295, 317 was not JH I (C18H30O3) (error .

500 ppm), but m/z = 267, 289 was closely matched with the

exact-mass of JHIII (C16H26O3) (error ,5 ppm). In addition, the

retention time (RT) of the candidate m/z = 267, 289 was the same

as that of JHIII standard (Sigma, St Louis, MO). There were no

clear peaks of m/z = 281, 303 that correspond to JH II.

Therefore, JH III was the only JH homolog found in C. metallifer.

Quantification of JH III, fenoxycarb was therefore performed by

monitoring the [M+H]+ and [M+Na]+ ions. A calibration curve of

JH III was made, containing the same concentration of the

internal standard fenoxycarb as for the hemolymph samples. The

JH III titer from each sample was then calculated after analysis of

the chromatogram data with QuantAnalysis software (Bruker

Daltonics Inc., Billerica, MT).
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