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Summary
It is useful to have robust gene-environment interaction tests that can utilize a variety of family
structures in an efficient way. This paper focuses on tests for gene-environment interaction in the
presence of main genetic and environmental effects. The objective is to develop powerful tests that
can combine trio data with parental genotypes and discordant sibships when parents genotypes are
missing. We first make a modest improvement on a method for discordant sibs (discordant on
phenotype), but the approach does not allow one to use families when all offspring are affected,
e.g. trios. We then make a modest improvement on a Mendelian transmission-based approach that
is inefficient when discordant sibs are available, but can be applied to any nuclear family. Finally,
we propose a hybrid approach that utilizes the most efficient method for a specific family type,
then combines over families. We utilize this hybrid approach to analyze a chronic obstructive
pulmonary disorder dataset to test for gene-environment interaction in the Serpine2 gene with
smoking. The methods are freely available in the R package fbati.
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1. Introduction
The interaction between genetic susceptibilities and environmental exposures is thought to
play an important role in complex diseases. For example, in chronic obstructive pulmonary
disorder (COPD), gene-environment interactions with smoking are thought to be
determinants of disease severity (Celedon et al., 2004; Demeo et al., 2006; Vansteelandt et
al., 2008). Concern for population substructure and model misspecification warrants robust
tests, while utilizing information from all available family structures will increase power.
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Case-control methods are used because subjects are easy to recruit and they often have
higher power than family-based designs. However, family-based methods can be formulated
to be completely robust to population substructure; i.e. a systematic difference in allele
frequencies in different groups in a population. For a review of family-based methods see
Laird and Lange (2006). We define interaction in a statistical sense here as a departure from
additive main effects in a generalized linear model (GLM), which may be different than a
biological interaction (Cordell, 2002; VanderWeele, 2009). Here an interaction test is scale
dependent, and cannot be made completely model free (Greenland, 1993; Robins et al.,
1992). A joint test for gene and gene-environment interaction can be made model-free, but
does not distinguish whether the departure from the null involved the main effect or the
interaction (Lunetta et al., 2000; Hoffmann et al., 2009). In this paper we consider testing for
a gene-environment interaction in the presence of any main genetic or environmental effect.

There are two standard family designs in the literature: triads and discordant sibs. There are
also two general methods that have been used to analyze these data, both robust to
population substructure. The first set of methods utilizes the information from the Mendelian
transmissions of parents to offspring; we will refer to these as transmission-based methods.
The second set of methods is based on utilizing the information from the discordant
phenotypes of siblings. When we refer to discordant siblings in this paper, we will always be
referring to discordant phenotypes.

The transmission-based methods proposed in the literature generally assume a relative-risk
based (log-linear) model for disease. They avoid estimating the main effect of the
environmental exposure, making less assumptions about the form of the interaction model.
However, by not estimating environmental effects, the interaction can be harder to interpret.
They also do not use (or need) the environmental exposure of the unaffected offspring. They
assume conditional independence of the genotype and environmental exposure given the
parents, an assumption first introduced and discussed in detail in Umbach and Weinberg
(2000). The assumption fails when the genotype is causal for the environmental exposure;
e.g., ALDH2 carriers avoiding alchohol because of discomfort and flushing when drinking
(Chen et al., 1998). The approaches proposed by Kistner et al. (2009) and Dudbridge (2008)
allow for missing parents by introducing nuisance parameters for them into the likelihood.
Dudbridge (2008) shows his approach is not completely robust to population substructure
when parents are missing. The Kistner et al. (2009) approach also allows for parent-of-origin
effects. Cordell et al. (2004) handles continuous environmental exposures, but is limited to
cases when parents are present. The Hoffmann et al. (2009) method extends Lake and Laird
(2004) to trios and sibships by stratifying on the sufficient statistic for parental mating type
(i.e. the pair of parental genotypes), but is also limited to a single affected offspring. The
method we propose based on Mendelian transmissions conditions on the sufficient statistic
for parental transmission to handle missing parents, as we explain in the methods section.

The methods based only on discordant phenotypes of offspring (Witte et al., 1999;
Siegmund et al., 2000; Weinberg, 2000) have used a logistic model for disease. The
conditional logistic regression (CLR) approach proposed by Witte et al. (1999) does not
need to assume conditional independence of genotype and exposure, as it does not utilize
any transmission information from the parents (Siegmund et al., 2000; Weinberg, 2000).
However, it must model the main effect of the environmental exposure, and so makes more
assumptions on the disease model than the transmission-based methods previously
discussed. A slightly more powerful approach introduced by Chatterjee et al. (2005) for
discordant offspring utilizes both the information from the discordant phenotype and from
the Mendelian transmissions (we will refer to as CLR-IND); the approach requires a rare
disease assumption. The extension we propose of the CLR-IND approach uses the same
sufficient statistic for parental transmission that we use in the transmission approach, rather
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than a pairwise likelihood. The extension offers a modest improvement over the the CLR-
IND approach for families with discordant offspring with more than two siblings.

Although applicable to any nuclear family, when applied to discordant offspring, the
transmission-based approaches suffer a considerable power loss compared to those that use
discordant phenotype information. Chatterjee et al. (2005) suggests combining approaches
to utilize the more powerful approach whenever applicable, and a less powerful approach
when it is not.

In this paper we propose a hybrid approach to test for gene-environment interaction in the
presence of main effects under a rare disease assumption. The hybrid approach utilizes the
more efficient method for discordant offspring whenever they are available, and the
transmission-based approach when the offspring do not have discordant phenotypes. We test
the robustness of the hybrid approach to phenotypic model and rare disease assumptions via
simulation. Lastly, we apply the approach to a COPD dataset.

2. Models and Methods
Let i index families and j the offspring in the ith family. Let gij be the respective genotype,
Zij the environmental exposure, Yij the dichotomous phenotype, and Cij a vector of any
potential covariates to adjust for. Let Xij = X(gij) be some coding of the main effect of the
genotype. Let Xge,ij = Xge(gij) be a potentially different coding of the genotype for the
interaction; the utility of this approach is explained below. Let gi, Zi, Ci, Yi, and Xi be the
corresponding vectors, e.g. of gij. A GLM with interaction can be given under the model

(1)

where l is the link function, Pi is the parental genotype, βnuis = (βg, βe, βc), and

. The intercept αi will cancel out of all likelihoods in the
approaches that we will consider. A term incorporating an arbitrary functional form of the
parental mating type and any family factor, μi(Pi), could also be added to the model, but is
not necessary as it also drops out of the likelihoods that we will consider. In order to test for
gene-environment interaction, we test H0: βge = 0. Note that in this model we assume that
only Zij has an interaction with Xij, not Cij.

In this paper, we are focused on testing βge. In practice we are rarely testing the true disease
susceptibility locus (DSL). Instead we will be testing SNPs that are in linkage
disequilibrium (LD), i.e. correlated, with the DSL. In this case the β coefficients do not have
a directly meaningful interpretation. To make the test valid when the SNP is only in LD with
the DSL, we use score tests with a saturated model for X with dummy variables, i.e. X =
X(g) = {I(g=AA), I(g=Aa)}, and an empirical variance. To allow for testing specific
alternatives, we allow Xge to be a one degree-of-freedom coding, e.g. additive or recessive.

In all of the following methodology we introduce, when we have multiple offspring, we will
make the assumption that

(2)
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This assumption could be violated in at least three situations. First it assumes the phenotype
of offspring is not affected by siblings’ genotype, even if only in LD to the DSL. Secondly,
it assumes phenotype independence within each family. We explore violations of these first
two assumptions by simulation. Thirdly, it assumes the environmental exposure or
covariates of other subjects in the family have no residual association with the phenotype of
other offspring. This is a somewhat more subtle assumption that can be circumvented with
more complicated phenotype models, and will be discussed further in the context of the
example.

2.1 Transmission-based approach using the conditional genotype distribution for general
nuclear families (TX)

The transmission-based approach we will discuss in this section is applicable to any nuclear
family, but is less efficient than subsequent approaches when there are discordant offspring,
as the phenotype of the unaffected offspring is not used. For the transmission-based
approach, we can use a less parametric model for the disease than equation 1 with the model

. This is because
individual covariates do not need to be modeled, as they are absorbed into the term Pr(Yij =
1|gij = aa, Zij, Cij), which will cancel out of the retrospective likelihood proposed below. We
still assume there is no interaction between Xij and Cij conditioning on the parents. The
model allows for an arbitrary functional form of the environmental main effect; we require
only that under the null the environmental factor acts multiplicative to the main genetic
effect. Thus the test allows for any multiplicative environmental main effect, and a saturated
main genetic effect to avoid misspecification.

Assuming Mendel’s laws can be used to specify Pr(Xi|Pi), we use Bayes rule (Schaid, 1996;
Cordell et al., 2004; Kistner et al., 2009) to construct a test based on the joint distribution of
the genotypes of all of the affected offspring for each family, conditioning on covariates,
parental genotypes, and phenotypes:

(3)

Unaffected offspring only contribute to determining the conditional distribution of affected
offspring genotypes when missing one or more parental genotype. In the case of missing
parents, there can be several parental genotypes consistent with the observed data. We
replace conditioning on Pi by the sufficient statistic for Pi, say Si. Si is a function only of the
observed genotypes, which may include both offspring and parental genotypes. Si has the
property that , where  denotes the genotypes of any missing
parents. Note that Si = Pi by definition if both parents are observed, hence we use Pr(Xi|Si)
to denote the conditional distribution regardless of family type. Si and Pr(Xi|Si) depend upon
the observed family genotypes, but are easily enumerated via the algorithm in Rabinowitz
and Laird (2000); see also Knapp (1999). Here we give some examples.

Suppose we observe nAB offspring with genotype AB and nBB offspring with BB, where both
counts are positive but nAA = 0, and a parent who is AB. In this case, the observed parental
genotype gives no information because it can be inferred from the offspring genotype data.
However, the other parent cannot be reconstructed. Further, the two possible mating types,
(AB, AB) and (AB, BB), give different probabilities for the observed nAB and nBB. In this
case, the sufficient statistic is simply the vector of genotype counts (nAA, nAB, nBB). To
obtain Pr(Xi|Si), we permute the individual genotypes among the offspring, fixing Si. In this
way, Pr(Xi|Si) does not depend upon the unknown mating type.
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If instead of the AB parent, we observe a BB parent, the mating type (AB, BB) can be
reconstructed exactly (Knapp, 1999). In this case, the sufficient statistic is observing a BB
parent and (nAB > 0 and nBB > 0), since this information allows us to reconstruct the missing
parent. The genotypes AB and BB are randomly assigned to offspring with probability 50/50
(because we know the mating type), but we do not allow outcomes with either nBB or nAB
equal to zero.

Conditional independence of Xi and Zi given Si follows from properties of the sufficient
statistic, as shown in Web Appendix A.

The likelihood we use in equation 3 is similar to Cordell et al. (2004), except it conditions
on the sufficient statistic for the parents, allowing us to incorporate families with missing
parents; for trios the two likelihoods are equivalent. It is also similar to the Kistner et al.
(2009) likelihood when parents are present and ignoring parent-of-origin effects.

Using equation 3, the log-likelihood for each family sums over the affected offspring

(4)

Detailed derivations of this likelihood are provided in Web Appendix B. The derivation
assumes that we have conditional independence of the genotype and environment given the
parents. In this likelihood, unaffected offspring contribute only to the reconstruction of Si
when parents are missing. Including unaffecteds would require having an estimate of the
baseline disease prevalence and modeling the form of the environmental main effect. Thus
environmental covariate information is not needed on unaffected offspring, and it does not
contribute any information to the test. In this section, because βg is the only nuisance
parameter in the retrospective likelihood, we will define βnuis = βg. The derivative of the
log-likelihood is given by the following summation over the affected offspring only:

(5)

In order to construct a score test for gene-environment interaction, i.e. H0: βge = 0, we first
solve for the nuisance parameter βnuis = βg from the estimating equation

. Denote this solution β ̂nuis. Then let the contribution of the ith family,
adjusted for estimating the nuisance parameter, be given by

(6)

The derivatives are given in Web Appendix B. Then the test statistic is given using the

empirical variance by . As shown in Web Appendix C, under

weak regularity conditions this follows a chi-squared distribution with rank ( )
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degrees of freedom. We will denote this test by TX (short for transmission), for its use of
Mendelian transmission information.

2.2 Using the discordant phenotype and genotype conditional distribution for discordant
offspring (CLR-IJ)

As noted by Chatterjee et al. (2005), we can gain more power for discordant sibs using the
logit link in equation 1, assuming a rare disease, and assuming conditional independence of
genotype and environment given the parents. Note, however, that if the conditional gene-
environment independence assumption is violated, especially if there is a strong negative
correlation, then the test is not only biased, but is also not necessarily more powerful than
CLR (see simulations). We generalize and provide a slightly more powerful test than CLR-
IND when there are more than 2 offspring. We can model the likelihood of phenotype and
genotype by

(7)

where A(Yi) indexes the affected offspring, and U (Yi) indexes the unaffected. The log-
likelihood for each family is given by

(8)

where Yi+ = ΣjYij and . Detailed derivations are provided in Web Appendix D.
The right hand side of equation (8) uses a combination of the conditioning sets of the
previous approach in equation 4, (X*∈ Si), and what would result from conditional logistic
regression ( ) with the set ( ). The likelihood also models the
main effect of the environmental exposure, and relies on specifying the main environmental
effect correctly. The approach is similar to CLR-IND, except here we condition more
generally on Si and use the joint distribution of the offspring instead of a pseudo-likelihood
consisting of all pairs of affected and unaffected offspring in a family. For discordant
sibpairs the likelihood ℓCLR-IJ is equivalent to CLR-IND, but not for more general families
with discordant offspring. The derivative of the log-likelihood for each family is

(9)
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The estimating equation here is a combination of both the previous approach (equation 5)
and what would come from conditional logistic regression. The resulting score test for H0:
βge = 0 is given by following the methodology above for the construction of Wi (equation 6)
but using . The derivatives are given in Web Appendix D. The resulting test statistic

still has a chi-squared distribution with rank ( ) degrees of freedom. We refer to
this test as CLR-IJ, for both the joint phenotype and genotype conditional distributions, and
the conditional independence of genotype and environment given the parent.

2.3 A Hybrid Transmission and CLR-IJ approach (Hybrid)
We will see later in the simulations that the CLR-IJ approach is much more powerful than
the TX approach for discordant sibs. Ideally we would like to use the CLR-IJ approach
whenever possible, and still obtain some information from families where CLR-IJ does not
apply by using the TX approach. We follow the idea of Chatterjee et al. (2005) to combine
our approaches under a rare disease assumption. The rare disease assumption is needed at
the population level both in the derivation of the  likelihood and so that the log and
logit scales of the two disease models are approximately the same. The rare disease
assumption is not made at the stratum specific nuclear family level, so it is still reasonable to
have multiple affected offspring in a family, as will be the case when families are
ascertained for affection status. We assess how robust the test is to failures in this
assumption in the simulations. We also still require the assumption of conditional
independence of the genotype and the environment given the parents. The estimating
equations are given by

We construct Wi as before in equation 6, again resulting in a test statistic with rank

( ) degrees of freedom. We denote this approach Hybrid, as it is a hybrid of TX
and CLR-IJ. Note that the families contributing to  estimate more parameters than

. In the case where there are only a few families with discordant offspring, we may not
have enough information to estimate these very well, and the TX method should be used for
all of the families. Also note that for cases in which there are always discordant offspring,
the Hybrid approach will be equivalent to the CLR-IJ approach. In cases in which all of the
offspring are always affected, e.g. trios, the Hybrid approach will be equivalent to the TX
approach.

3. Simulations
We used simulations to compare the TX, CLR-IJ, and Hybrid approaches presented in this
paper. We also considered the CLR and CLR-IND approaches with an empirical variance.

3.1 Simulation Design
All families were generated by first sampling parental pairs according to the allele frequency
pallele in the population (or subpopulation for scenarios with population stratification), with
random genotypes for siblings based on Mendelian transmission. For continuous exposures,
a random multivariate normal exposure for Zi was drawn, with correlation ρenv. In order to
test violations of the gene-environment independence assumption, we also simulated

 in one scenario (with ρenv = 0).
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For dichotomous exposures, the normal exposure was dichotomized to have a population
prevalence of penv. Finally, assuming the DSL is the observed marker, the disease status of
the offspring was determined by comparing a U(0, 1) draw with the probability the offspring
was diseased according to equation 1. In equation 1, we used a log or logit link function,
with relative risks or odds rations eβe, eβg, and eβgefor the main environmental effect, main
genetic effect, and gene-environment interaction. We kept values of eβgand eβgebetween
1.2–2, as the main effects of complex diseases are expected to be small (Lohmueller et al.,
2003). The value for β0 was solved for after fixing a certain population prevalence K = Pr(Y
= 1). In some scenarios we simulated a rare disease so that the log and logit scales were
approximately equivalent so that the different approaches would be comparable. We used
five ascertainment criteria: one affected offspring with parents (trios); sibships of size 2, 3,
or 4 with no parents, but at least one affected offspring; and sibships of size 3 or 4 with no
parents and at least two affected offspring. When LD was simulated, haplotypes were drawn
with two alleles of equal frequency with correlation ρmarker. The probability of alleles
crossing over was given by θrecomb. The first allele in the haplotype was used to generate the
data, and the second allele was used to test.

We also simulated data to test general violations of the phenotypic independence assumption
described after equation 2. Consider a two by two table for the outcomes of Yi1 and Yi2. We
first generated the marginal probabilities of this table, Pr(Yij = 1|Xij, Zij), as described above.
We then induced a correlation in the Yi by fixing the odds ratio ORpheno between the pair of
offspring in the ith family, and using this to solve for the distribution of the rest of the two by
two table.

3.2 Simulation Parameters
Unless otherwise noted, we simulated 500 of each family structure, e.g. 500 trios, 500
discordant sibpairs (DSP), 500 discordant sibtrios, along with a mixture of 250 sibpairs +
250 trios for some simulations, and case-control having 500 cases and 500 controls. Note
that CLR methods will discard trio data in the analysis but the TX method can potentially
use all family types. We set pallele = 0.14. We first tested two type I error situations:

(1) LD: ρmarker=0.3, 0.6, 0.9, and 1 (i.e. testing the marker); θrecomb = 0, 0.3; K =
0.01; log link; penv = 0.3; dichotomous environmental exposure; ρenv = 0; eβg=
eβe= 1.5; eβge= 1; various family structures.

(2) Population substructure: same as (1), but with K1 = 0.02; K2 = 0.04; pafreq1=
penv1= 0.1; and pafreq2= penv2= 0.1.

We then tested the robustness to model assumptions:

(3) Rare disease assumption: varying K ∈ [0.01, 0.1]; log/logit link; penv = 0.3;
dichotomous environmental exposure; ρenv = 0; eβg= 2; eβe= 3.

(4) Sibling conditional phenotype independence: same as (3), but varied ORpheno =
1/2, 2/3, 1, 1.5, 3.

(5) Gene-environment independence given the parents assumption: varying γchild,
γparent ∈ [−0.1, 0.1]; K = 0.02; log link; continuous environmental exposure;
ρenv = 0; eβg= eβe= 1.5; eβge= 1, 1.5; discordant sibpairs.

Finally we tested the power of the approaches:

(6) Comparing to CLR-IND: varied the sibship size from 2–6; 300 families; K =
0.01; log link; penv = 0.3; dichotomous environmental exposure; ρenv = 0; eβg=
eβe= 1.5; eβge= 1.4.
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(7) Comparing the Hybrid approach to other family structures, and the effect of
sibling environmental correlation: varing ρenv ∈ [0, 1]; K = 0.01; log link; penv =
0.3; dichotomous environmental exposure; eβg= eβe= 1.5; eβge= 1.75; various
family structures.

3.3 Findings
3.3.1 Simulation study to assess type I error
(1) LD and (2) Population substructure: We find that the test maintains the correct type I
error in Table 1, even if the marker is only in LD with the true DSL (assumption 2, first
violation).

3.3.2 Robustness to model assumptions
(3) Rare disease assumption: The Hybrid and CLR-IJ extension of the CLR-IND approach
all make a rare disease assumption, and only when a disease is rare are the log and logit
scales approximately equivalent. The simulation results we present were run with stronger
main effects, as deviations are more pronounced in those situations. In Figure 1(a) (logit
link) and Web Figure 1 in Web Appendix E (log link) the TX approach shows no deviations
from the type I error rate under the RR model, as expected, given it is based on a log link.
The CLR-IJ and Hybrid approaches also behave well, likely from their transmission-based
components and pieces. The TX, CLR-IJ, and Hybrid also behave well under the logit link,
even for high prevalences with a misspecified phenotypic model. The CLR approach shows
inflated type I error rates as disease prevalence increases under a misspecified relative risk
model, and also for smaller sample sizes, but behaves well under a logit model. Results are
similar for a continuous normal environmental exposure and other correlation values
between siblings environmental exposure values (results not shown). Results are generally
slightly more inflated for higher main effects than those presented in Figure 1(a) (logit link)
and Web Figure 1 (log link), and less for lower main effects.

(4) Sibling conditional phenotype independence assumption: In the best case, when there
was either no main environmental effect or no main genetic effect, then the results were not
affected by ORpheno (results not shown, but tested for relative risks up to size 3). In Figure
1(b) we show that the type I error is slightly more inflated when there is an odds ratio > 1 for
discordant sibpairs, but only when using CLR and generating under a RR model. CLR-IJ
approximately maintains the type I error.

(5) Gene-environment independence given the parents assumption: The CLR approach
does not make this assumption, and so completely maintains the type I error. In Figure 2(a),
we see that the TX and Hybrid approaches show inflated type I error values when γchild ≠ 0,
i.e. when the gene influences the covariate. Results are only shown for γparent = 0.1, as none
of the approaches are affected by γparent ≠ 0 (i.e., there is population substructure), as
expected. Although the TX and the Hybrid approaches have inflated type I error when this
assumption is violated, we also compared the power of the approaches in Figure 2(b). We
found that when there is a strong enough negative correlation (i.e. γchild < 0) then the CLR
test is more powerful than the CLR-IJ approach. These results are similar to violations of the
gene environment independence given the population for case only population genetics
designs (Umbach and Weinberg, 1997).

3.3.3 Power—We do not show, but first discuss how our proposed TX approach has
similar power to other transmission-based approaches. When we compared it to the Cordell
(2002) approach for trios, we found it had the same power, as it is based on an equivalent
likelihood, when parents are present. We did not compare it to the Dudbridge (2008)
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approach, as it is also based on an equivalent likelihood when parents are present, but the
Dudbridge (2008) approach is not completely robust to population substructure with missing
parents. We also did not compare it to the Kistner et al. (2009) approach, as it too has an
equivalent likelihood as TX when parents are present and there are no parent-of-origin
effects. Finally, we found the power was essentially the same as the Hoffmann et al. (2009)
approach in the case of sibpairs and trios with one affected offspring, and expect it not to be
better unless there are a lot of different strata of sufficient statistics (the latter approach
estimates a mean within each sufficient statistic, which will be less efficient than a model for
the mean, particularly when there are many strata) or more than one affected offspring in a
family.

(6) Comparing to CLR-IND: We compared the power of the CLR-IJ, CLR-IND, and TX
approaches on discordant sibships, as all methods can be implemented with such a family
structure. Recall from the type I error simulations that we found that the type I error rate was
preserved in this situation. We found that the main effects typically had little impact on the
power (only modest are shown). In Figure 2(c) we first see that the CLR-IJ approach is
slightly more powerful than the CLR-IND approach when there are more than 2 offspring.
When there are 2 offspring, the CLR-IJ and CLR-IND likelihoods are equivalent, and the
power benefit of CLR-IND and CLR-IJ diminishes as the number of sibs increases. We also
see it is slightly more powerful than the easily implemented CLR approach. We suspect the
power difference is not more dramatic because the largest increase in power is from using
discordant phenotypic information, rather than the transmission distribution. Lastly, we also
see that the CLR-IJ approach is much more powerful than the RR approach, hence our
motivation for constructing the Hybrid approach. In Figure 2(c), there is only 1–1.04
affected offspring per family, but the relative power difference does not change when 2
affected offpsring are ascertained per family.

(7) Comparing the hybrid approach to other family structures, and the effect of sibling
environmental correlation: Finally, we compared the power of a situation requiring the
hybrid approach (trios + DSP) to the most efficient test for trios, DSP, and also to case-
control. Figure 2(d) shows that only for very high environmental correlations is a case-
control design or trios more powerful than DSP. This is because DSP is most powerful when
the environmental exposures of the offspring are discordant within the family stratum.
However it is also important to note that these results are fairly dependent on the population
prevalence of the environmental exposure. Web Figure 2 in Web Appendix F shows the
power of case-control and trios performing better for a higher population exposure
prevalence. Generally the power of trios is fairly comparable to case-control.

4. Application to Serpine2
We applied the gene-environment interaction methods to 127 extended pedigrees from the
Boston Early-Onset (age < 53) COPD Study (Silverman et al., 1998) in the Serpine2 gene.
The estimated prevalence of COPD is 5.9% (Mannino, 2002). Postbronchodilator
measurements of forced expiratory volume at 1 second (FEV1) were measured, as FEV1 is a
key intermediate phenotype of COPD. The Serpine2 gene was previously shown to be
associated with FEV1 in early-onset COPD families when including a gene-environment
interaction with pack-years for the quantitative FEV1 trait (Demeo et al., 2006; Vansteelandt
et al., 2008). Here, the trait was obtained by dichotomizing FEV1 percent predicted < 50%
and FEV1/FVC < 90%; a stricter definition that is even more appropriate with the rare
disease assumption.

We broke the extended pedigrees into 225 nuclear families that would have some potential
of contributing to each test statistic. This includes families with parents and at least one
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affected offspring; or families with one to two missing parents, at least one affected
offspring, and two or more offspring. The rest of the informativeness of a family is
determined on a SNP by SNP basis with genotype variation. The frequency tabulation of the
nuclear family structure is broken down in Table 2. There were a variety of different family
structures.

For the gene-environment interaction test, the environmental exposure was given by pack
years of smoking. The estimated intraclass correlation coefficient (ICC) of the
environmental exposure was 0.30 (Bliese, 2000). We tested 48 SNPs in this candidate gene
using the model

where X(g) is the additive coding of the SNP, and Z is pack-years, adjusting to the third
order term to capture any nonlinear main environmental effect. The results of SNPs with a
joint test of gene and gene-environment interaction p-value < 0.15 are shown in Table 3
(chromosome position in Web Figure 3 in Web Appendix G), and are not adjusted for
multiple testing. The joint test is from Lunetta et al. (2000), and is a score test of βg and βge
from the log-linear model. Although not significant with a Bonferroni adjustment for
multiple comparisons, the most promising interaction result is given by the Hybrid approach
for rs729631. This marker has a point estimate of 0.041 with 95% bootstrap BCa confidence
interval (0.015, 0.092); this means that for each increase in pack-years of smoking, a person
has an increased relative risk of 1.042 for each copy of the risk allele.

In this example, the Hybrid test is usually the most significant test in detecting an
interaction, although in a few situations the CLR test is more significant. This may be due in
part to the different model scale assumptions of the tests. It may also be due to a lack of
phenotypic independence. In this example the TX test is generally the least significant. This
might be expected given the low environmental correlation and high number of families
with discordant sibships. There is also a slight gain in using the Hybrid approach over the
CLR-IJ approach here. In the results, we counted the number of informative families by

those that have nonzero  contributions, i.e. contributed to the interaction term. The
number of informative families is often less than the number of families. A family is
informative under the TX approach only when at least one parent is heterozygous, or the
offspring have at least one differing genotype. A family is informative under the CLR
approach only if it has discordant offspring, and requires a discordant genotype or
environmental exposure. The hybrid approach utilizes both.

In equation 2 we made the assumption that the environmental exposure of other subjects
does not affect the phenotype of the offspring. For example, one way this could be violated
is by passive smoking. As COPD is a late onset disease, we expect the assumption to be
reasonable in this case. We could alternatively use a more complicated GLM to include
information on passive smoking in the same framework.

5. Discussion
We have presented the Hybrid approach that allows us to use a more powerful test for
interaction for families with discordant offspring, while still allowing us to use information
from families with only affected offspring. The result is a very efficient interaction test for
dichotomous traits that can utilize any type of family structure, and dichotomous or
continuous environmental exposure, and will be especially advantageous when mostly trios,
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but some DSPs are available. The test is completely robust to population substructure, and
behaves well in situations where the model assumptions are slightly violated and the main
effects are not too large. Care should be taken when the main effects or disease prevalence
are much larger than those presented in this paper.

The Hybrid approach has limitations as well. It is not applicable in situations with a very
common disease, unlike the CLR approach. Like the other tests here, the result is dependent
on the true disease model having the form given in equation 1, although it is difficult to
avoid assuming a disease model for a general interaction test. This explains the inflated type
I error rates in the log and logistic models under the CLR or TX approaches, respectively,
for higher population prevalence values. In some cases one way of avoiding assuming a
disease model may be through the sufficient cause framework developed by VanderWeele
(2009).

In practice, there are several situations where it would be advantageous to use a different test
than the Hybrid test. In cases of discordant offspring where one is concerned about violating
the assumption that the gene and environment are independent given the parents, the CLR
approach does not require this assumption and is nearly as powerful as the Hybrid approach.
In cases where one has almost exclusively affected offspring, e.g. trios, it would be
advantageous to use the TX approach if there are not enough subjects in discordant sibships
to estimate the main effect of the environmental exposure. Finally in cases where the
environmental exposure is family specific, TX may be preferred because it does not need to
correctly model the main effect of the environment, and loses just a little power.

Software is available in the R (R Development Core Team, 2008) package fbati, available
from http://cran.r-project.org/. It uses the package fgui for the graphical interface (Hoffmann
and Laird, 2009), and the data loading routines of pbatR (Hoffmann and Lange, 2006).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Type I error and phenotypic model robustness simulations under the logit link.
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Figure 2.
Type I error and power simulations.
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