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Abstract
Irritable bowel syndrome (IBS) is defined by the Rome 
Ⅲ criteria as symptoms of recurrent abdominal pain or 
discomfort with the onset of a marked change in bowel 
habits with no evidence of an inflammatory, anatomic, 
metabolic, or neoplastic process. As such, many clini-
cians regard IBS as a central nervous system problem 
of altered pain perception. Here, we review the recent 
literature and discuss the evidence that supports an 
organic based model, which views IBS as a complex, 
heterogeneous, inter-dependent, and multi-variable 
inflammatory process along the neuronal-gut axis. We 
delineate the organic pathophysiology of IBS, demon-
strate the role of inflammation in IBS, review the pos-
sible differences between adult and pediatric IBS, dis-
cuss the merits of a comprehensive treatment model 
as taught by the Institute of Functional Medicine, and 
describe the potential for future research for this syn-
drome. 
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INTRODUCTION
Functional abdominal pain (FAP) and irritable bowel syn-
drome (IBS) are debilitating and common conditions. IBS 
is defined by the Rome Ⅲ criteria as, “symptoms of  recur-
rent abdominal pain or discomfort and a marked change in 
bowel habit for at least six months, with symptoms experi-
enced on at least three days of  at least three months, with 
two of  the three following findings: (1) Pain is relieved by a 
bowel movement; (2) Onset of  pain is related to a change 
in frequency of  stool; and (3) Onset of  pain is related to a 
change in the appearance of  stool”[1].

FAP occurs in 10%-15% of  school-aged children, of  
which 17%-24% have pain significant enough to disrupt 
their activity, and 13%-15% awaken from their sleep due 
to the pain[2,3]. Up to 53% of  children with abdominal 
pain continue to have abdominal pain as adults, and 18% 
are ultimately diagnosed with IBS[4].

Chronic abdominal pain is associated with significant 
morbidity, including depression[2], decreased quality of  life 
measures[5], and disability leading to inability to work[6]. 
Adults with abdominal pain have higher rates of  poten-
tially unnecessary surgeries[7-10]. Patients with IBS and FAP 
are costly to the medical system[11,12]. Both children and 
adults with IBS frequently visit the offices of  primary 
care physicians and gastroenterologists[13]. Adults with IBS 
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have significantly more hospitalizations, outpatient visits, 
diagnostic testing, and overall medication use than well 
patients[14]. A large percentage of  the medical costs associ-
ated with IBS are related to hospitalizations and inpatient 
diagnostic testing, such as endoscopies[15]. Antidepressants 
and other neuropharmacological agents help the symp-
toms of  IBS[16], but these treatments have their own limi-
tations and potential adverse effects.

IBS is thought to be just a functional problem that is 
“without demonstrable evidence of  a pathological condi-
tion such as an anatomic, metabolic, infectious, inflam-
matory, or neoplastic disorder”[17]. IBS is seen as a non-
organic syndrome, primarily involving altered perception 
and processing of  pain. As a result, the majority of  cur-
rent therapies for IBS revolve around stress reduction, al-
teration of  pain pathways, and alleviation of  symptoms[16]. 

In this literature review, we delineate the gastrointes-
tinal-neuro-immune pathophysiology of  IBS and discuss 
the link between inflammation and pain. We believe that 
more effective treatment models are possible through 
a patient-centered approach that simultaneously treats 
the multiple variables that lead to IBS, as addressed in 
this review. The integration of  this IBS treatment model 
may improve patient outcomes while reducing the medi-
cal cost burden of  IBS. This paper will also discuss the 
possible differences between adult and pediatric IBS and 
present potential areas of  future research. 

STRESS AND THE GASTROINTESTINAL-
NEURO-IMMUNE AXIS 
Stress in various forms predisposes individuals to de-
veloping IBS[18-20] and increases IBS symptoms in chil-
dren[21]. Abuse or other significant stressors change the 
neurobiology of  stress and alters the levels of cortico-
tropin-releasing factor (CRF) or hormone (CRH)[22], a 
hypothalamic stress hormone. CRF activates the pitu-
itary-adrenal axis and mediates behavioral, autonomic, 
immune, and visceral responses to stress[23]. Patients with 
IBS have enhanced stress responses and release higher 
amounts of  CRF in response to stress[24].

Stress changes the physiology of  the gastrointestinal 
tract. Maternal separation of  rat pups causes CRF-medi-
ated mucosal barrier dysfunction with macromolecular 
permeability and increased bacterial adherence/penetra-
tion of  the gastrointestinal mucosa with translocation 
to the spleen[25]. These animals also have mitochondrial 
swelling of  the gut epithelial cells, immune cell infiltra-
tion, mucus depletion, and mast cell degranulation[23,26-29]. 
Stressed human beings show similar findings[30].

Stress compromises the integrity of  the gut and induces 
inflammation through numerous pathways, as demonstrat-
ed by several published papers[22,28,31]. CRF released from 
the hypothalamus can directly influence human colonic 
mast cells[32,33], which then induce intestinal epithelial patho-
physiology and mucosal barrier defects[34-37]. Substance P 
(SP) and calcitonin gene-related peptide (CGRP)-containing 
gastrointestinal efferent neurons can also influence mast 

cells[38-41] and result in degranulation[42] and release of  
TNF-α[43]. These compounds, in turn, result in gut inflam-
mation and intestinal permeability[44]. 

These stress-induced changes in the gastrointestinal tract 
“persist after the stressor is removed from the animal”[37]. 
This is likely to be due to the ability of  mast cells to influence 
their environment. In rats, inflammation results in increased 
mast cell-neuronal contacts and mucosal nerve cell density 
that last well beyond the initial insult[43,45]. Gastrointestinal 
inflammation in humans also results in neuron prolifera-
tion[46-48]. Stress and inflammation modulate nerve growth 
factor (NGF), which then affects mucosal nerve remodel-
ing[49,50], sprouting, and synaptogenesis[51]. Mast cells, in close 
contact with neurons, synthesize and release NGF, and thus, 
can alter neuronal density and synaptogenesis[49,52].

Furthermore, inflammation preceding a psychologi-
cal stress can alter the epithelial response to stress signals 
and make the gut more susceptible to stress[53]. In addi-
tion, inflammation can change the morphology of  mast 
cells and their intracellular contents, further changing the 
susceptibility of  the gut to various future stressors[54-57].

Inflammation can play an important part in the mani-
festation of  IBS symptoms[58]. Once the inflammatory 
cascade is activated, this immune response can create a 
vicious cycle of  self-perpetuating inflammation. Acti-
vated mast cells can directly release CRF[59]. Patients with 
inflammatory bowel disease (IBD) and IBS have CRF-
immunoreactive macrophages, enterochromaffin cells, 
lymphocytes, neutrophils, and eosinophils, which are pres-
ent in higher concentrations than in healthy controls[60-63]. 
CRF induces lymphocyte proliferation[64] and macrophage 
release of  pro-inflammatory cytokines (TNF-α, IL-1, 
and IL-6)[65]. These activated immune cells, in turn, locally 
release CRF and other immune peptides[61,66], which then 
activate mast cells[22]. Mast cell-derived tryptase is another 
compound that recruits lymphocytes, eosinophils, and 
macrophages[67], and can further perpetuate inflammation. 

INFLAMMATION INDUCED NEUROLOGICAL 
TONE 
Patients with IBS have central processing abnormalities 
associated with the perception of  pain[68-71]. Colonic irrita-
tion can lead to visceral hypersensitivity[72]. Patients with 
IBS have inflammatory changes in their gut mucosa, which 
can only be identified by quantitative histopathology, im-
munohistochemistry, and electron microscopy[73]. These 
patients have increased numbers of  mast cells in the mu-
cosa of  the colon[30,74,75]. Mast cell concentrations and their 
distance from mucosal nerve cells are positively associated 
with various IBS symptoms[75]. The tryptase released from 
these mast cells can directly activate gastrointestinal neurons 
in animals and humans, and can cause visceral hypersen-
sitivity[76-78]. Tryptase cleaves and activates transmembrane 
proteins called proteinase-activated receptor-2 (PAR2), 
which are found on the primary afferent neurons of  the 
gastrointestinal tract[79]. Activation of  PAR2 receptors leads 
to neuronal activation, which then creates the experience of  
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chronic pain.
In addition to central nervous system activation, pa-

tients with IBS also have sensitization and upregulation 
of  the dorsal horn[70,71,80], which explains the cutaneous 
hyperalgesia found in the lower extremities, rather than 
upper extremities, due to viscerosomatic convergence of  
nociceptive afferent neurons from the colon/rectum and 
lower extremities[81]. Seybold et al[82] review the mecha-
nisms by which gastrointestinal inflammation leads to 
gastrointestinal primary afferent neuronal activation and 
spinal cord activation/sensitization and inflammation. 

If  true, the perpetual mild mast-cell mediated inflam-
mation can trigger the “excessive or prolonged stimula-
tion of  extrinsic afferents (that) may also result in the 
development of  neuronal sensitization, at peripheral, 
spinal, or higher CNS levels, such that perception of  
sensations from the bowel is heightened, resulting in 
symptoms of  urgency, bloating, and pain”[83]. This sub-
clinical inflammation may also influence gastrointestinal 
serotonin pathways. 

IBS, NEUROLOGICAL TONE, AND 
SEROTONIN
Serotonin (5-HT) can influence the motor function and 
sensitivity of  the gastrointestinal tract[84-89]. Serotonin exerts 
a range of  effects via its seven receptor subtypes (5-HT1 to 
5HT-7). Serotonin receptor 5HT5, 5HT6, 5HT7 are found in 
the brain, whereas 5HT1, 5HT2, 5HT3, 5HT4, and 5HT7 are 
the gastrointestinal serotonin receptors[90]. A large majority 
of  the body’s serotonin is stored in gastrointestinal entero-
chromaffin cells (EC)[85]. Patients with diarrhea predomi-
nant IBS have increased EC cells[91-93], which are activated 
by inflammation to release serotonin and may result in the 
elevated serotonin levels found in patients with IBS[94,95]. 
Tegaserod, a partial 5HT4 agonist has been used for consti-
pation dominant IBS and Alosetron, a 5HT3 antagonist, in 
diarrhea dominant IBS.

Serotonin reuptake transporters (SERT) in the gut 
epithelial cells terminate the effects of  serotonin[96,97] and 
influence serotonin concentrations and symptoms of  
IBS[85]. Patients with IBS have genetic polymorphisms 
that lead to lower expression of  transport proteins and 
less serotonin reuptake[83,98,99]. The noted inflammation 
may also alter SERT expression and decrease its function 
in patients with IBS[100]. Further studies on the modula-
tion of  the gastrointestinal tract serotonin pathways may 
help further define and treat IBS.

INTESTINAL PERMEABILITY, CHRONIC 
INFLAMMATION, AND ANTIGENS 
The presence and activity of  mast cells, along with other 
inflammatory cells, alone are not likely result in chronic 
inflammation. Other intestinal antigens, such as food, 
bacteria, and fungi, are likely to be needed to perpetuate 
the inflammation in the presence of  an impaired gastro-
intestinal epithelial barrier. 

Healthy individuals have tight junctions that help to 
form the gastrointestinal epithelial barrier along with 
mucous, SIgA, and other peptides. This epithelial barrier 
controls the interaction between luminal bacteria and 
antigens and the mucosal immune system[22,101]. It also 
allows immune tolerance of  food antigens and bacteria. 
Activation of  PAR2 not only leads to neuronal activa-
tion, but also to epithelial barrier defects in patients with 
IBS[102,103].

Low level PAR2 activation of  the myosin light chain ki-
nase (MLCK), causes phosphorylation of  the myosin light 
chain, which then leads to contraction of  the actin-myosin 
ring. Tight junction protein zona occludens-1 (ZO-1) relo-
calizes into the cytoplasm and disrupts the tight junctions, 
which increases paracellular permeability. High level PAR2 
activation in the rat colon results in localized inflammation 
and increased production of  TNF-α and IFN-γ. INF-γ 
decreases ZO-1 expression and alters the actin cytoskel-
eton organization[104]. TNF-α activates MLCK and results 
in tight junction protein relocation[105,106]. A more detailed 
discussion of  these pathways can be found in articles by 
Gareau et al[23] and Cenac et al[103].

Children and adults with IBS have increased intesti-
nal permeability[107,108]. Increased intestinal permeability 
results in “mucosal barrier defects (that) allow the pas-
sage of  an increased load of  luminal antigens of  dietary 
and bacterial origin which, in turn, elicit the activation of  
mucosal immune responses”[109].

Various triggers can activate mast cells. Bacteria are 
powerful antigens for the gastrointestinal immune sys-
tem[110-115]. Stress can result in increased bacterial adherence 
and penetration into the gastrointestinal mucosa[23,25-27], 
which may increase the interaction between the luminal 
bacteria and local immune response. This may explain why 
patients with IBS have higher antibody titers to specific bac-
terial flagella than healthy controls[116]. The DNA of  these 
bacteria can interact with toll-like receptors[117], which then 
influence the immune system through regulation of  tumor 
necrosis factor alpha and interferon gamma[118]. 

Escherichia coli, Campylobacter, and other bacteria can 
negatively influence the GI immune system and result in 
gastrointestinal inflammation and intestinal permeabil-
ity[46,91,119-121]. Conversely, commercially available beneficial 
bacteria, in the form of  probiotics, can reduce gastroin-
testinal inflammation[122-125], reverse or prevent intestinal 
permeability[120], and stop bacterial adhesion[126] and trans-
location[27,127]. Probiotics can also reverse visceral hyper-
sensitivity from various causes[128,129], including stress[130]. 
Probiotics attenuate the upregulation of  pain pathways 
at the spinal and supraspinal levels[131], and induce epithe-
lial cells to express micro-opiate receptor 1 (MOR1) and 
cannabinoid 2 (CB2) opioid receptors[132]. Probiotics can 
reduce the symptoms of  IBS[133,134].

Adults with IBS have gastrointestinal microflora that 
are significantly different than those of  healthy popula-
tions[135]. Children with IBS are also likely to have sig-
nificant alterations in their gastrointestinal microflora. 
We speculate that there may be a subset of  children who 
are predisposed to developing IBS through repeated or 

2793 June 21, 2011|Volume 17|Issue 23|WJG|www.wjgnet.com

Katiraei P et al . Comprehensive neuro-immuno-gastroenterology approach to IBS



prolonged exposure to antibiotics for various reasons 
(recurrent otitis media, sepsis, meningitis, osteomyelitis, 
vesicoureteral reflux, acne, etc). Various antibiotics, in-
cluding Augmentin, the macrolides, and amoxicillin sig-
nificantly alter the composition of  the bacteria in the GI 
tract[136-138]. Antibiotic use has been related to increased 
rates of  IBS and functional abdominal pain[139,140]. 

Gastrointestinal bacteria are also influenced by the 
diet. Dietary soluble fiber encourages the growth of  ben-
eficial species like lactobacilli and bifidobacteria[141-143]. In 
mice, a white bread diet significantly prolonged antibiotic 
induced bacterial perturbations[136]. It is common knowl-
edge that the standard American diet lacks fiber, and 
thus may predispose human beings to have prolonged 
antibiotic induced bacterial perturbations. 

Prebiotics are short chain carbohydrates that help some 
of  the beneficial bacteria or probiotics in the intestines to 
grow more effectively[142,143]. Prebiotics may decrease IBS 
symptoms[144-146]. Prebiotics are fermented by probiotics and 
metabolized into short chain fatty acids (SCFA). SCFAs 
can decrease inflammation and are used in maintaining the 
intestinal epithelial lining[147]. While breast milk naturally 
contains prebiotics[148], up until a few years ago, most infant 
formulas did not contain prebiotics. Thus, there may be a 
population of  children who were formula fed and required 
several courses of  antibiotics that now have perturbed gas-
trointestinal flora, as well as intestinal epithelial barriers. We 
believe that these children may be at risk of  developing IBS. 

Food proteins are other significant antigens for the 
gut immune system. Food antigens induce mast cell ac-
tivation[149] and degranulation, which can lead to visceral 
hypersensitivity. In children, certain foods may exacerbate 
intestinal permeability and the elimination of  the foods 
help resolve the IBS symptoms[150]. Elimination of  certain 
foods may decrease immune activation by removing the 
allergic antigenic load to the local immune system. In pa-
tients with IBS, sodium cromoglycate can eliminate IBS 
symptoms[151-153] by preventing the degranulation of  mast 
cells and inhibiting the release of  inflammatory mediators, 
following contact with an allergen[154]. 

Over 60% of  patients believe that certain foods worsen 
their IBS symptoms and that elimination of  these foods can 
reduce their symptoms[155-157]. Some believe that these food 
reactions are psychological in origin[158-160]. Blinded food 
challenges have raised many questions about the validity 
of  elimination diets for IBS treatment[161-163]. There is also 
a growing body of  evidence to support the use of  elimina-
tion diets as part of  a treatment protocol for IBS[164-167]. 
Milk, wheat, and eggs are the most commonly identified 
food triggers[163].

Another potential antigen for the gastrointestinal im-
mune system is Candida albicans. Adult studies have shown 
that Candida does not play a significant role in patients 
with IBS[168,169]. To our knowledge, the role of  candida in 
pediatric IBS has not been determined. Some children 
who have received numerous courses of  antibiotics, such 
as amoxicillin, can have disruption of  the bacterial balance 
and have overgrowth of  the commensal Candida[137,170-173]. 
Candida induces inflammation. It produces alcohols and 

glycoproteins that stimulate mast cells to produce hista-
mine and prostaglandins[174,175]. Candida also produces in-
flammatory prostaglandins that affect mammalian cells[176], 
as well as proteases that degrade the gastrointestinal IgA 
and, thus, allow candida to overcome the local immune 
defense mechanisms[177]. Candidal proteases can induce a 
B-cell response and result in increased inflammation[174]. 
In animals and humans, Candida perpetuates intestinal in-
flammation[169]. 

SMALL INTESTINAL BACTERIAL 
OVERGROWTH
Another possible contributing factor to IBS signs and 
symptoms is small intestinal bacterial overgrowth (SIBO), 
defined as bacterial counts greater than 105 cf/mL from 
small intestinal aspirates[178]. Controversy exists over 
the ideal method of  assessing SIBO[178-181]. A significant 
number of  patients with IBS complain of  bloating and 
pain. SIBO may explain this bloating and pain, as well 
as other IBS-like-symptoms[182-184]. Several studies have 
shown antibiotics to be helpful in reducing the symp-
toms of  IBS[185-188]. 

Patients with IBS who have delayed gastric emptying 
have a higher risk of  developing SIBO[189-192]. Stress is one 
cause of  delayed gastric emptying[193-196]. Once SIBO is 
present, it can trigger an inflammatory response. SIBO, 
through abnormal gastrointestinal flora fermentation, may 
be another cause of  IBS symptoms and must be consid-
ered in the evaluation of  the patient. Furthermore, proton 
pump inhibitors can also increase the risk of  SIBO by 
decreasing gastric acidity and further perturbations of  the 
gastrointestinal flora species[170,197-200]. We speculate that 
SIBO may play a larger role in adults with IBS than in 
children. Further studies are required to elucidate the vari-
ous differences between adult and pediatric IBS.

CONCLUSION
The evidence presented in our review suggests that IBS 
is an organic disease with a complex pathophysiology 
(Figure 1) that is difficult to identify by standard diag-
nostic tools. The pathophysiology of  IBS varies from 
person to person and from children to adults. The un-
derlying mast cell mediated inflammation of  IBS, along 
with serotonin signaling, can drive the chronic nocicep-
tive input from the periphery to dynamically maintain 
the altered central processing defects and perception of  
pain[70,80,201].

In addition to the pathophysiology, clinicians must 
focus more attention on the well known and less well 
characterized risk factors that may predispose individuals 
to developing IBS (Table 1). It is our belief  that clinicians 
should further use the field of  neurogastroenterology 
to better understand the effects of  stress on the gastro-
intestinal tract. Clinicians and researchers must work to 
develop and adopt models to help us better predict and 
prevent this condition in susceptible individuals. For chil-
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dren, these models will require additional studies to evalu-
ate the impact of  recurrent antibiotic use and resultant 
overgrowth of  candida on the development of  IBS.

Effective treatment models for IBS must reflect the 
complex physiology of  IBS and simultaneously address 
multiple pathophysiological factors to break the vicious 
cycle of  inflammation and ultimately allow for cessa-
tion of  symptoms. The Institute of  Functional Medi-
cine (IFM)[202] has created such a model of  care for IBS. 
The IFM model has the potential to provide significant 
improvement in patient care, while reducing healthcare 
costs and deserves further consideration and evaluation. 
Please refer to the IFM website and various publications 
for a more detailed discussion on treatment options.
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Corticotropin-releasing factor; SIBO: Small intestinal bacterial overgrowth; 
PAR2: Proteinase-activated receptor-2.
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