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Abstract
Bioluminescence tomography (BLT) is an inverse source problem that localizes and quantifies
bioluminescent probe distribution in 3D. The generic BLT model is ill-posed, leading to non-
unique solutions and aberrant reconstruction in the presence of measurement noise and optical
parameter mismatches. In this paper, we introduce the knowledge of the number of
bioluminescence sources to stabilize the BLT problem. Based on this regularized BLT model, we
develop a differential evolution-based reconstruction algorithm to determine the source locations
and strengths accurately and reliably. Then, we evaluate this novel approach in numerical,
phantom, and mouse studies.
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I. Introduction
Bioluminescence imaging (BLI) is a molecular imaging modality, which can be used to
monitor physiological and pathological activities at the molecular level. Various applications
include visualizing tumor growth, tracking tumor cell metastasis, and evaluating drug
delivery [1]-[3]. Light-emitting bioluminescent probes, such as firefly, Gaussia, and Renilla
luciferasesn enzymes, release photons when they react with substrate, oxygen and ATP [4].
The emission wavelength for the enzyme-substrate reporter is between 460-630 nm,
allowing deep tissue penetration. A significant number of bioluminescence photons can
escape the attenuating environment in small animals and be detected by a highly sensitive
charge-coupled device (CCD) camera [4], [5]. However, BLI is primarily qualitative as it
cannot resolve depth and quantify features.

Bioluminescence tomography (BLT) uses multiple BLI acquisitions, geometrical structures,
and tissue optical properties to reconstruct the bioluminescent source distribution [6] based
on a photon propagation model. The radiative transfer equation (RTE) is considered as the
most accurate model for the light transport in tissue [7]-[9]. However, the high
computational cost of RTE makes it inappropriate for bioluminescence tomography. Various
approximations of RTE, such as discrete ordinates [10], [11], spherical harmonics [12] and
the diffusion approximation (DA) [13] are used in practice. The DA, due to its high
computational efficiency and sufficient accuracy in highly scattering media, is the most
popular photon propagation model for BLT. Using the finite element analysis, a linear
model between the bioluminescent source distribution and photon fluence rate is established
[14], [15], converting the inverse source problem into an optimization task.

This tomographic imaging modality faces several challenges to its accuracy and stability.
The generic BLT problem is ill-posed, meaning it is sensitive to noise and bears multiple
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solutions. Researchers have invested considerable effort to obtain stable solutions for BLT.
Tikhonov regularization is often used to alleviate the ill-posed nature of this problem [16]-
[18]. Cong et al. used the permissible bioluminescent source region to stabilize
reconstruction results [15]. Recently, reconstructions using multi-spectral measurements
[16]-[18] and varying boundary conditions [19] have been proposed to enhance the stability
of the solution. Although these techniques improve the reconstruction stability, none of them
warrants an unique solution of the BLT problem.

In this manuscript, we used a predetermined number of isolated sources to regularize the
BLT problem such that an unique solution could be obtained. The differential evolution
(DE) algorithm is applied to solve this problem by integrating the number of bioluminescent
sources as constraint in its encoding scheme and locating the global optimum solution using
a metaheuristic approach. Furthermore, we implemented an iterative method to estimate the
number of isolated sources. This novel method greatly enhances the accuracy and stability
of the reconstruction.

The later sections of this manuscript are structured as the follows: section II presents the
regularized BLT model and its solution uniqueness; section III introduces the DE
optimization-based reconstruction and the method for determining the number of sources;
section IV presents the reconstruction results and demonstrates the application of the
proposed method in a mouse study using firefly luciferase; finally, section V presents the
discussions and conclusion.

II. Bioluminescence Tomography Framework
A. Photon Diffusion Model

In bioluminescence imaging, cells tagged with luciferase enzymes emit bioluminescent
photons when the substrate luciferin (for beetle luciferase) or coelenterazine (for Renilla and
Gaussia luciferases) is injected into the mouse body. Bioluminescence photons propagate
through mouse tissues and are subjected to tissue absorption and scattering. Because of the
highly scattering nature of biological tissue, the diffusion approximation model offers a
sufficiently accurate description of bioluminescence photon propagation [7], [15]:

(1)

where

q is the source distribution

x the position vector

ϕ is the photon fluence rate

D is the diffusion coefficient

μa is the absorption coefficient

D is calculated by , while  is the reduced scattering coefficient. Ω ⊂ R3

defines the domain of interest.

Assuming that no photon travels across the boundary ∂Ω into the tissue domain Ω, the DA is
subject to Robin boundary condition [20]:

(2)
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where

ψ is the outward unit normal vector on ∂Ω

α is the boundary mismatch factor

The boundary mismatch factor between tissue with refractive index n and air is
approximated by α = (1 + γ)/(1 − γ) with γ ≈ −1.4399n−2 + 0.7099n−1 + 0.6681 + 0.0636n
[21]. Hence, the the measurable exiting photon flux photon can be expressed with fluence
rate:

(3)

The finite element method (FEM) is a powerful tool for solving the DA equation, and has
been given considerable attention in recent years [14], [15], [22], [23]. Using finite element
techniques, Equation (1) is converted into a matrix equation that links the source distribution
and the photon fluence rate [15]:

(4)

where

M is a positive definite matrix

Φ is the discretized photon fluence rate

H is the source weight matrix

Q is the discretized source distribution

B. General BLT Model
Equation (4) is equivalent to

(5)

with A = M−1H. The photon fluence rate Φ at nodes of the finite element mesh of Ω can be
divided into measurable photon fluence rate ψ on boundary nodes and unmeasurable photon
fluence rate Φ* on interior nodes. Then, the rows of matrix A that correspond to the row
number of Φ* are eliminated. As a result, we obtain a linear relationship between the
measurable photon fluence rate and bioluminescence source distribution:

(6)

Note that in equation (6), the measurable quantity can only be collected on the external
surface, while the bioluminescence sources are distributed in the 3D domain. Clearly, the
BLT reconstruction is an ill-conditioned problem, which often produces false solutions due
to the existence of multiple solutions and the presence of noise in measurement data.

C. Regularized BLT Model
Many in vivo studies involve small and isolated bioluminescent sources such as small tumor
sites in mouse tumor model. The photon propagation in biological tissues is highly
scattering and multiple scattering events occur around 1 mm from the source; with the multi-
scattering event, a small light source is blurred to a sphere from the external observation,
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and the actual shape of the source cannot be retrieved from the measured diffused signal on
the surface. The location and power of a bioluminescence source are the characteristics of
interest, which can be equivalently represented as a point source [24]. The distribution of a
finite number of bioluminescent point sources is expressed as:

(7)

where

S is the number of bioluminescence sources

as is the power of a source

ps is the position of a source

We define a regularized BLT model as: given the optical parameters μa and  of each
subdomain Ωi in domain Ω ⊂ R3 and the number of isolated bioluminescent sources S in the
interior of the Ω, the regularized bioluminescence tomography is to reconstruct the positions
{ps} and powers {as} of the bioluminescent sources from the diffused light signal at the
boundary of the object. The solution uniqueness of the regularized BLT problem is
guaranteed by the following theorem:

Theorem 2.1—[24], [25] If  and  are two
solutions to the BLT problem, then there is a permutation τ of {1, …, S}, such that 
and p′s = p′τs.

The proof of theorem 2.1 is given in [25].

Based on the regularization, Equation (6) can be converted to an optimization problem:

(8)

Q only includes S positive nonzero values Qi1, ⋯, QiS, which represent power of the point
sources, while the remaining components of Q are zeros, i.e. the number of point sources is
restricted to S. The position of a positive nonzero value in the vector Q corresponds to its
node index in the finite element mesh, from which the Cartesian coordinates of the point
sources are obtained. This is an optimization problem subjected to complex constraints and
cannot be effectively solved by the commonly adopted gradient-based optimization
methods. Instead, we present the differential evolution (DE) optimization technique to solve
the optimization problem in the next section.

III. Differential Evolution-Based Reconstruction
The conventional deterministic optimization methods, like gradient-guided optimization
schemes have two major drawbacks for solving the optimization problem presented in
Equation (8): the difficulty to incorporate the complex constraints and the inability to find
the global optimal solution. Although the regularized BLT model has an unique global
optimal solution, many local optimal solutions may exist, especially in the presence of noise
and inaccurate optical parameters. The local optimal solution is suboptimal and may have
poor accuracy; therefore a powerful global optimizer is desired to avoid locally optimal
solutions of the regularized model. After surveying several optimization methods, we
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adopted a differential evolution (DE) algorithm. DE is based on a spontaneous self-adaptive
[26] vector difference operator, and displayed superior convergence behavior and high
numerical precision [27], [28]. Numerous benchmark and real-life problems reported that
the DE often has the fastest and most reliable convergence behavior with a comparatively
small population size [27]-[29].

A. Candidate Solution Representation
Unlike most deterministic optimization methods, which operate on a single point, DE
operate on multiple points in order to sample globally, encoding each candidate solution as a
real-valued vector. This representation gives DE great versatility and the ability to handle
the number of source constraint intrinsically. Using the point source model, a candidate
solution X for the bioluminescent source reconstruction is expressed as S quadruples:

(9)

where xi = (xi, yi, zi, pi) describes the ith point source location in the Cartesian coordinate
and its power. Each quadruple xi is subjected to the same boundary constraint:

(10)

The point source coordinate is limited by the dimension of the finite element model and the
source power ranges from zero to a very large, empirically determined value.

A collection of solution vectors {X1, …, XN} forms a population of size N that samples the
search space in an evolutionary fashion. The first step of DE is to initialize the population
randomly. Each quadruple in a solution vector X is initialized as:

(11)

where 〈·, ·〉 denotes the uniform distribution between lower and higher values. This
uniformly distributed initial population uses no knowledge of the location of the global
optimum within the boundaries; therefore, the optimization does not depend on initial
starting point. From an evolutionary algorithms point of view, the uniform initialization
introduces diversity to reduce the probability of premature convergence.

B. Differential Evolution Optimization
DE belongs to a class of population-based stochastic optimization methods, which share a
common structure as illustrate in Fig. 1.

1) Vector Difference Operator—DE got its name from its special vector difference
operator, which is of paramount importance to the algorithm. The vector difference operator
has a very simple form [26], [29]:

(12)

where

U is the generated trial vector

r0 is the index of the base vector

Cong et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 June 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



r1 and r2 are the indices of the difference vectors

F is the difference scaling factor

The trial vector may replace a target vector with index i. Indices i, r0, r1, r2 must be
mutually exclusive. The index i is selected in an ordered fashion from 1 to N. The base
vector index r0 is selected in order from a permuted sequence τ = {1, …, N} − {i} and the
difference vector indices r1, r2 are randomly selected from the set {1, …, N} − {i, r0}.

The control parameter of this operator is F, which determines how much perturbation of the
vector difference to add to the base vector. F has an empirically determined bound between
[0, 1], and should use a larger value with a smaller population size and vice versa.

Adding a scaled vector difference to the base vector unavoidably causes some trial vectors
to violate the boundary constraints. In our BLT application, violating the boundary
constraints means the source is outside the object, which leads to a failure in objective
function evaluation. To keep the boundary constraints strict, we can apply a penalty or use a
bounce-back mechanism. The penalty method discards the constraint-violated trial vector,
while the bounce-back replaces it with a valid one. We prefer the latter boundary satisfaction
strategy, because it will perform better sampling near the boundary. The bounce-back is
given as [29]:

(13)

where

uj is the jth element of the trial vector U

xr0,j is the jth element of the base vector Xr0

xl,j is the lower bound of the jth element of a solution vector

xu,j is the upper bound

The beauty of this simple but powerful operator is that it can adjust the step size of the
perturbation without additional computation or input. In the early stage of the optimization,
the vector differences are large because of the wide spread population. As the search
proceeds, the candidate solution vectors aggregate to promising areas in the search
landscape, so the vector differences become smaller, and the vector difference operator
becomes a fine-tuning operator. Such a spontaneous self-adaptation mechanism provides the
DE algorithm with a balanced exploration/exploitation and high numerical precision.

2) Two-stage Crossover Scheme—DE could use several crossover schemes, such as
binomial, exponential, or either-or [29]. In this paper, we adopt the most commonly used
binomial crossover scheme, which is given by:

(14)

where

CR is the crossover rate
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xj is the jth element in X

uj is the jth element in U

jrand is a randomly selected element index

Randomly picking an index jrand prevents the duplication of the target vector when a very
low crossover rate is applied. The binomial crossover mutates the target vector: with zero
crossover rate, only the jrandth element in the solution vector is mutated; with ~ 1 crossover
rate, the target vector is almost entirely being replaced by the trial vector. The high
crossover rate leads to better convergence behavior, but it could expedite the convergence so
much that the search converges prematurely. In contrast, a low crossover rate is unlikely to
experience stagnation, but the population takes longer to converge. To take advantages of
both high and low crossover rates and minimize their shortcomings, we proposed a two-
stage crossover scheme for the DE: in stage one, the algorithm operates with a low crossover
rate, i.e. CR ≤ 0.2, for a certain number of generations, then the algorithm switches to a high
crossover rate state, i.e. CR ≥ 0.8, which speeds up the convergence. The search is then
terminated when majority, i.e. ≥ 95% of the population converges to a single point. The
two-stage optimization is especially useful for highly multimodal landscapes, where an
over-expedited convergence is often a premature one.

C. Number of Sources Estimation
In previous sections we have assumed that the number of point sources used in the
reconstruction is known. In some imaging applications, the number of sources can be
estimated directly by biological means; in other cases, this information is unavailable. In this
section, we present a method to estimate the number of sources from the reconstruction
results iteratively. When the assumed number of point sources used in the reconstruction is
slightly larger than the actual number of sources, several point sources will aggregate to
represent a single point source, a this situation we call ‘over representation’. Given a desired
spatial resolution, we are able to detect the overrepresented source as multiple point sources
aggregate within the desired resolution and can be combined to a single source. The iterative
process consists of performing a series of reconstructions with an increasing number of point
sources; at the end of each reconstruction, if two or more sources are close enough, they are
combined into a single source, hence the over representation is detected and the correct
number of sources is determined. With this algorithm, The regularized BLT reconstruction
only requires an user-determined spatial resolution for the image as additional a priori
information. As a summary, the pseudocode of the DE-based reconstruction algorithm is
provided in Algorithm 1. where

⊗ is the crossover operator

ε is the objective function

∥Xj − Xk∥ is the distance between source j and k

IV. Experiments and Results
In this section we investigate the accuracy and robustness of the proposed BLT model and
reconstruction method using simulated measurement data. We also demonstrate its
effectiveness using phantom data and apply the method to cancer cell imaging in vivo using
firefly luciferase.

A. Numerical Studies
The numerical experiments are performed on an ellipsoidal digital phantom with a total
length of 30 mm and maximum width of 14 mm; the geometrical center was located at the
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origin of Cartesian coordinates. The digital phantom was discretized into 7421 nodes and
38160 tetrahedra with an average edge length about 1.2 mm. The photon fluence rate on the
boundary was generated using Monte Carlo (MC) simulation [30] and the value is recorded
at every surface node of the discretized ellipsoid.

1) Reconstruction Accuracy—In the first set of experiments, we demonstrated the
effectiveness of the source number determination method and the accuracy of the
reconstruction. The optical parameters of the digital phantom were set to μa = 0.01 mm−1

and . We obtained two boundary measurements using two and three point
sources, respectively. In the two-source case, the sources were located at (0.0, 5.0, 5.0) and
(5.0, 0.0, 5.0) in Cartesian coordinates using mm units. In the three-source case, an
additional source at (0.0, 0.0, 2.0) was included. All sources had an equal power of 0.314
picoWatt. The simulated measurements are shown in Fig. 2.

Note that not much difference between Fig. 2 (a) and Fig. 2 (b) can be directly observed, and
the number of sources cannot be confidently estimated through the surface signal. We
applied the proposed reconstruction method to recover the number of source, source
locations and powers from the simulated surface measurement with a desired resolution of
1.6 mm. Fig. 3 (a) and Fig. 4 (a) show that extra sources aggregated around the true source
location when the number of sources assumed in the reconstruction process was greater then
the actual number. The aggregated sources were within the desired resolution, so they were
combined. The number of point sources in both experiments were correctly identified. Fig. 3
(b) and Fig. 4 (b) show the final reconstruction results. The final reconstruction with the
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correct number of sources was able to represent the source distribution accurately within the
desired resolution.

The reconstructed point source positions and powers are listed in Table I and II for the two-
source and three-source cases, respectively. The maximum error for source position was 0.6
mm and the maximum relative error for source power was 8%. The reconstruction used a
population size of 100, a vector difference scale factor of 0.5, a low crossover rate of 0.2 for
the first 100 generations, and a high crossover rate of 0.9 until convergence. The
computation time was 30 and 45 seconds on a workstation with a 2.6 GHz Intel Xeon
processor for the two-source and three-source cases, respectively.

2) Reconstruction Robustness—Aside from the reconstruction accuracy, we tested the
reconstruction robustness against inaccurate optical parameters. In most BLT applications,
the optical parameters of the biological tissues used in the reconstruction could have various
degree of inaccuracy. Inaccurate tissue optical properties could affect the reconstruction
accuracy significantly [31]. We investigated the impact of optical parameter variation on the
proposed BLT model and DE-based reconstruction method by adding ±10% perturbation to
absorption and reduced scattering coefficients in a Monte Carlo simulation. The simulations
were performed on the same ellipsoidal digital phantom with two point sources at (0.0, 5.0,
5.0) and (5.0, 0.0, 5.0), and used similar settings as the previous analysis. The actual
absorption coefficient and reduced scattering are μa = 0.01mm−1 and . The
results (Table III and IV) show that the proposed method is robust against optical parameter
perturbation, especially for source position.

B. Phantom Study
We demonstrated the effectiveness of the proposed reconstruction algorithm with a phantom
experiment. The experiment was performed on a mouse-shaped phantom with two
embedded LED sources, as shown in Fig. 5. The positions of the LEDs were revealed by CT
scan of the phantom, shown in Fig. 6.

We performed the experiment using both LEDs as light sources. The LED near the neck had
an intensity of 1.11 × 1011 photons/second and the intensity of the LED at the abdomen was
1.25 × 1011 photons/second. The surface photon fluence was measured using Xenogen's
IVIS 100 series imaging system. A filter of 515-575 nm was used to limit the spectrum of
the signal, and the corresponding optical parameters of the phantom were μa = 0.091 mm−1

and . In contrast to the popular four-views configuration for
bioluminescence tomography [6], we only captured the measurements from dorsal and
ventral views to demonstrate the robustness of the reconstruction. The surface measurements
were normalized. A geometrical model of the phantom was constructed from the CT scan
images using Amira (Visage Imaging, Inc.). The geometrical model was discretized into
14844 nodes and 75107 tetrahedra. The surface measurements were mapped to the boundary
nodes of the model, as shown in Fig. 7.

Using the same optimization parameter configuration presented in the numerical study
section, the reconstruction took one minute and ten seconds on an Intel Xeon workstation.
The reconstructed source locations are shown in Fig. 8. The difference between the
reconstructed locations and the LED positions measured on the CT scan images were less
then two mm, and the reconstructed source strength ratio was 1.52:1 for the LED in the
abdomen region versus the one near the neck.
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C. In Vivo Experiment
Finally, we applied the proposed method to detect tumors labeled with firefly luciferase
reporters in a mouse study. Tumors were induced by injecting the 22Rv1-luciferase human
prostate cancer cell line intracardially into SCID mice. After a few weeks, a cancer-bearing
mouse was injected with D-luciferin at a dose of 100 μl per 10 g body weight. The surface
photon emission of the bioluminescent reporters, as shown in Fig. 9, was captured using our
in-house BLT system.

The mouse abdominal section was scanned using micro-CT and a finite element model that
described the optical property heterogeneity was constructed from the CT image volume
using Amira 4.1 (Visage Imaging, Andover, MA), as shown in Fig. 10. The model consisted
of 15971 nodes and 87513 tetrahedral elements. The optical parameters of each organ are
listed in Table V [32].

We set the population size to 150. The reconstruction took 1 minute and 40 seconds on a
Intel Xeon workstation. Two tumors, located on top of the kidneys were found; the tumor
locations are presented in Fig. 11. The reconstructed source powers are 14.4 nanoWatt for
the bigger tumor and 8.6 nanoWatt for the small tumor. For verification, the mouse was
dissected to located the tumors; one tumor was found on each adrenal gland with volumes of
468mm3 on the right and 275mm3 on the left, which had good agreement with the
reconstruction. The reconstruction using the proposed method is also consistent with our
previously published results [1].

V. Discussions and Conclusion
In this manuscript, we proposed a regularized bioluminescence tomography model that
incorporates the number of sources as a constraint and devise a scheme to determine the
number of sources automatically. The regularized BLT model significantly reduced the
number of variables in the optimization procedure, and more importantly produced a unique
solution. Furthermore, we adapted the differential evolution method to solve this
optimization in a two stage variation for efficient source reconstruction. The DE integrates
the number of sources constraint directly into its versatile solution vector encoding scheme.
DE also has the ability to locate the global optimum regardless of the initial values, and
exhibits a fast and reliable convergence behavior.

Using numerical studies, we demonstrated that the proposed method is able to accurately
localize and quantify light source distribution from noisy measurements and inaccurate
optical parameters. The phantom study further demonstrated the robustness of the proposed
method by locating the LED sources using measurements that only covered part of the
surface. This result suggests that the proposed reconstruction method could reduce the
imaging time and facilitate the hardware design. The in vivo study presented a practical
example of the effectiveness of the method, and the result showed a good agreement with
the histological verification along with consistency with the previously published results.

However, there are several major limitations to the proposed method. First, the optimization
problem has a dimension that equals to four times the number of sources. The population
size and generation of the optimization problem will increase rapidly as the dimensionality
increases; therefore the DE optimization method is not suitable for the source distributions
that need to be approximated by too many point sources. Second, although the regularized
model is well applied to small isolated source reconstruction, the regularized model may not
work well on distributed sources. The application of the proposed model to the distributed
source is worth a systematic study in the future. Third, the iterative method for estimating
the number of point sources needs to solve the reconstruction problem several times, and
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only one of the many reconstructions is used as the final result; therefore, when the number
of sources cannot be determined from a priori knowledge, the computational efficiency will
be greatly compromised. We also emphasize that our regularized BLT model is converted to
an optimization with complex constraints. The resultant optimization problem cannot be
adequately solved by a gradient-based optimization method; therefore, a fair comparison in
performance between the DE-based method and the gradient-based method cannot be easily
implemented.
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Fig. 1.
A general structure of evolution algorithms.
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Fig. 2.
Simulated boundary photon fluence rate. (a) boundary photon fluence rate from two point
sources; (b) boundary photon fluence rate from three point sources.
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Fig. 3.
Reconstruction results of two bioluminescence sources. (a) two extra sources were assumed;
(b) exact number of sources was used.
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Fig. 4.
Reconstruction result of three bioluminescence sources. (a) one extra source was assumed;
(b) exact number of sources was used.
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Fig. 5.
Mouse-shaped phantom from Xenogen Cooperation.
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Fig. 6.
LEDs' positions in the phantom's CT scan images. (a) sagittal view of LED 1; (b) sagittal
view of LED 2; (c) axial view of LED 1; (d) axial view of LED 2.
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Fig. 7.
Normalized surface photon fluence rate. (a) dorsal view; (b) ventral view.

Cong et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 June 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Reconstruction results of LED sources. (a) reconstructed location of LED 1; (b)
reconstructed locations of LED 2.
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Fig. 9.
Surface photon fluence captured using in-house BLT system. (a) dorsal view; (b) ventral
view.
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Fig. 10.
Finite element model of the abdominal section of the mouse.
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Fig. 11.
Reconstructed adrenal gland tumors.
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TABLE I

Reconstruction result for two bioluminescent point sources

source # x (mm) y (mm) z (mm) power (picoWatt)

1 0.098 5.029 4.584 0.336

2 4.500 0.159 4.925 0.293
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TABLE II

Reconstruction result for three bioluminescent point sources

source # x (mm) y (mm) z (mm) power (picoWatt)

1 0.098 5.029 4.584 0.329

2 4.500 0.159 4.925 0.301

3 0.074 0.552 1.785 0.289
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TABLE III

Effects of absorption variation on reconstruction results

μa(mm−1) 0.009 0.011

source 1 position error (mm) 0.82 0.43

source 1 power error (%) 17% 13%

source 2 position error (mm) 0.53 0.53

source 2 power error (%) 15% 11%
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TABLE IV

Effects of scattering variation on reconstruction results

μ′s(mm−1) 0.9 1.1

source 1 position error (mm) 1.42 0.43

source 1 power error (%) 23% 19%

source 2 position error (mm) 0.53 0.53

source 2 power error (%) 19% 18%
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TABLE V

Optical parameters for mouse organs

organs μa(mm−1) μ′s(mm−1)

muscle 0.23 1.00

liver 0.45 2.00

stomach 0.21 1.70

kidney 0.12 1.20
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