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 Development of the bipotential mouse gonad into ei-
ther a testis or an ovary depends on a transcriptional bal-
ancing act [Kim and Capel, 2006]. Testis development is 
triggered by SRY, the Y-chromosomal testis-determining 
factor, which needs to upregulate genes such as  Sox9  and 
 Fgf9  early enough and strongly enough to overcome the 
ovarian program of development. Conversely, the testic-
ular program can be overcome to some extent by the ac-
tions of ovarian secreted factors RSPO1 (roof plate-spe-
cific spondin 1) and WNT4 (wingless-type MMTV inte-
gration site 4), both of which appear to function via 
activating the canonical  � -catenin signalling pathway 
[reviewed by Tevosian and Manuylov, 2008]. Central to 
this competitive mode of sexual differentiation are fac-
tors that antagonise the opposing pathway to ensure 
faithful development of one gonadal fate, and avoid am-
biguous outcomes such as ovotestes. 

  WNT signalling has emerged as a core module of the 
program regulating ovary development. In  Wnt4 -null 
XX mouse gonads, partial sex reversal is observed: mül-
lerian ducts are absent, wolffian ducts are retained and 
the coelomic blood vessel, which is characteristic of the 
testis, forms ectopically [Vainio et al., 1999; Jeays-Ward 
et al., 2003; Heikkila et al., 2005]. In addition, ovary-as-
sociated transcripts  Bmp2, Fst  and  Dax1  are not expressed 
in  Wnt4 -knockout XX gonads, although expression of 
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 Abstract 
 WNT signalling plays a central role in mammalian sex deter-

mination by promoting ovarian development and repress-

ing aspects of testis development in the early gonad. Dick-

kopf homolog 1 (DKK1) is a WNT signalling antagonist that 

plays critical roles in multiple developmental systems by 

modulating WNT activity. Here, we examined the role of 

DKK1 in mouse sex determination and early gonadal devel-

opment.  Dkk1  mRNA was upregulated sex-specifically dur-

ing testis differentiation, suggesting that DKK1 could repress 

WNT signalling in the developing testis. However, we ob-

served overtly normal testis development in  Dkk1 -null XY 

gonads, and found no significant upregulation of  Axin2  or 

 Sp5  that would indicate increased canonical WNT signalling. 

Nor did we find significant differences in expression of key 

markers of testis and ovarian development. We propose that 

DKK1 may play a protective role that is not unmasked by loss-

of-function in the absence of other stressors. 
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 Rspo1  is not affected [Jordan et al., 2001; Mizusaki et al., 
2003; Yao et al., 2004; Chassot et al., 2008]. Curiously, ab-
lation of  Wnt4  delays testis development in XY gonads, 
perhaps reflecting an early role in the supporting cell lin-
eage [Jeays-Ward et al., 2004].  Rspo1 -null XX mouse go-
nads are also partially sex-reversed, with a phenotype 
similar to that of  Wnt4 -null XX gonads, although report-
edly slightly more severe [Chassot et al., 2008; Tomizuka 
et al., 2008]. RSPO1 appears to be genetically upstream of 
WNT4, since early female-specific upregulation of  Wnt4  
expression is not observed in  Rspo1 -null gonads [Chassot 
et al., 2008; Tomizuka et al., 2008]. In humans, mutations 
in  RSPO1  have been shown to underlie cases of XX sex 
reversal [Parma et al., 2006], affirming the importance of 
WNT signalling to human ovarian development.

  Mechanistically, WNT4 activates  � -catenin remotely, 
by binding a Frizzled (Fz) receptor (one of the family of 
Fz serpentine receptors) and phosphorylating its co-re-
ceptor, low-density lipoprotein receptor-related protein 5 
or 6 (LRP5/6), thereby triggering stabilization of cyto-
solic  � -catenin, allowing its accumulation in the cyto-
plasm and subsequently facilitating translocation to the 
nucleus [He et al., 2004; Tamai et al., 2004; Davidson et 
al., 2005; Zeng et al., 2005]. In the nucleus,  � -catenin 
complexes with TCF (T-cell factor)/LEF (lymphoid en-
hancer factor) transcription co-factors which activate the 
transcription of target genes. In the absence of nuclear  � -
catenin, TCF/LEF proteins recruit Groucho proteins and 
act conversely as transcriptional repressors. 

  DKK1 is a secreted antagonist of LRP6; DKK1 binds 
with high affinity to LRP6 and, together with its co-re-
ceptor Kremen, induces LRP6 endocytosis, thus effec-
tively removing the LRP6 protein from the cell surface 
and making cells less able to respond to WNT and 
RSPO1. Although Kremen was thought to be integral to 
this process, a recent report has shown that DKK1 can 
also act in the absence of this protein [Ellwanger et al., 
2008]. Loss of DKK1 frees the LRP6 from inhibition, re-
sulting in enhanced WNT signalling activity. RSPO1, 
which also interacts with the LRP6 co-receptor, acti-
vates  � -catenin signalling via phosphorylation of LRP6 
[Nam et al., 2006; Wei et al., 2007], or by competitive 
binding to Kremen [Binnerts et al., 2007], thereby pre-
venting the DKK1/Kremen-dependent internalization 
of LRP6. Whatever is the mechanism of action, evidence 
for DKK1 repression of WNT/ � -catenin signalling is 
extensive.

   Dkk1  displays a sex-specific expression pattern in the 
developing gonad [Manuylov et al., 2008]. It is expressed 
initially in the developing gonad of both sexes at 11.5 days 

post coitum (dpc).  Dkk1  is upregulated in the testis at 12.5 
dpc and 13.5 dpc, whereas in the ovary, its expression is 
repressed by the GATA4-FOG2 transcription complex 
[Manuylov et al., 2008]. Despite the relatively low expres-
sion of  Dkk1  in the developing ovary,  � -catenin target 
genes  Sp5  and  Irx3 , as well as the key ovarian develop-
ment gene  Foxl2 , were found to be upregulated in  Dkk1 -
null XX gonads at 12.5 dpc [Manuylov et al., 2008].
Because of the known function of DKK1 in dampening 
cellular response to WNT and RSPO1 signalling, we hy-
pothesised that  Dkk1 -null XY gonads might be particu-
larly sensitive to WNT4 and RSPO1 and therefore could 
become feminised to some extent. We studied  Dkk1 -null 
XY gonads at 11.5 dpc and 12.5 dpc time points and found 
no upregulation of canonical  � -catenin pathway target 
genes. In addition, we found no apparent feminisation of 
the XY gonads in terms of marker gene expression and 
morphology. These results suggest that  Dkk1  plays a 
backup or fail-safe role in preventing WNT signalling, 
rather than providing the primary means of repressing 
the ovarian pathway in mice.

  Materials and Methods 

 Mouse Strains and Dissection 
 Expression profiling of  Dkk1  was performed with wild-type 

embryos collected from timed matings of outbred Swiss Quack-
enbush (Affymetrix profiling) or CD1 (in situ hybridisation) 
mice. To assess the role of  Dkk1  in gonad development,  Dkk1  +/–  
mice [Mukhopadhyay et al., 2001], maintained on a 129/C57BL6 
background, were intercrossed. Noon of the day on which the 
mating plug was observed was designated 0.5 dpc. For more ac-
curate staging, the tail somite (ts) stage of the embryo was deter-
mined by counting the number of somites posterior to the hind 
limb [Hacker et al., 1995]. Using this method, 11.5 dpc corre-
sponds to  � 18 ts, and 12.5 dpc to 28 ts. At 11.5 dpc, embryos were 
sexed by PCR for the Y-linked gene  Zfy  [Koopman et al., 1991]. 
From  Dkk1 -null litters, one urogenital ridge (UGR, gonad plus 
mesonephros) was dissected and fixed for immunofluorescence 
analysis; the other UGR was used for quantitative RT-PCR. Tail 
tissue from each embryo was used for genotyping as described 
[Mukhopadhyay et al., 2001], and all embryos genotyped as
 Dkk1  –/–  displayed craniofacial abnormalities consistent with the 
reported phenotype. All animal work was conducted according to 
protocols approved by the Animal Ethics and Care Committees 
of the University of Queensland and the Children’s Medical Re-
search Institute and the Children’s Hospital at Westmead. 

  Affymetrix Profiling 
 Gonad pools at 11.0, 12.5 and 13.0 dpc were used to produce 

probes for screening Affymetrix mouse 430v2 chips as detailed 
previously [Holt et al., 2006]. Experiments were run in triplicate 
and expression was calculated relative to 18S rRNA.
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  In situ Hybridisation 
 Whole-mount in situ hybridisation was carried out using stan-

dard methods [Hargrave et al., 2006]. The  Dkk1  probe was sup-
plied by Gudmap (Probe ID, 2178) (http://uqgudmap.imb.uq.edu.
au/search_probe.phtml).

  Whole-Mount Immunofluorescence 
 Immunofluorescence and image capture was performed as

described [Combes et al., 2009]. Rabbit anti-SOX9 antibody has 
been described previously [Wilhelm et al., 2005] and was used at 
1:   200. Rat anti-VE-Cadherin (anti-vascular endothelial cadherin, 
BD Biosciences) was used at 1:   200. Secondary antibodies (goat 
anti-rabbit Alexa Fluor 488 and anti-rat Alexa Fluor 594, Invitro-
gen) were used at 1:   300.

  Quantitative Realtime RT-PCR 
 Each UGR was processed and analysed individually. Total 

RNA was extracted and DNase-treated using an RNeasy Micro 
kit (Qiagen) as per manufacturers’ instructions. cDNA was gener-
ated using a High-Capacity cDNA Archive kit (Applied Biosys-
tems) according to manufacturers’ instructions. Relative cDNA 
levels were analysed by the comparative cycle time (Ct) method of 
quantitative RT-PCR (qRT-PCR) with reactions including Taq-
man PCR master mix (Applied Biosystems, ABI) and Taqman 
gene expression sets. Duplicate (Taqman) or triplicate (SYBR) as-
says were carried out on an ABI Prism 7000 Sequence Detector 
System, and the mean relative level of expression and associated 
standard deviations were calculated. Endogenous control, used
to normalize gene expression levels, was  Tbp  (encoding TATA
box binding protein). Taqman gene expression sets were as
follows: Mm00446973_m1  (Tbp) , Mm00443610_m1  (Axin2) , 
Mm00500463_m1  (Irx3) , Mm00491634_m1  (Sp5) , Mm00437341_
m1  (Wnt4) , Mm00431729_m1  (Dax1) , Mm00507076_m1
 (Rspo1) , Mm00843544_s1  (Foxl2) , Mm00514982_m1  (Folli-
statin) , Mm01340178_m1  (Bmp2) , Mm00448840_m1  (Sox9) , 
Mm00442795_m1  (Fgf9) , Mm00432820_g1  (Dhh) , Mm00558507_
m1  (Cyp26b1) , Mm03023963_m1  (Amh)  and Mm00490735_m1 
 (Cyp11a1) .

  Statistics 
 Student’s t tests (unpaired, 2-tailed) were used to determine 

statistical significance of expression differences between XY 
wild-type and XY null samples.

  Results 

 Dkk1 Becomes Male-Specific in Its Expression Pattern 
Shortly after Sex Determination 
  Sry , the mammalian testis-determining gene, is ex-

pressed from 10.5 to 12.5 dpc in mouse foetal gonads 
[Koopman et al., 1990]. In a microarray experiment de-
signed to find novel genes expressed in a male- or female-
specific manner shortly after SRY triggers testis fate, we 
found that  Dkk1  is upregulated at 12.0 dpc in the develop-
ing testis, shortly after the upregulation of  Sox9  ( fig. 1 A). 
By whole-mount in situ hybridisation ( fig. 1 B), low levels 

of  Dkk1  expression were observed in the XY gonad at 11.5 
dpc (solid arrow head). Expression was also observed in 
the paramesonephric duct (arrow) and mesonephric tu-
bules (open arrowheads). At 12.5 dpc in XY gonads,  Dkk1  
was expressed predominantly under the coelomic epithe-
lium (arrowhead), whilst at 13.5 dpc,  Dkk1  expression ex-
panded to encompass the poles of the testis.  Dkk1  was 
also expressed in the mesenchyme around the parameso-
nephric (müllerian) duct in 13.5-dpc XY samples (arrow) 
and could be related to the male-specific regression of 
this structure [Orvis and Behringer, 2007].  Dkk1  tran-
scripts were not detected in 11.5- or 12.5-dpc XX gonads. 
At 11.5 dpc, mesonephric expression of  Dkk1  in ovaries 
was similar to that observed in the testes. Differences 
emerged at 12.5 dpc where  Dkk1  expression was restrict-
ed to the dorsal end of the paramesonephric duct (ar-
rows), more severely in XY compared to XX samples. Ex-
pression in mesonephric tubules also varied between the 
sexes (open arrowheads), and persisted in 13.5-dpc XX 
mesonephroi while it was not detected in XY samples of 
the same age. A single focal point of  Dkk1  expression was 
consistently observed in the posterior region of the 13.5-
dpc ovary (arrowhead). Others have demonstrated a sim-
ilar expression pattern of  Dkk1  in wild-type XY and XX 
gonads by qRT-PCR, and demonstrated that expression 
of  Dkk1  is first apparent in the central region of the XY 
coelomic epithelium at 12.5 dpc [Manuylov et al., 2008]. 

  Ablation of Dkk1 Does Not Affect Expression of Key 
Marker Genes of Gonadal Development 
 In order to establish whether  Dkk1  has an important 

role during testis development, we examined the effect of 
loss of  Dkk1  function on the expression of key markers of 
testis and ovarian development. We found little alteration 
in expression of such genes at 11.5 dpc (online suppl.
fig.  1; for all online supplementary material, see www.
karger.com/doi/10.1159/000327709) or 12.5 dpc ( fig. 2 ). At 
12.5 dpc, there was no upregulation of targets of the WNT 
canonical pathway  (Axin2  and  Sp5)  [Jho et al., 2002; Clev-
ers, 2006; Fujimura et al., 2007], suggesting that excessive 
WNT signalling is not occurring in the absence of  Dkk1  
( fig. 2 A). Furthermore, there was no upregulation of  Irx3 , 
a WNT target gene that is highly expressed in the develop-
ing ovary [Braun et al., 2003; Jorgensen and Gao, 2005]. In 
addition, there was no molecular evidence of feminisation 
of the  Dkk1 -null XY gonad ( fig. 2 B) or significant differ-
ence in the expression of markers of testicular fate ( fig. 2 C). 
In summary, ablation of  Dkk1  had no discernible effect on 
the early expression of key genes known to be associated 
with sex determination and gonad development.
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  Fig. 1.   Dkk1  is expressed in developing testis shortly after  Sry  and 
 Sox9  are upregulated.  A  Expression of  Sry  (1450579_x_at),  Sox9  
(1434950_at) and  Dkk1  (1420360_at), as detected by Affymetrix 
microarray screening.  B  Whole-mount in situ hybridisation of 
 Dkk1  at 11.5, 12.5 and 13.5 dpc in XY and XX urogenital ridges. 

Both dorsal and ventral views are shown. g = Gonad; m = meso-
nephros; arrows = paramesonephric duct; open arrowheads = 
 Dkk1  expression in mesonephric tubules; solid arrowheads = 
 Dkk1  expression in gonads. 
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  Ablation of Dkk1 Has Little Effect on Morphological 
Development of the Foetal Testis  
 In view of the observation that loss of  Dkk1  function 

has no effect on the core testis transcriptional program, 
we next investigated whether any developmental delay or 
disorganisation of testis development could be found in 
 Dkk1 -null XY gonads. Particular attention was given to 
the development of the male-specific coelomic blood
vessel [Brennan et al., 2002], which assembles under the 
coelomic epithelium at 12.5 dpc, correlating with the
restricted expression of  Dkk1  RNA at this stage. Immu-
no staining results obtained using antibodies that mark 

Sertoli cells (anti-SOX9) and germ cells/endothelial cells 
(anti-PECAM-1) revealed no delay or disruption of testis 
cord formation ( fig.  3 , asterisks). Further, endothelial 
cells that form the coelomic vessel localised to the appro-
priate area in  Dkk1 -null gonads and displayed a similar 
level of organisation to staged-matched controls ( fig. 3 , 
arrows).

  Discussion 

 WNT signalling is known to be important in mouse 
and human ovarian development. The finding of a male-
specific expression of a WNT antagonist, DKK1, shortly 
after testis fate is determined [Manuylov et al., 2008; pres-
ent study], raises the possibility that DKK1 might play a 
role in modulating WNT signalling activity during go-
nadal development. As  Wnt4  is expressed at early stages 
in both male and female gonads, it seemed plausible that 
the action of DKK1 might be critical in preventing 
WNT4-related feminisation activity in the XY gonads. 
However, our data show that ablation of  Dkk1  has no
apparent effect on mouse foetal testis development. Al-
though we cannot rule out the possibility of a later phe-
notype arising, WNT /  � -catenin acts early, and if the
absence of  Dkk1  had an effect on sex determination, we 
would expect to see it in the time window studied. Two 
alternative explanations for these findings are redun-
dancy of function between DKK1 and other WNT an-
tagonists, or that DKK1 protects against ectopic WNT 
activity. 

  Although  Dkk1  is a member of a multigene family, ev-
idence for redundancy between DKK1 and proteins of 
related function in the gonad is not strong. Our microar-
ray results suggest that  Dkk2, Dkk4, Wif  and  Cerberus  are 
not expressed at significantly higher levels in XY than in 
XX gonads and there is only a very modest upregulation 
of  Dkk3  (online suppl. fig. 2). Male-specific expression of 
other (mechanistically different) antagonists of WNT 
signalling,  Sfrp1  and  Sfrp2  [Warr et al., 2009], may com-
pensate for the lack of  Dkk1 . Testes are smaller and have 
fewer cords in compound mutants lacking  Sfrp1  and 
 Sfrp2  [Warr et al., 2009], leaving open the possibility of 
redundancy between  Dkk1  and the  Sfrp  genes. However, 
this possibility remains to be tested by analysing double- 
or triple-knockout mice.

  Alternatively, the primary mechanism for WNT sup-
pression in the testis may occur independent of signal 
inhibition. In this case, DKK1 could serve a protective 
role that is only apparent when challenged by ectopic 

  Fig. 2.  Testis development in the  Dkk1 -null embryos appears nor-
mal with respect to expression of marker genes.  A  qRT-PCR anal-
ysis of transcriptional targets of the canonical WNT pathway,
 B  markers of ovarian development, and  C  markers of testicular 
development in 12.5 dpc UGR samples from wild-type (Wt), het-
erozygous (het) and null (KO)  Dkk1  embryos. Bars indicate the 
mean  8  1 SEM; n = 5, 3, 5, 2, 4, 3. Endogenous control  Tbp  (en-
coding TATA box binding protein) was used to normalize gene 
expression levels. 
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