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Abstract
The ability to control the activity of intracellular signaling processes in live cells would be an
extraordinarily powerful tool. Ideally, such an intracellular input would be (i) genetically encoded,
(ii) able to be turned on and off in defined temporal or spatial patterns, (iii) fast to switch between
on and off states, and (iv) orthogonal to other cellular processes. The light-gated interaction
between fragments of two plant proteins—termed Phy and PIF—satisfies each of these
constraints. In this system, Phy can be switched between two conformations using red and infrared
light, while PIF only binds one of these states. This chapter describes known constraints for
designing genetic constructs using Phy and PIF and provides protocols for expressing these
constructs in mammalian cells, purifying the small molecule chromophore required for the
system’s light responsivity, and measuring light-gated binding by microscopy.

1. Introduction
In recent years, tremendous strides have been made in developing quantitative readouts that
report on live cell activity at the molecular scale. Time-lapse microscopy has been combined
with fluorescent detection of protein concentration (Heim and Tsien, 1996; Michalet et al.,
2005) and protein–protein association (Truong and Ikura, 2001), enabling studies of the
temporal dynamics (Lahav et al., 2004; Nelson et al., 2004) and spatial organization (Ilani et
al., 2009) of complex signaling pathways. These techniques have also been instrumental in
characterizing complex emergent properties such as perfect adaptation (Cohen-Saidon et al.,
2009; Shimizu et al., 2010). All of these advances rely on the ability to quantitatively
measure signaling outputs—the concentration or activity of various pathway components—
with precision in living cells.

The ability to quantitatively vary intracellular signaling inputs in time and space, in a user
controlled way, would be equally revolutionary, allowing researchers to better manipulate
and probe the cellular processes they study. However, comparatively few technologies are
available to achieve the goal of manipulation as compared to measurement in living cells.
Microfluidic devices are limited to controlling the spatial and temporal pattern of
extracellular inputs (Paliwal et al., 2007; Tay et al., 2010). For intracellular inputs, the
rapamycin-inducible FKB/FRBP protein–protein interaction (Spencer et al., 1993) offers the
opportunity to activate the association of two intracellular species. However, this high-
affinity interaction is slow to dissociate, and thus the resulting control is poorly reversible
(Terrillon and Bouvier, 2004).More recently, inputs have been designed that utilize light-
induced conformational changes in naturally light-responsive proteins such as
channelrhodopsin (Gunaydin et al., 2010) LOV domains (Strickland et al., 2008), or
proteins incorporating photocaged amino acids (Gautier et al., 2010; Lemke et al., 2007),
although each has limitations. Applying light-activatable LOV domains to control additional
signaling processes requires considerable protein engineering, and LOV domain inactivation
occurs spontaneously but cannot be directly controlled by light. Uncaging of photocaged
proteins can be performed quickly and selectively, but is an irreversible modification.
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Finally, light control of channelrhodopsin is fast and reversible but limited to controlling
transmembrane cation flux, a specific signaling currency.

Ideally, a controllable intracellular signaling input would be genetically encoded (easily
“wired in” to control a variety of proteins), photoreversible, nontoxic to the cell, and high
resolution in both time and space. A recently developed light-dependent binding interaction
using plant phytochrome proteins satisfies each of these constraints (Levskaya et al., 2009;
Ni et al., 1999). This interaction has already proven useful for applying complex temporal
and spatial intracellular inputs to live cells in a variety of species (Levskaya et al., 2009;
Shimizu-Sato et al., 2002). In principle, this approach could be used for spatiotemporal
control over any cellular process that is dependent on association of two proteins. Because
induced protein interaction is such a common mechanism for controlling molecular activity,
this method has the potential to be highly generalizable.

Despite these advantages, it can be challenging to prepare light-gated genetic constructs,
purify the small molecule chromophore required for their function, and assay the function of
all these components inside living cells. In this chapter, we address these challenges by
presenting a detailed and optimized methodology based on that introduced in Levskaya et al.
(2009) for visualizing light-induced binding in mammalian cells. After a brief introduction
to the system (Section 3) we present methods for genetically encoding the light-responsive
protein domains (Section 4), purifying the small-molecule chromophore that is required for
their interaction (Section 5), and validating the light-mediated protein translocation in
mammalian cells (Sections 6 and 7).

2. Light-Controlled Phy–PIF Interaction
The Phy–PIF system takes advantage of a light-controllable binding interaction between two
genetically encoded components: a fragment of Arabidopsis thaliana phytochrome B,
referred to here as Phy; and a fragment of phytochrome interaction factor 6, referred to here
as PIF. Phy becomes light-responsive following conjugation to the membrane-permeable
small molecule chromophore, phycocyanobilin (PCB). Exposure to 650 nm induces
association of PIF and Phy, while exposure to 750 nm light induces dissociation of PIF from
Phy (Fig. 17.1A). Phy can be reversibly switched between PIF-interacting and -
noninteracting states using light within seconds, and switching can be performed for
hundreds of cycles without toxicity to the cell or any measurable degradation of the system’s
performance (Levskaya et al., 2009).

How can this system be used to enable light control of a range of cellular activities? Because
protein association and dissociation is such a general currency of cell signaling, this light-
gated heterodimerization scheme has been applied to a broad range of signaling processes
such as transcription, splicing, plasma membrane signaling, and modulating actin assembly
in vitro (Leung et al., 2802). It was first used outside of its native context in a 2-hybrid
approach, in which the split DNA binding and transcriptional activation domains of Gal4
were fused to Phy and PIF to enable light-gated transcriptional control in yeast (Shimizu-
Sato et al., 2002). A similar concept using a split protein (intein) was used to activate
splicing in yeast using light (Tyszkiewicz and Muir, 2008). The first application of this
system to mammalian cell signaling used Phy and PIF to activate GTPase signaling in
mammalian cells by recruiting a constitutively active GEF to its G protein target on the
plasma membrane (Levskaya et al., 2009). In this chapter, we focus on a simple, direct assay
of light-controllable Phy–PIF binding, in which a fluorescently tagged Phy directed to the
plasma membrane where it can act as a light-controlled binding site for cytoplasmic
fluorescently tagged PIF. To observe this localization change, we will focus on a typical
experimental context for using the Phy–PIF system, in which Phy and PIF constructs are
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introduced into mammalian cells by retroviral infection and imaged by fluorescence
microscopy.

3. Genetic Constructs Utilizing Phy and PIF Components
The Phy and PIF components of the light system can be expressed as fusions to other
proteins of interest to elicit binding and activation of a variety of intracellular signaling
processes. However, care must be taken to validate Phy and PIF expression and localization
for each fusion construct. In this section, we describe some known constraints of the system
and elucidate details for establishing successful light-controllable fusion constructs.

The first of these components is Phy, consisting of residues 1–908 of the A. thaliana PhyB
protein (Entrez Gene ID: 816394; see Fig. 17.1B for the structure of a related phytochrome,
Cph1) (Essen et al., 2008; Levskaya et al., 2009). Phy has been expressed successfully
without codon optimization in Saccharomyces cerevisiae and NIH-3T3 cells; however, we
have found codon optimization to facilitate strong Phy expression in some contexts (as for
HL-60 cells and Dictyostelium). Whereas PIF tolerates a large range of fusion orientations,
we have found that Phy fusion protein expression and function is particularly sensitive to
linker lengths and component orientation. Phy appears to work most robustly as an N-
terminal fusion component (Fig. 17.2A). While a useful guideline, this is not a strict rule;
PIF recruitment has also been observed from some C-terminal and internal Phy fusion
constructs. We have had success using a 15 amino acid linker (linker L1:
EFDSAGSAGSAGGSS) between the C-terminus of Phy and the N-terminus of downstream
fusion constructs; this linker performed better than shorter linkers in some applications.

How can Phy function be validated in different contexts? One useful, previously
characterized Phy single mutant (Y276H) fluoresces at far-red frequencies only in the
chromophore-bound state (Su and Lagarias, 2007). We previously demonstrated that
NIH-3T3 cells expressing this mutant exhibit bright fluorescence after 30 min of incubation
with PCB (Levskaya et al., 2009). Thus, the ability of a Phy fusion construct to bind PCB
can be tested directly, independently of the recruitment assay described in Section 6. Phy-
Y276H can also be used to test the quality of purified PCB (Section 4).

Phy interacts in a light-dependent fashion with PIF, a second component consisting of
residues 1–100 of A. thaliana PIF6 protein. PIF does not exhibit any preference toward N or
C terminal fusions and also tolerates fusions on both termini simultaneously (Fig. 17.2A).
We have not observed any dependence of PIF–Phy binding on linker length within PIF
fusion constructs. Typically, Gly-Ser spacers of 10 amino acids are placed between PIF and
its fusion partners.

When using the Phy–PIF system to induce binding between membrane-tethered and
cytoplasmic proteins, we typically attach Phy to the membrane component and PIF to the
cytoplasmic component (Fig. 17.2A), as the smaller PIF domain is less likely to significantly
affect diffusion of its fusion partner. Phy can be tethered to the plasma membrane using a
linker followed by the KRas “CAAX tail” plasma membrane localization signal (linker L2:
SAGSAGKASG; CAAX tag: KKKKKKSKTKCVIM). This tag has been validated in both
yeast and mammalian cells (Clarke et al., 1988). Although this CAAX sequence can be used
to induce robust membrane localization in NIH-3T3 cells, phosphorylation at its serine
residue by PKC causes dissociation from the membrane in some cell types (Bivona et al.,
2006); incorporating a Ser-Ala mutation (unphosphorylatable CAAX tag:
KKKKKKAKTKCVIM) can be used to stabilize membrane association in these contexts.

We have demonstrated light-controlled Phy–PIF interaction in a number cell lines, and
NIH-3T3 cells (ATCC catalog number CRL-1658) continue to be our gold standard for
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these studies. Transient transfection of fluorescently tagged Phy and PIF constructs works
for some applications, but we find that generating stable cell lines from retroviral constructs
greatly enriches the population of cells expressing both Phy and PIF and also facilitates
robust recruitment. Furthermore, these stable cell lines maintain expression in long-term
culture and thus cells can be sorted by expression level to hone in on the optimal recruiting
population for each application.

To establish stable cell lines, we typically clone Phy and PIF constructs into the pMSCV
retroviral vector system (Clontech catalogue number 634401), in which each construct is
driven from the viral LTR promoter. These constructs also contain an internal ribosomal
entry site (IRES), followed by neomycin/G418 or puromycin antibiotic resistance to allow
selection for the stably infected population (Fig. 17.2B). To produce virus, we transfect each
construct into 293-GPG cells, a standard retrovirus packaging cell line (Ory et al., 1996)
using the TransIT 293 transfection kit (Mirus catalog number 2700). NIH-3T3 cells should
be infected with Phy and PIF viral constructs at a high enough multiplicity of infection
(MOI) to lead to >70% infected cells. There is no need to select using antibiotics before
assaying recruitment, although this selection can be performed to enrich for doubly infected
cells.

Phy–PIF recruitment is easiest to observe if Phy expression levels are high (see Section 6).
For more effective viral transduction, it can be helpful to concentrate Phy-containing
retrovirus (Kanbe and Zhang, 2004). Briefly, the collected retrovirus is spun at max speed in
1.5 mL centrifuge tubes in a table top microcentrifuge (Eppendorf Centrifuge model 5415D
or similar) at 4 °C for 1 h. After centrifugation, discard all but 100 µL or so of the
supernatant, and pool together the “invisible” pellets for infection.

4. Purification of PCB from Spirulina
The responsiveness of Phy domains to light depends on their covalent attachment to a small
molecule chromophore, PCB. PCB is not synthesized naturally in most nonphotosynthetic
cells, but it is easily taken up by all cell types we have tested, penetrating yeast cell walls
and freely diffusing through mammalian cell membranes. Thus, free PCB must be obtained
and added to cell cultures before light-responsive experiments are conducted. While addition
of the PCB chromophore is another required manipulation, it is also an advantage—cells can
be handled freely with regard to light exposure until one is ready to perform an experiment,
at which point the PCB is added under controlled light conditions. In this section, we
provide a detailed step-by-step protocol for PCB purification from Spirulina algae based on
the procedure described in Smith and Holmes (1984), adapted from Levskaya et al. (2009)
(see Fig. 17.3). This procedure relies on the fact that PCB is the most prevalent protein-
bound tetrapyrrole found in Spirulina, so a generic tetrapyrrole purification protocol leads to
high enrichment for this compound. Briefly, protein is purified from resuspended Spirulina,
an 8 h methanolysis separates tetrapyrroles from their protein binding partners, and
chloroform extraction is used to isolate these unbound tetrapyrroles and discard the protein
fraction. The resulting purified PCB is stable at − 20 °C for months.

4.1. Protocol
1. Resuspend 75 g Spirulina powder (Seltzer Chemical) in 2 L doubly distilled water

(~30 mL/g). Stir for 10 min in a 4 L plastic beaker, transfer to 1 L screw-top plastic
bottles, then spin at 8000 rpm at 4 °C for 1 h (we use a Sorvall RC5C Plus
centrifuge with a Fiberlite F9S-4x1000y rotor).

2. Collect the supernatant, discarding the dark green pellet. Precipitate soluble protein
from the supernatant by adding 20 g TCA (final solution: 1%, w/v, TCA). Wrap the
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beaker in foil to protect from light and stir solution at 4 °C for 1 h. Centrifuge in 1
L screw-top plastic bottles at 8000 rpm at 4 °C for 10 min (Sorvall RC5C Plus
centrifuge; Fiberlite F9S-4x1000y rotor).

3. Resuspend and wash pellets with 100% methanol. Centrifuge in 250 mL screw-top
plastic bottles at 6000 rpm for 10 min at 4 °C (Beckman J2-21M centrifuge;
Beckman JA-14 rotor), and discard supernatant containing free tetrapyrroles.
Repeat washes and centrifugation until supernatant runs clear or is only lightly
green; this typically takes three washes. During washes, the pellet will change
color, finally achieving a bright cyan color when washing is complete (Fig. 17.3A).
These washes can be used to consolidate the material into a smaller volume. We
typically perform the first wash in eight 250 mL bottles, the second in four bottles,
and the third in two bottles for a final volume of ~500 mL.

Note: during methanolysis and all subsequent steps, you will be working with PCB
that is no longer protein-bound. In this state, PCB is light sensitive and the material
should be shielded from light using aluminum foil, or by illuminating with a green
safelight (Sylvania F40G fluorescent tube wrapped once with a Roscolene 874
sheet and once with a Roscolene 877 sheet to provide illumination at 550 nm) in an
otherwise dark room.

4. Collect the washed cyan pellet and transfer to a 1 L three-neck round-bottomed
distillation flask for methanolysis. Add 500 mL methanol; the pellet will not fully
resuspend. Add boiling chips to prevent bumping of the methanol during heating.
Connect the reflux apparatus, including cold water to recirculate through the
condenser, thermometers to measure both the fluid and vapor temperatures, and a
heat bath for heating the reaction. Reflux by maintaining at a slow boil with the
solution and vapor phase temperatures held at 64.7 °C for 8 h (Fig. 17.3B). Be
patient and do not overheat—it may take some time to establish a stable
temperature for the reaction.

5. Transfer the liquid phase of the methanolysis reaction to 500 mL single-necked
round-bottomed flask and connect to a rotary evaporator (but do not discard the
remaining pellet—see Step 8). Evaporate the methanol to a final volume of 50 mL.

6. Add 50 mL chloroform and 100 mL water to a separatory funnel, followed by the
concentrated PCB solution. Stopper the top of the funnel, and shake vigorously to
emulsify the chloroform and aqueous phases. Wait for ~1 min to allow the phases
to separate. The aqueous phase should be cloudy and white, while the PCB-
containing chloroform phase should be dark green (Fig. 17.3C). If the aqueous
phase is green or there is not a distinct color separation between the two phases, it
should be taken as an indication that PCB is not well confined to the chloroform
phase. In this case, add hydrochloric acid dropwise to acidify the solution. Shake
vigorously and repeat until the aqueous phase is colorless.

7. Separate the chloroform phase (bottom liquid) into a 500 mL single-necked round-
bottomed flask, discarding the remaining aqueous phase. Evaporate the chloroform
solution using a rotary evaporator to obtain dry PCB. Resuspend the dry PCB in 3
mL DMSO. Aliquot between 20 and 100 µL into dark PCR tubes. PCB can be
frozen and thawed tens of times without degradation, but care must be taken not to
expose aliquots to excess light.

8. To obtain the final PCB concentration, dilute the final preparation 1:100 into 1 mL
95:5% MeOH:HCl (37.5%) solution and reading the absorbance at 680 nm. The
concentration in mM is calculated as A680 × 2.64; typical final concentrations from
this procedure are between 3 and 15 mM.
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9. To increase the yield from this preparation, steps 4–8 can be performed a second
time on the pellet remaining after the first 8 h methanolysis reaction. Typically, we
perform the two 8-h methanolyses (Step 4) overnight on two consecutive nights,
and perform steps 5–8 once on each preparation beginning the next morning,
keeping each preparation separate and testing each for its final PCB concentration.

10. Optional step: The quality of the PCB preparation can be verified independently of
Phy–PIF recruitment using cells expressing a Phy mutant (Y276H) that fluoresces
upon incorporation of PCB (Levskaya et al., 2009; Su and Lagarias, 2007). Expose
cells expressing Phy Y276H to PCB as described in Section 5, and image cells
using Cy5 excitation and emission optical configurations.

5. Cell Culture Preparation for Phy–PIF Translocation
After building Phy and PIF recruitment constructs and purifying PCB, it is important to
validate the functionality of all components in the experiment of interest. Testing
translocation requires two steps: incubating cells with PCB and preparing them for imaging
on fibronectin-coated coverslips (the present section), and imaging these cells using
confocal microscopy (the next section). Both of these steps require some measure of
precision and care, as many variables can affect the quality of observed recruitment.

5.1. Protocol
1. Coat the glass coverslip on the bottom of a 35 mm MatTek dish (MatTek catalog

number P35G-1.5-14C) with 100 µL of 0.2 mg/mL fibronectin diluted in PBS
(Sigma catalog number F4759) for at least 1 h at room temperature.

2. Wash dish twice with 3 mL of Dulbecco’s PBS (D-PBS). Plate cells immediately,
or store dishes in PBS at 4 °C for no longer than 2 days prior to use.

3. Trypsinize and count NIH-3T3 cells expressing Phy and PIF constructs (Section 3)
from an existing culture (maintained as described by ATCC). Plate 150,000 cells in
1 mL media on the fibronectin-coated MatTek dish. Place dish in incubator for 30
min to allow cells to adhere.

4. Note: this step is light-sensitive and care should be taken to minimize PCB’s
exposure to light. Perform under low light conditions or under a green safelight
(see Step 3). In this step, media and PCB are premixed before adding to cell culture
to ensure that cells are not exposed to high concentrations of DMSO. Transfer 100
µL media from the MatTek dish to a 1.5 mL tube. Pipet 4 nmol of PCB (about 1 µL
of the 4 mM stock from Step 3) into the tube, and mix well. Add the PCB–media
mixture back to dish; swirl to mix. Wrap dish in aluminum foil and place in
incubator for at least 30 min. Plates can be maintained in PCB-containing media for
a few hours, so multiple plates can be prepared simultaneously and imaged
sequentially.

5. Before imaging, exchange the PCB-containing media for an imaging solution
containing 3 mL modified Hank’s balanced salt solution (mHBSS) supplemented
with 2% FBS. NIH-3T3 cells should remain healthy at room temperature without
supplemental CO2 for at least 6 h under these conditions. For prolonged imaging,
replace imaging solution to combat evaporation.

6. Imaging PIF Translocation Using Spinning Disk Confocal Microscopy
After preparing cells with the desired Phy- and PIF-containing constructs and purifying
PCB, it is important to verify that binding between Phy and PIF are controllable by light.
The following procedure relies on a localization change in one of the components (here, a
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fluorescent PIF construct) upon binding to the other (membrane-localized Phy). To perform
this experiment, the cytoplasmic concentration of PIF is measured by fluorescent imaging
using confocal microscopy. Here, we outline the protocol for imaging PIF–YFP and Phy-
mCherry-CAAX (mCherry is a fluorescent protein with RFP-like excitation and emission).

A confocal microscope can be easily used to supply wavelengths required for association
and dissociation of Phy–PIF complexes. A red laser emitting at 561 nm (or alternatively, a
white light source and 561 nm filter) can be used to maximally activate Phy–PIF association,
and these should be available on fluorescent microscopes capable of imaging RFP or similar
proteins. However, because the transition to the PIF-binding state is so sensitive, unfiltered
brightfield light is sufficient to generate measurable Phy–PIF recruitment, as described in
the protocol below. To elicit Phy–PIF dissociation, place a 750 nm long-pass filter
(Newport, model FSQ-RG9) on top of the microscope’s condenser (in the brightfield
imaging light path) and turn on brightfield illumination (Fig. 17.4A). It is important to
ensure that no filters are present in the light path that could interfere with infrared light
transmission. It is possible to use a 750 nm filter in conjunction with other light sources
(e.g., mercury halide arc lamp; DG4 light source). However, care must be taken to ensure
that all optical components are capable of transmitting infrared light (e.g., mirrors, filters,
liquid light guides), and that no infrared-blocking filters are present in the light path.

Observing high-quality light-dependent recruitment depends strongly on the expression
levels of both Phy and PIF fluorescent fusion proteins. Because this assay relies on
observing PIF changing localization from cytoplasm to cell membrane, there must be
enough Phy on the membrane to appreciably deplete cytoplasmic PIF levels during exposure
to activating light. Thus, it is crucial to select cells with high membrane expression of Phy
and low to moderate PIF levels. Cell geometry can also play a crucial role: because small
cells have a higher surface area to volume ratio than large cells, smaller cells are further
enriched for an excess of Phy molecules compared to PIF, leading to better PIF depletion
upon activation.

6.1. Protocol
1. Select a cell for imaging based on the criteria described above (high Phy-mCherry

membrane expression, moderate PIF–YFP expression, and small cell volume).

2. For the best contrast between recruitment and release, choose an imaging plane in
the lower half of the cell, just above the coverslip. Such a focal plane should be
close to a large pool of membrane-bound Phy, where PIF cytoplasmic depletion
should be maximal. If available, initiate the microscope’s autofocus system to
prevent focal plane drift.

3. Place a 750 nm square filter on top of the microscope condenser, in the brightfield
imaging light path (Fig. 17.4A).

4. Alternate 30 s exposures of brightfield light with and without the 750 nm filter.
After each 30 s brightfield exposure, take single PIF–YFP translocation images
using the confocal microscope’s YFP imaging mode. A typical series of NIH-3T3
cell images showing recruitment by this technique is shown in Fig. 17.4B.
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Figure 17.1.
Schematic of the Phy–PIF interaction. (A) After incorporation of the chromophore PCB, the
conformation of Phy can be controlled by exposure to two wavelengths of light (650 and
750 nm). The PIF domain binds only one of these domains with high affinity. By controlling
the ratio of 650:750 nm light, the fraction of Phy in a state permissive for binding can be
tuned, modulating the total amount of PIF recruitment. (B) Crystal structure of a fragment of
the cyanobacterial phytochrome protein Cph1 bound to the small molecule chromophore
PCB (shown as licorice) (PDB ID: 2VEA) (Essen et al., 2008). The PAS, GAF, and PHY
domains, each required for Phy–PIF interaction, are shown in purple, orange, and red,
respectively, while the N terminal 26 amino acids are shown in green. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this
chapter.)
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Figure 17.2.
Genetic Phy and PIF constructs for use in recruitment assays. (A) Schematic diagram
showing typical Phy and PIF fusion constructs. The larger Phy protein is usually expressed
as a membrane-localized component, fused to a gene of interest (GeneX) as well as a C-
terminal membrane localization tag (LS). Phy best tolerates fusion when it encodes the N-
terminal component. PIF is typically fused to a freely diffusing cytoplasmic component, and
tolerates fusion at either or both termini. (B) Schematic of the specific constructs discussed
in this article. Phy is fused to mCherry and a plasma membrane localization tag, the KRas
CAAX tail, while PIF is fused to YFP. Both are driven using the MSCV retroviral vector
system and are expressed along with puromycin or neomycin selection markers. Gly-Ser
linkers L1, L2, and L3 are as described in the text.
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Figure 17.3.
Key steps involved in the purification of PCB. (A) Samples collected at different stages of
the PCB preparation procedure. Tubes contain the Spirulina-water mixture (1); the green
supernatant after the first spin (2); the TCA protein precipitation, containing supernatant and
pellet (3); the supernatant after each of three methanol washes (4–6); and the supernatant
after the first and second 8 h methanolysis (7–8). (B) The assembled methanol reflux
apparatus. The two thermometers should be placed in the vapor and fluid phases of the PCB-
containing solution, respectively. Adjust heating until the temperature in both phases is the
same, and the methanol solution is at a low boil. To prevent methanol loss through
evaporation, flow cold water through the condenser (middle column of the apparatus). (C)
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Chloroform separation of PCB from the protein phase, photographed under a green
safelight. Separation should result in a white, cloudy aqueous phase (red arrow) above a
dark green chloroform phase (black arrow). If the aqueous phase retains a green color, add
hydrochloric acid dropwise to acidify the solution, shake vigorously, and allow separation to
occur again. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this chapter.)
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Figure 17.4.
Confocal microscopy to image Phy–PIF translocation. (A) A 750 nm filter can be placed in
the brightfield light path to elicit Phy–PIF dissociation. With this filter in place, illuminating
with brightfield light leads to Phy–PIF dissociation. Simply removing the filter provides
enough activating light to induce Phy–PIF translocation. Alternatively, RFP excitation light
(650 nm) can be used to induce association. (B) A montage of confocal images of a
NIH-3T3 cell showing PIF–YFP translocation in response to light. Cells were prepared
harboring the genetic constructs described in Section 3. The upper panel shows PIF–YFP
fluorescence after sequential 30 s exposures of activating (brightfield) and inactivating (750
nm filtered) light. Phy-mCherry levels in corresponding timepoints are shown in the lower
panels.
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