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Abstract

Many species of bacteria harbor multiple prophages in their genomes. Prophages often carry genes that confer a selective
advantage to the bacterium, typically during host colonization. Prophages can convert to infectious viruses through a
process known as induction, which is relevant to the spread of bacterial virulence genes. The paradigm of prophage
induction, as set by the phage Lambda model, sees the process initiated by the RecA-stimulated self-proteolysis of the
phage repressor. Here we show that a large family of lambdoid prophages found in Salmonella genomes employs an
alternative induction strategy. The repressors of these phages are not cleaved upon induction; rather, they are inactivated
by the binding of small antirepressor proteins. Formation of the complex causes the repressor to dissociate from DNA. The
antirepressor genes lie outside the immunity region and are under direct control of the LexA repressor, thus plugging
prophage induction directly into the SOS response. GfoA and GfhA, the antirepressors of Salmonella prophages Gifsy-1
and Gifsy-3, each target both of these phages’ repressors, GfoR and GfhR, even though the latter proteins recognize
different operator sites and the two phages are heteroimmune. In contrast, the Gifsy-2 phage repressor, GtgR, is
insensitive to GfoA and GfhA, but is inactivated by an antirepressor from the unrelated Fels-1 prophage (FsoA). This
response is all the more surprising as FsoA is under the control of the Fels-1 repressor, not LexA, and plays no apparent
role in Fels-1 induction, which occurs via a Lambda CI-like repressor cleavage mechanism. The ability of antirepressors to
recognize non-cognate repressors allows coordination of induction of multiple prophages in polylysogenic strains.
Identification of non-cleavable gfoR/gtgR homologues in a large variety of bacterial genomes (including most Escherichia
coli genomes in the DNA database) suggests that antirepression-mediated induction is far more common than previously
recognized.
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Introduction

Temperate bacteriophages are major players in the evolution

of bacterial genomes. Phages can act as vectors for gene transfer

and, by virtue of their ability to integrate in the bacterial chro-

mosomes, they can permanently modify the properties of the host

cell. Such ‘‘lysogenic conversion’’ is particularly prominent in en-

teric bacteria presumably due to their promiscuous lifestyle.

Enteric species like E. coli and Salmonella typically contain multiple

resident prophages whose variability in number and assortment

constitutes a major source of diversity between strains [1–3].

Some prophages express functions that contribute to pathoge-

nicity. Lysogenization of E. coli by bacteriophages carrying Shiga-

like toxin genes converts a harmless commensal into a dreadful

enteric pathogen [4]. The toxin gene stx is repressed in the lyso-

genic state, but is activated under conditions that elicit prophage

induction [5,6]. In Salmonella, the contribution of prophages to

pathogenicity results from the synergistic action of multiple

factors playing subtle and often redundant roles. The genes

encoding such factors are expressed in the lysogenic state under

the control of the regulatory circuitry of the host bacterium [7,8].

Gifsy-1 and Gifsy-2 are lambdoid prophages found in most

strains of Salmonella enterica serovar Typhimurium and were

originally identified genetically during a study of recB suppressor

mutations in strain LT2 [9]. Both phages contain recET gene

orthologs that, although repressed in the lysogenic state, can be

activated by mutation, resulting in the suppression of recombina-

tion defects. A third Gifsy-related prophage found in another

model strain, ATCC14028, has been named Gifsy-3 [2]. All three

prophages exhibit the typical modular organization of bacterio-

phage l with two identifiable divergent transcription units origi-

nating from a site roughly one third away from the left end of the

prophage map [8,10]. When induced, all three prophages form

virions that closely resemble l [11]. As the genome sequences from

an increasing number of serovar Typhimurium strains have be-

come available, it has become possible to compare the sequences

of their resident Gifsy prophages. This analysis revealed that Gifsy-

1 displays extensive polymorphism in the region surrounding the

lysogenic repressor and other regulatory elements [7,8]. Con-

versely, Gifsy-2 is highly conserved throughout the serovar, while

Gifsy-3 appears to be a specific acquisition of strain ATCC14028

[2,12].
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Phage circulation among strains results from conditions that

relieve lysogenic repression and elicit the developmental program

of the virus. The paradigm for this induction process is set by

widely studied phages such as l and P22. In both of these phages,

induction results from the autocatalytic cleavage of a repressor

triggered by the accumulation of RecA-DNA filaments [13,14]. l
and P22 repressor proteins, 237 and 216 amino acids (aa), res-

pectively, contain two domains: an N-terminal DNA-binding do-

main and a C-terminal oligomerization domain with the cleavage

activity [15]. RecA-stimulated cleavage occurs at identical alanyl-

glycil sequences near the center of both proteins [16] and is

catalyzed by a highly conserved Lys/Ser dyad. Identification of

the Gifsy-1/-2 phage repressor in strain LT2 revealed it to be

significantly smaller (136 aa) than the l or P22 repressors and to

lack the signature motif for autocatalytic cleavage [10]. Examina-

tion of the Gifsy prophage sequences from other strains showed

them to have similar small sizes, raising the question of the

mechanism responsible for repressor inactivation in these pro-

phages. The work described in this paper was aimed at answering

this question. We show that the induction of Gifsy prophages does

not result from repressor cleavage, but rather from repressor

inactivation consequent to the binding of antirepressor proteins.

The genes encoding these antirepressors are located outside the

immunity region and under direct control of the LexA protein.

A similar regulatory mechanism was previously described in

coliphages 186 and N15 [17,18]. Interestingly, some of the

antirepressors identified here have the ability to act on non-

cognate repressors, providing the basis for a molecular crosstalk

that allows coordinating the induction of multiple prophages in

polylysogenic bacteria.

Results

Variability of Gifsy phage repressors
In strain LT2, an approximately 12 Kb portion of the Gifsy-2

prophage genome, including the immunity region together with

replication and recombination functions, is duplicated at the

corresponding position of the Gifsy-1 genome [10]. Conceivably, a

recombination or conversion event homogenized the two se-

quences during the evolutionary history of this strain. As a result,

the Gifsy-1 repressor of LT2, GogR, is a perfect copy of the Gifsy-

2 repressor, GtgR, and the two phages are homoimmune [7,10].

Sequence analysis of the Gifsy phages in strain ATCC14028

showed the immunity region of Gifsy-1 to differ extensively from

that of Gifsy-1/-2 prophages of strain LT2 (Figure 1A). In

contrast, Gifsy-2 sequences are nearly identical in the two strains,

while Gifsy-3 carries a different immunity region. The presump-

tive repressor genes of the Gifsy-1, and Gifsy-3 prophages of strain

ATCC14028 were named gfoR, and gfhR, respectively. GfoR

(Gifsy-1) and GfhR (Gifsy-3) share 66.4% similarity in their amino

acid sequences and are 32,6% and 33,8% similar to GftR (Gifsy-

2), respectively (Figure 1B). The sequence of the latter is 100%

identical to that of LT2’s GtgR. Finally, it is worth mentioning

that Gifsy-3 repressor, GfhR, is 100% identical to the repressor of

a prophage found at the site of Gifsy-1 in strain SL1344, another

Salmonella model strain [19](GenBank FQ312003). These findings

account for the original observation that ATCC10028’s Gifsy-3

and SL1344’s Gifsy-1 phages are homoimmune [7] and provide

further evidence for extensive module shuffling between Salmonella

phages.

Gifsy prophage repressors are not cleaved during
induction

To monitor the fate of Gifsy prophage repressors under

inducing conditions, variants of the gfoR, gftR and gfhR genes

carrying carboxy-terminal 3xFLAG epitope tags were constructed

in the ATCC14028 chromosome [20]. Tagged GfoR and GfhR

remained competent to confer immunity against the correspond-

ing phage (data not shown), suggesting that presence of the tag did

not adversely affect the function of the proteins. Similar epitope

tag fusions were derived from two additional genes: a dinI

homologue in the Gifsy-2 left operon, to serve as a control for the

transcriptional response to the inducing treatment, and a gene

presumed to encode the repressor of the Fels-1 prophage of strain

LT2 [21]. Fels-1 putative repressor, hereafter referred to as FsoR,

is a 231 aa protein similar to l’s CI repressor and thus expected to

undergo cleavage during induction. Exponentially growing cells

from strains carrying the 3xFLAG-tagged genes were exposed to

Mitomycin C (MitC) and processed for Western blot detection

using anti-FLAG antibodies. As shown in Figure 2, none of the

Gifsy repressors suffers detectable cleavage throughout the treat-

ment, while the accumulation of the DinI protein (Figure 2B),

together with the appearance of cleavage products of the FsoR

repressor (Figure 2D), confirm that induction is taking place. In

Gifsy-3, the MitC treatment leads to the accumulation of a

GfhR variant with an N-terminal extension (marked GfhR* in

Figure 2C). This protein originates from an upstream, in-frame

AUG codon (Figure S1). A construct with the longer open reading

frame fused to the PBAD promoter expressed the shorter version of

GfhR in the absence of arabinose (Figure S1) suggesting that the

gfhR promoter lies within the interval between the two AUGs.

GfhR* must therefore originate from a different promoter, located

upstream from the primary promoter, and apparently activated

upon induction. The role of GfhR*, if any, was not further inves-

tigated here.

Gifsy prophage induction requires activation of a
LexA-regulated locus outside the immunity region

The results in Figure 2 suggested that induction of the Gifsy

prophages in strain ATCC14028 occurs by a mechanism not

involving cleavage of repressors. Experiments with lacZ fusions

Author Summary

Many viruses that infect bacteria (bacteriophages) can
direct the integration of their DNA into the bacterial
chromosome. This condition, known as lysogeny, is
relevant to bacterial evolution, as it is one of the main
pathways leading to the incorporation of foreign DNA in
nature. Indeed, bacteriophages often carry genes that
escape lysogenic repression and benefit the bacterium.
This symbiotic association can come to an end if bacteria
suffer DNA damage. A mechanism mediated by the host’s
RecA protein causes the relief of repression, viral DNA
excision, and replication. This process, known as prophage
induction, kills the host and results in the release of viral
particles. In this work, we have analyzed the mechanism
responsible for induction in a large family of prophages
naturally present in the genomes of Salmonella bacteria.
We found that, unlike in best-studied model phages, the
repressors of these Salmonella phages do not undergo
RecA-mediated proteolysis; rather, they are inactivated by
the binding of small antirepressor proteins. We show that
some antirepressors can act on both cognate and non-
cognate repressors, allowing separate prophages within a
given strain to be induced simultaneously. We discuss
evidence suggesting that antirepressor-mediated pro-
phage induction is quite common in the bacterial world.

Trans-Acting Phage Antirepressors
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supported this conclusion. Fusions of lacZ to the recE gene, or to an

homologue of l’s cII gene were no longer activated by MitC when

combined with deletions that remove material to the right of the

DNA replication genes (see diagram in Figure S2). Thus, the

induction mechanism requires one or more genes located outside

of, and relatively distant from, the immunity region. A previous

report identified potential LexA binding sites in Gifsy prophage

genomes [22]. To assess the role of LexA in Gifsy induction, we

made use of the lexA3 allele, which produces a non-cleavable form

of the LexA protein [23]. The mutation was introduced into

strains with recE-lacZ fusions in either Gifsy-1 or Gifsy-2 and the

resulting strains were tested for their response to MitC on X-gal

indicator plates. As shown for Gifsy-2 in Figure 2E, lexA3

completely abolishes MitC-dependent induction. Thus, LexA

cleavage appears to be required for Gifsy prophage induction.

In contrast, the lexA3 mutation does not prevent the MitC-

dependent activation of a lacZ fusion in the late operon of the Fels-

1 prophage (Figure 2F). The latter findings are consistent with the

idea that Fels-1 induction results directly from cleavage of a CI-

type repressor (Figure 2D).

The presumptive LexA binding site lies within the region of

sequence identity between Gifsy-1 and Gifsy-2 prophages of strain

LT2. The site is located 1.3 Kb downstream from the replication

genes and adjacent to the dinI gene homologue. The LexA box is

also found at the corresponding position for all three Gifsy

prophages of strain ATCC14028, in all instances preceded by

palindromic sequences resembling Rho-independent transcription

terminators (Figure 3A). To assess the requirement of the LexA

binding motif for regulation, the segment between the putative

terminator and the AUG translation initiation codon of the dinI

homologue in the Gifsy-2 prophage was deleted and replaced with

an araC-PBAD promoter module. The construct was combined with

a recE-lacZ translational fusion in an LT2-derived strain cured for

Gifsy-1. Disk tests on Lac indicator plates showed that the pro-

moter replacement completely abolishes MitC-dependent activa-

tion and renders the recE-lacZ fusion inducible by arabinose

(Figure 3B). Thus, these results confirmed the existence of an SOS

locus within the Gifsy-2 genome and suggested that this locus

includes one or more genes needed for induction.

Small antirepressor proteins responsible for Gifsy
prophage induction

The analysis of nested deletions originating at the right end of

the prophage allowed delimiting the minimal sequence required

for recE-lacZ activation to the interval between the dinI and irsA

homologues (Figure S2C). The region could encode a small

protein starting from a non-canonical GUG codon. To assess the

role of this locus in prophage induction, the ORF sequence was

moved under the control of the chromosomal PBAD promoter,

starting with an AUG codon corresponding to the initiation codon

Figure 1. Variability of Gifsy phage repressors. A. Comparison of the Gifsy-1 prophage genomes from Salmonella enterica serovar Typhimurium
strains LT2 and ATCC14028. Diagrams were made from sequence data obtained in the course of this study, complemented with data from [21] and
[12]. Percentages indicate DNA sequence identities. Green coloring shows a portion of LT2’s Gifsy-1 prophage more than 99% identical to the
corresponding region of Gifsy-2. Genes marked by an asterisk are named on the basis of their sequence similarity to known genes of other phages or
bacteria. B. Alignment of the deduced amino acid sequences of the repressors of prophages Gifsy-1 (GfoR) Gifsy-3 (GfhR) and Gifsy-2 (GftR) from strain
ATCC14028.
doi:10.1371/journal.pgen.1002149.g001

Trans-Acting Phage Antirepressors
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of the araB gene. Exposure of the resulting strain to a paper disk

soaked with arabinose produced a halo of bacterial killing around

the disk concomitant to the release of ß-galactosidase activity from

the lysed cells (Figure 3C). Together, these effects suggested that

the sequence being analyzed contained all the information needed

to elicit prophage induction. Interestingly, a fortuitous single bp

insertion near the 59 end of the sequence completely abrogated

arabinose-dependent killing and lac expression. Since the mutation

alters the reading frame of the putative gene, these findings

strongly suggested that the inducing molecule was a protein as

opposed to an RNA. We postulated that this protein acts as an

antirepressor and named it GftA (Gifsy-two antirepressor). As seen

in Figure 3C, colonies appeared in the area of bacterial lysis upon

prolonged incubation. Characterization of a number of these

arabinose-resistant isolates showed some of them to result from

prophage deletions while others carried mutations linked to the ara

locus. One class of mutants had changes in the araC gene. Pre-

sumably these mutations affect the ability of the AraC protein to

bind arabinose thus preventing PBAD promoter activation. A

second class of mutation fell within the gftA coding sequence and

tentatively identified residues important for antirepressor function

(see below).

The gftA gene lies within the region of sequence identity be-

tween the Gifsy-1 and Gifsy-2 prophages of strain LT2 (see above)

and is 100% identical to the corresponding gene in the Gifsy-2

genome of strain ATCC14028. Small ORFs initiating with UGG

codons are found at the corresponding locations in ATCC14028’s

Gifsy-1 and Gifsy-3 prophages. These ORFs are 98% identical to

each other but more distantly related to gftA (Figure 4A). The

Gifsy-1 sequence was moved into the ara operon as done for gftA

(see above). The resulting strain lysed and released high titers of

phage when exposed to arabinose, consistent with the identifica-

tion of this locus as an antirepressor gene. Significantly, removal of

either Gifsy-1 or Gifsy-3 did not relieve the arabinose-induced

lethality. Only the concomitant elimination of both prophages

relieved the lethality, suggesting that the Gifsy-1 antirepressor can

inactivate the Gifsy-3 repressor, GfhR, as well as GfoR. A plaque

assay confirmed the presence of both phages in lysates from

arabinose-treated cells (data not shown). The antirepressor genes

were named GfoA (Gifsy-1) and GfhA (Gifsy-3).

A functional gftA homologue in the Fels-1 genome
Derepression of Gifsy lytic transcription can also be monitored

using lacZ fusions to a cII gene ortholog in the putative early right

operon [10]. These fusions can be constructed by concomitantly

deleting material in the right portion of the prophage (including

the antirepressor gene), making it possible to test for susceptibility

to antirepressors encoded by unlinked prophages (Figure S2).

Figure 2. Fate of phage repressors during induction and the role of LexA. Strains harboring C-terminally 3xFLAG-tagged versions of the
repressors of prophages Gifsy-1 (A) Gifsy-2 (B), Gifsy-3 (C) and Fels-1 (D) were exposed to Mitomycin C (1 mg mL21) for the indicated times and
processed for immunodetection of the 3xFLAG epitope as described [20]. Strains used were MA8407 (A), MA8259 (B), MA8408 (C) and MA8456 (D).
E,F. Effect of the lexA3 mutation on induction of lacZ reporter fusions in the Gifsy-2 prophage (E) or in the Fels-1 prophage (F). Cultures were spread
on LB X-gal indicator plates; filter paper disks were placed on the surface and soaked with 5 mL of 2 mg mL21 Mitomycin C. The strains used were
MA8756 (lexA+) and MA8757 (lexA3) in E and MA8410 (lexA+) and MA8573 (lexA3) in F. For complete strain genotypes, see Table 1.
doi:10.1371/journal.pgen.1002149.g002

Trans-Acting Phage Antirepressors
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Thus, a cII-lacZ fusion that removes Gifsy-2’s gftA gene is still

MitC-inducible in an LT2 background (strain MA8363; Table 1)

but not in a strain derived from ATCC14028 (MA8361). This

difference might be ascribed to the presence of a duplicate copy of

the gftA gene in the Gifsy-1 genome of LT2 and its absence in

ATCC14028 (see above). Surprisingly, however, the Gifsy-2-borne

cII-lacZ fusion remained MitC-inducible in strain LT2 after

removing Gifsy-1, suggesting that yet another prophage could

complement the gftA defect. Strain LT2 carries two other pro-

phages, Fels-1 and Fels-2. Fels-2 seemed the most likely candi-

date to encode such a function in light of its strong analogies with

E. coli phage 186, also regulated by an antirepressor mechanism

[22,24]. Unexpectedly, however, removal of Fels-1, and not Fels-2,

abolished Gifsy-2 induction. To confirm the presence of a gftA

homologue in the Fels-1 genome, an ATCC14028 strain carrying

the cII-lacZ DgftA Gifsy-2 construct was lysogenized with Fels-1

phage from strain LT2. The resulting strain proved positive for

lacZ expression when challenged with MitC. Deletion analysis

localized the locus responsible for lacZ activation in the interval

between loci STM0896 and STM0897 in Fels-1’s left operon

(Figure 4B). When the presumptive antirepressor gene (named

fsoA) was placed under PBAD promoter control, lacZ fusions to recE

or to the cII ortholog in Gifsy-2 became derepressed in the pre-

sence of arabinose (Figure 4C and data not shown). The FsoA

protein shares a number of amino acid identities or similarities

with both GftA and GfoA (Figure 4A). Significantly, most of the

GftA null mutations (see above) affect residues that are conserved

in all three proteins. It seems conceivable that the most highly

Figure 3. LexA-controlled prophage loci required for induction. A. Alignment of DNA sequences preceding the dinI gene homologues of
Gifsy-1, Gifsy-2 and Gifsy-3 prophages. The dinI translation initiation codon is underlined. The 235 and 210 motifs of putative promoters are
highlighted in light green. A light brown box encompasses sequences matching the consensus for LexA binding. B. Effect of replacing the LexA box
of the Gifsy-2 prophage with an araC-PBAD promoter module on induction of a Gifsy-2-borne recE-lacZ fusion (strain MA8357). C. Expression of Gifsy-
2’s gftA gene alone (strain MA8430) is sufficient to elicit induction of the prophage.
doi:10.1371/journal.pgen.1002149.g003

Trans-Acting Phage Antirepressors
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conserved residues (red boxes) fulfill general structural require-

ments for antirepressor function while identities restricted to GftA

and FsoA (green boxes) might define residues contributing to the

specificity of repressor recognition (Figure 4A). From the slope of

the induction curves in Figure 4C, it is apparent that FsoA is less

effective than GftA in relieving GftR-mediated repression. Addi-

tion of the 3xFLAG epitope sequence to the C-termini of the two

antirepressor proteins does not appear to impair their activities to

any significant extent (Figure 4C).

Phage antirepressors accumulate in response to DNA
damage

Construction of epitope-tagged variants of the antirepressors

allowed monitoring the regulation of these proteins by Western

analysis. Figure 5 shows the results of such an experiment with cells

exposed to MitC. GfoA and GftA, undetectable at the beginning of

the treatment, accumulate in the presence of the drug. In contrast,

as already shown in Figure 2, the levels of 3xFLAG-tagged GfoR

and GftR do not change significantly throughout the treatment.

Furthermore, neither the repressors nor the antirepressors were

significantly affected during a one-hour chase with chloramphen-

icol, indicating that none of these proteins is particularly susceptible

to proteolytic turnover (Figure 5). Overall, these results strongly

suggest that GfoA and GftA elicit prophage induction by affecting

the activity, not the concentration, of the phage repressors. Finally,

the data in Figure 5 confirm that Fels-1’s FsoA protein is also

induced in response to DNA damage.

Antirepressor proteins form highly stable complexes with
cognate repressors

The ability of Gifsy antirepressors to interact with their cor-

responding repressors was assessed by a surrogate pulldown assay.

Strains harboring chromosomal 3xFLAG tagged antirepressor

genes fused to the PBAD promoter and carrying or lacking 6xHis-

tagged cognate repressor genes on a plasmid, were grown in the

presence or absence of arabinose. Cell-free extracts were

incubated with nickel nitrilotriacetic acid agarose beads. Retained

material was eluted and subjected to gel electrophoresis for direct

visualization of proteins and Western blot analysis. As shown in

Figure 6, in extracts from cells expressing the antirepressor genes,

Figure 4. Trans-acting antirepressors. A. Alignment of antirepressor sequences and amino acid changes in GftA mutants. B. Gene organization
near the left end of the Fels-1 prophage. The diagram in B was drawn using information from Salmonella enterica serovar Typhimurium strain LT2
genome sequence [21]. Repressor and antirepressor genes (fsoR and fsoA, respectively) were identified in the course of this study. C. Induction of
Gifsy-2-borne recE-lacZ fusion in strains carrying gftA or fsoA genes, or their 3xFLAG-tagged variants, fused to the chromosomal PBAD promoter.
Arabinose (10 mM) was added at time zero. Cells collected at the indicated times were assayed for b-galactosidase as described [48].
doi:10.1371/journal.pgen.1002149.g004

Trans-Acting Phage Antirepressors
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Table 1. Strains used in this work.

Straina Genotypeb Source or referencec

Strain LT2 derivatives

MA6280 wild-type [49]

TT17217 leuD21 din-243::MudJ [22]

TT23381 recN557::MudJ lexA33(lexA3 Ind2)::cat [22]

MA7430 Gifsy-2[D(int-xis)60::cat] Gifsy-1[2]

MA7457 Gifsy-2[D(recE-recT)59::lacZ aph] Gifsy-1[2] [10]

MA7489 Gifsy-1[D(recE-int)97::lacZ aph] Gifsy-2[2] [10]

MA7794 zac-114::aph (aph insertion on the 39 side of araC)

MA8325 Gifsy-2[D(cII-sseI)89::pCE36 (lac aph)] Gifsy-1[2]

MA8333 Gifsy-2[D124::(aph araC PBAD)] (PBAD fused to dinI homologue)

MA8357 Gifsy-2[D124::(scarpSEB3 araC PBAD) D(recE-recT)59::lacZ aph D(int-xis)60::scarpKD3] Gifsy-1[2]

MA8363 Gifsy-2[D(cII-sseI)89::pCE36 (lac aph)]

MA8398 Fels-1[D(int-attR)104::cat]

MA8410 Fels-1[din-1001::MudJ] Gifsy-1[2] Gifsy-2[2]

MA8424 Gifsy-1[D(recE-int)97::lacZ aph D(irsA-stf)106::aadA] Fels-1[D(int-attR)104::cat] Gifsy-2[2]

MA8425 Gifsy-1[D(recE-int)97::lacZ aph D(gftA-stf)107::aadA) Fels-1[D(int-attR)104::cat] Gifsy-2[2]

MA8430 Gifsy-1[D(recE-int)97::lacZ aph] Fels-1[D(int-attR)104::cat] D(araBAD)105::gftA-aadA Gifsy-2[2]

MA8456 Fels-1[fsoR::3xFLAG D(STM0897-int)113::aph] D(araBAD)105::gftA-aadA Gifsy-1[2] Gifsy-2[2]

MA8508 Gifsy-1[2] Gifsy-2[2] Fels-2[2] Fels-1[D(int-attR)104::cat]

MA8567 D(araBAD)120::gftA-3xFLAG aph Gifsy-1[2] Gifsy-2[2]

MA8572 Fels-1[D(int-STM0896)127::cat]

MA8573 Fels-1[din-1001::MudJ] lexA33(lexA3 Ind2)::cat] Gifsy-1[2] Gifsy-2[2]

MA8595 zfh-8179::MudJ D(araBAD)128::fsoA cat

MA8605 Fels-1[fsoA::3xFLAG D(STM0896-int)116::aph] Gifsy-1[2]

MA8728 Gifsy-2[gftA::3xFLAG D(irsA-stf)114::scarpSUB11 gtgR-3xFLAG D(STM1011-int)110::aph] Fels-1[D(int-attR)104::scarpKD3] Gifsy-1[2]

MA8756 Gifsy-2[D(recE-recT)59::lacZ aph D(int-xis)60::scarpKD3] Fels-1[D(int-attR)104::scar] Gifsy-1[2]

MA8757 Gifsy-2[D(recE-recT)59::lacZ aph D(int-xis)60::scarpKD3] Fels-1[D(int-attR)104::scarpKD3] Gifsy-1[2] lexA33(lexA3 Ind2)::cat

MA10792 Gifsy-1[D(recE-int)97::lacZ scarpNFB19] Gifsy-2[2]

MA10796 Gifsy-1[D(recE-int)97::lacZ scarpNFB19] Gifsy-2[2] D(araBAD)105::gftA-aadA

MA10797 Gifsy-1[D(recE-int)97::lacZ scarpNFB19] Gifsy-2[2] D(araBAD)120::gftA-3xFLAG aph

MA10798 Gifsy-1[D(recE-int)97::lacZ scarpNFB19] Gifsy-2[2] D(araBAD)128::fsoA-cat

MA10799 Gifsy-1[D(recE-int)97::lacZ scarpNFB19] Gifsy-2[2] D(araBAD)121::fsoA-3xFLAG aph

Strain ATCC14028 derivatives

MA5958 wild-type [50]

MA7990 Gifsy-1[DirsA108::aph] Gifsy-2[2]

MA8157 Gifsy-2[gftR::3xFLAG D(STM14_1147 - int)110::aph]

MA8259 Gifsy-2[gftR::3xFLAG D(STM14_1147 -int)110::scarSUB11 dinI::3xFLAG DgftA125::aph] Gifsy-1[2] Gifsy-3[2]
ilvI3305::Tn10dTac-cat-3xFLAG aph

MA8327 Gifsy-2[D(cII-sseI)89::pCE36 (lac aph)] Gifsy-1[2] Gifsy-3[2] Fels-1[+]

MA8343 D(araBAD)99::gtgR-3xFLAG aph

MA8361 Gifsy-2[D(cII-sseI)89::pCE36 (lac aph)]

MA8407 Gifsy-1[gfoR::3xFLAG D(parA-int)111::aph]

MA8408 Gifsy-3[gfhR::3xFLAG D(parA-int)112::aph]

MA8426 D(araBAD)118::gfoR-3xFLAG aph

MA8427 D(araBAD)119::gfhR-3xFLAG aph

MA8428 D(araBAD)129::gfhR*-3xFLAG aph

MA8440 Gifsy-1[D126::(aph araC PBAD)] (PBAD fused to dinI homologue) Gifsy-2[2] Gifsy-3[2]

MA8468 Gifsy-2[D(recE-recT)59::lacZ aph D(int-xis)60::cat] D(araBAD)105::gftA-aadA

MA8534 D(araBAD)109::gfoA-aph Gifsy-2[2] Gifsy-3[2]

MA8535 D(araBAD)109::gfoA-aph Gifsy-1[2]

MA8536 D(araBAD)109::gfoA-aph Gifsy-1[2] Gifsy-3[2]
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PLoS Genetics | www.plosgenetics.org 7 June 2011 | Volume 7 | Issue 6 | e1002149



proteins with the molecular weight predicted for the 3xFLAG-

tagged derivatives of GftA (panel A) or GfoA (panel B), were

specifically retained along with the cognate repressors and

revealed by the anti 3xFLAG monoclonal antibodies (panels C

and D, respectively). Curiously, the anti 3xFLAG antibodies

appear to react with the His-tagged repressors as well (Figure 6C).

Figure 5. Monitoring Gifsy phage repressors and antirepressors under inducing conditions. Strains harboring 3xFLAG-tagged versions of
both repressor and antirepressor genes in prophage Gifsy-1 (A; strain MA8729), Gifsy-2 (B; strain MA8728) or of the antirepressor gene in Fels-1 (C;
MA8605) were exposed to Mitomycin C (1 mg mL21) for 30 or 60 min. Chloramphenicol (10 mg mL21) was added to samples subjected to the 60 min
treatment and incubation continued for additional 30 min or 60 min. Bacteria were harvested and processed for immunodetection of epitope-
tagged proteins as described [47].
doi:10.1371/journal.pgen.1002149.g005

Straina Genotypeb Source or referencec

MA8540 Gifsy-2[D(recE-recT)59::lacZ aph D(int-xis)60::scarpKD3] D(araBAD)109::gfoA-scarpKD13 Gifsy-1[2] Gifsy-3[2]

MA8541 D(araBAD)109::gfoA-scarpKD13 din-243::MudJ Gifsy-1[2] Gifsy-3[2]

MA8715 Gifsy-2[gftA::3xFLAG D(irsA-stf)114::aph]

MA8716 Gifsy-1[gfoA::3xFLAG D(irsA-stf)115::aph]

MA8725 D(araBAD)121::fsoA-3xFLAG aph

MA8726 D(araBAD)122::gfoA-3xFLAG aph

MA8729 Gifsy-1[gfoA::3xFLAG D(irsA-stf)115::scarpSUB11 gfoR::3xFLAG D(parA-int)111::aph] Gifsy-2[2] Gifsy-3[2]

MA8731 D(araBAD)122::gfoA-3xFLAG aph Gifsy-1[2] Gifsy-2[2] Gifsy-3[2]

aAll strains were derived from Salmonella enterica serovar Typhimurium strains LT2 [49] or ATCC14028s [50]. Most mutant alleles were constructed by the l Red method
[41–43]. The complete list of the oligonucleotides used as PCR primers is in Table S1.

bSquare brackets following a prophage name define the genotype of that prophage. The term ‘‘scar’’ denotes the DNA sequence left following excision of the antibiotic-
resistance cassette. Superscript indicates the plasmid used as DNA template in amplifying the cassette. For further details on phage gene nomenclature, see legend to
Figure 1A. The aph and aadA genes confer resistance to kanamycin and spectinomycin, respectively. The D(araBAD)::xxx constructs place the gene of interest under the
control of the chromosomal PBAD promoter. din-243::MudJ and din-1001::MudJ denote lacZ transcriptional fusions (generated by transposition) to the tail operon of the
Gifsy-2 prophage [22] and to the Q gene of the Fels-1 prophage (N. Figueroa-Bossi, unpublished data), respectively.

cWhere not specified, the source of the strain is this work. Strains TT17217 and TT23381 were a gift of John Roth.
doi:10.1371/journal.pgen.1002149.t001

Table 1. Cont.
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We considered that this reactivity might be due to the release of

some antirepressor molecules from the membrane during the

blotting procedure and their interaction with membrane-bound

cognate repressors. To test this hypothesis, we asked whether

antirepressor-repressor interactions could be detected by the ‘‘far

Western’’ protocol [25]. Total proteins from a strain expressing

GtgR were fractionated on an SDS gel, blotted on a Polyviny-

lidene fluoride (PVDF) membrane. The blot was split into two

halves, one of which was incubated with a crude extract from a

strain expressing 3xFLAG tagged GftA protein, prior to anti

3xFLAG antibody probing. The results in Figure 6E show that the

GftR protein is only revealed in the membrane treated with the

extract. This confirms that GftA and GtgR interact strongly with

each other. Since the above analysis was carried out under de-

naturing conditions, the interaction must not require the proteins

to be in their native conformation.

Figure 6. Repressor-antirepressor pulldown assays. The strains used harbor 3xFLAG-tagged versions of antirepressor genes under the
control of the chromosomal PBAD promoter and carry or lack plasmids expressing 6His-tagged versions of cognate repressors. Crude extracts from
cells grown in the presence or absence of arabinose were incubated with nickel beads, and rinsed in low-concentration imidazole buffer (10 mM).
The bound proteins were eluted from the column using high imidazole concentrations (250 mM). Eluates were applied in duplicates to 15%
polyacrylamide gels and one was stained with Coomassie brilliant-blue (A and B) while the other was processed for immunodetection using anti-
FLAG monoclonal antibodies (C and D). A,C. GtfA pulldown by GtgR (strain MA8567 plus or minus plasmid pSEB10; left three lanes contain
samples prior to the nickel binding step); B,D. GfoA pulldown by GfoR (strain MA8731 plus or minus plasmid pSEB11). E. Far western detection of
GtgR:GftA interaction. A crude extract of strain MA8567 carrying gtgR plasmid pSEB10 was separated on a 15% gel and the gel blotted onto a
PVDF membrane. The membrane was split into two halves; one was incubated with the extract of a strain expressing GftA-3xFLAG (1) while the
other was left untreated (2). The two strips were processed for hybridization with anti-FLAG antibodies. For more details, see Materials and
Methods.
doi:10.1371/journal.pgen.1002149.g006
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Gifsy repressors and antirepressors most likely interact as
dimers

We devoted considerable effort to determining the subunit

structures of Gifsy repressors, antirepressors and their complexes

by gel exclusion chromatography. This work was made difficult

by a marked tendency of both proteins to form non-specific

aggregates and to stick to various surfaces, particularly following

buffer changes. Such problems could not be solved for the antire-

pressors. In contrast, using N-terminally tagged versions of the

repressors, satisfactory elution profiles were eventually obtained

with the repressors and their complexes. Results from a repre-

sentative experiment are shown in Figure 7. GfoR and the GfoR-

GfoA complex elute from a G75 Sephadex column with an

apparent molecular weight of about 40 kD and 60 kD, respec-

tively. These sizes are consistent with the GfoR being a dimer and

the GfoR-GfoA complex a heterotetramer (A2B2). Similar results

were obtained for the GftR/GftA complex (data not shown).

Antirepressor binding caused cognate repressor to
dissociate from the DNA

Binding of repressors to the corresponding operator sites can be

monitored by mobility shift assays in native gels. One such

mobility shift is observed when a DNA fragment spanning the

Gifsy-2 right operator is incubated with purified GtgR protein

(Figure 8). Addition of increasing amounts of purified GftA protein

to the preformed GtgR-DNA complex causes the operator

fragment to be progressively released (Figure 8). Thus, these

results suggest that GftA binding to the GtgR repressor causes the

latter to lose affinity for DNA. No binding of GftA to DNA can be

inferred from the data in Figure 8 or from a number of inde-

pendent tests (data not shown). This leads us to conclude that the

antirepressor most likely exerts its action by inducing a confor-

mational change in cognate repressor, as opposed to competing for

DNA binding.

Discussion

In the present study, we have characterized the induction

mechanism of the Gifsy prophages of Salmonella. This mechanism

differs from that used by model phages l and P22. In these phages,

all information needed to elicit induction is contained within the

repressor sequence. Binding of the repressors to RecA-DNA

filaments formed during DNA damage, stimulates the self-catalytic

proteolysis of the repressor and its inactivation. Cleavage occurs

within a linker region, the ‘‘connector’’ that separates the N-

terminal DNA-binding domain from the C-terminal dimerization

domain of the protein [15]. In contrast, the regulation of Gifsy

prophage induction involves two spatially separated modules: one

containing the repressor gene and its sites of action (the immunity

region), the other carrying a transcription unit that encodes,

among others, an antirepressor protein. During normal growth,

this unit is repressed by LexA, the general repressor of the SOS

regulon. LexA also undergoes RecA-stimulated cleavage in the

Figure 7. Gel exclusion chromatography of GfoR and GfoR:GfoA complexes. Proteins were purified from strain MA8731 containing the
GfoR plasmid pSEB11 as described in Materials and Methods. The strain was grown without (A) or with arabinose (B). About 10 mg of each protein
preparation were applied to an Amersham Sephadex G75 column. 0.5 mL fractions were collected after the passage of the void volume, dried,
resuspended in protein loading buffer and separated on a 12% SDS-polyacrylamide gel. Band identification was confirmed by anti-FLAG Western
blotting (data not shown). The column was size-calibrated using a-chymotrypsin, ovalbumin and bovine serum albumin from Sigma-Aldrich.
doi:10.1371/journal.pgen.1002149.g007
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presence of damaged DNA. Antirepressor is then synthesized, it

binds to and inactivates the lysogenic repressor, thereby causing

the induction of the lytic program. Gifsy repressor proteins GfoR

and GtgR show sequence identity with the N-terminal domain of

phage l’s CI repressor for nearly their entire lengths. This suggests

that these proteins lack the bipartite structure of the CI repressor

and are not susceptible to self-proteolysis. A survey of the bacterial

genome sequence databases reveals the existence of gfoR/gtgR

homologues in prophage-like elements from a large variety of

bacterial species (Figure S3). Because of their relative small size (in

the 150 aa range) these proteins are unlikely to undergo self-

cleavage and are thus candidates for being regulated by an

antirepressor. Besides being present in the Gifsy-like prophages of

many Salmonella enterica serovars, gfoR/gtgR homologues are found

in most Escherichia coli strains in the database (60 genes in a total of

42 strains) as well as in Citrobacter, Klebsiella, Yersinia and Enterobacter

strains (Figure S3). Two relevant members of the group are the

DicA and RacR repressors of the Qin and Rac prophages res-

pectively [26].

Previous examples of LexA-controlled antirepressors include the

Tum protein of phage 186 [18] and more recently the AntC

protein in phage N15 [17]. Like the GfoA and GftA proteins

studied here, Tum binds to its cognate repressor and prevents its

binding to the operator site [18]. Tum is nearly twice the size of

the GfoA and GftA proteins (146 aa) and shows significant identity

to the DinI protein in the second half of its sequence. This suggests

that the antirepressor and DinI sequences are fused into a single

polypeptide. Consistent with this idea, the two phage 186 relatives,

Salmonella Fels-2 and coliphage PSP3 have the tum coding region

split into two halves by a stop codon [22]. In phage PSP3 the up-

stream gene encodes the antirepressor activity and the down-

stream gene encodes the DinI homologue (G.E. Christie, personal

communication cited in [22]). This order is reversed in the Gifsy

prophages where the dinI homologue is the first gene of the

LexA-regulated operon, followed by the antirepressor gene and by

a homologue of the irsA gene. The DinI protein is thought to

modulate the SOS response through its binding to RecA-DNA

filaments; however, its exact role remains elusive [27–29]. This is

also the case for irsA, a locus originally identified as the site of

Tn10 insertions impairing Salmonella growth in host cells (Chai and

Heffron, unpublished). In the course of this study, non-polar

deletions in the dinI or irsA homologues of Gifsy-1 and Gifsy-3 had

no significant effects on the levels or on the rates of induction of

recE-lacZ or cII-lacZ fusions (data not shown). Still, the conservation

of the dinI-irsA region in putative prophages from Salmonella,

Escherichia, Citrobacter, Klebsiella and Enterobacter species in genome

sequence databases, suggests that these genes play some role in

regulation. Overall, these findings strongly suggest that lysogenic

regulation by repressor/antirepressor pairs is far more common

than previously recognized. Consistent with this idea, several

homologues of GfoA and GftA can be found in protein databases

(Figure S4).

In the l pathway of induction, proteolytic inactivation of the

repressor makes the process irreversible. In contrast, the LexA/

antirepressor-mediated mechanism can in principle be reversed if

DNA damage is repaired. As LexA levels are replenished, the

reduction in antirepressor synthesis will favor dissociation of the

repressor-antirepressor complexes allowing the repressor to

resume its function. This would probably limit viral replication

and might promote reestablishment of lysogeny. One could

envision the existence of a latency period during which the phage

DNA undergoes limited replication before committing to the lytic

pathway. The presence of chromosomal partitioning parA gene

homologues in the left operons of the Gifsy-1 and Gifsy-3 pro-

phages supports this idea. These properties inspire analogies with

the induction pathway of Vibrio cholerae filamentous CTXQ phage.

In this system, LexA directly modulates the levels of the phage

repressor, RstR, by activating rstR transcription when bound to a

site overlapping with the rstR promoter [30,31]. Reconstitution of

the LexA pool during recovery from DNA damage was proposed

to favor the reestablishment of lysogeny [31,32]. Interestingly,

RstR is the target of an antirepressor made from CTXQ’s satellite

Figure 8. Gel-shift assay with purified GftR and GftA proteins. A radioactively labeled 267 bp DNA fragment (approximately 5 ng) was mixed
with increasing amounts of purified GftR protein (,0.25, 0.5, 1, 2, 4 or 8 pmol) in BB buffer (Tris-HCl pH 7.5 20 mM, NaCl 50 mM, EDTA 0.2 mM,
MgCl2 1 mM, glycerol 5%, PMSF 10 mM, sonicated salmon sperm DNA 50 mg mL21). After 15 min at room temperature, aliquots from the sample
with the highest protein:DNA ratio were mixed with increasing amounts of purified GftA protein (,0.01, 0.05, 0.1, 0.5, 2 or 10 pmol) and incubation
continued for all samples, for additional 30 min. Samples were loaded on a non-denaturing 5% polyacrylamide gel. The gel was fixed in an acid-
ethanol bath, dried and radioactivity was detected and quantified by phosphorimaging.
doi:10.1371/journal.pgen.1002149.g008
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phage RS1. This protein, RstC, is not required for prophage

induction; however, it is made under inducing conditions and, by

inactivating RstR, is thought to prolong the RS1 and CTXQ
production period [33,34].

The latter findings highlight an interesting property of the

antirepressor function, namely its potential to serve as basis for a

molecular crosstalk between phages. This feature is clearly illu-

strated in the present study. We found that some antirepressors

can inactivate repressors made by heteroimmune prophages and

trigger induction of the latter. Particularly intriguing was the

discovery that the FsoA protein of the Fels-1 prophage can act on

the Gifsy-2 repressor GtgR. The fsoA gene lies in Fels-1 left operon

and is derepressed under inducing conditions following auto-

proteolysis of the FsoR repressor. By targeting GtgR, FsoA

effectively uncouples Gifsy-2 induction from the SOS response

and puts the Gifsy-2 regulatory circuitry under FsoR control. This

regulatory hijacking is difficult to rationalize since the Fels-1

prophage is induced normally in a Gifsy-2-cured strain or when

the fsoA gene is inactivated (data not shown). However, subtle

differences in induction rates or thresholds might have been

missed in these experiments, and the possibility that one or more

function(s) expressed from the Gifsy-2 genome positively affect(s)

Fels-1 development cannot be completely ruled out. Similar effects

might account for the reciprocal transactivation of Gifsy-1 and

Gifsy-3 gene expression demonstrated in this study. It is also

worth considering that synchronization of prophage induction in

polylysogenic strains might be vital to prophages with delayed

induction responses (see above). ‘‘Slow-inducing’’ prophages are in

danger of sharing the fate of host DNA and of being destroyed

when present in a strain carrying prophages that are induced more

rapidly. In this scenario, paradoxically, Gifsy-2 would be the one

that hijacks Fels-1 functions through FsoA.

The wide specificity of antirepressor action was first recognized

in Salmonella phage P22. The Ant protein of P22, besides in-

activating the phage’s own repressor C2, can act on the repressor

of Salmonella phage L and coliphages l and 21 [35]. The role of

Ant in the P22 life cycle is not completely understood. The protein

is not required for induction of the P22 prophage or for any steps

of the lytic or lysogenic pathways [36]. To our knowledge, the only

reported activity of Ant is its ability to transactivate early gene

expression in P22 lysogens when expressed constitutively from a

superinfecting P22 phage [37]. It is tempting to speculate that an

important role of the Ant protein is to couple induction of P22

prophage to that of other prophages in polylysogenic strains.

Materials and Methods

Bacterial strains and culture conditions
All strains used in this study are derivatives of S. enterica serovar

Typhimurium. Their genotypes are listed in Table 1. The

bacteria were cultured in LB broth [38] solidified by the addition

of 1.5% Difco agar when needed. When appropriate, the LB

medium was supplemented with 0.2% arabinose. Antibiotics

(Sigma-Aldrich) were included at the following final concentra-

tions: chloramphenicol, 10 mg mL21; kanamycin monosulfate,

50 mg mL21; sodium ampicillin, 75 mg mL21; spectinomycin

dihydrochloride, 80 mg mL21; and tetracycline hydrochloride,

25 mg mL21. LB plates containing 40 mg mL21 5-bromo-4-

chloro-3-indolyl-b-D-galactopyranoside (X-Gal) (Sigma-Aldrich)

were used to monitor lacZ expression in bacterial colonies.

Prophages were induced using Mitomycin C (Sigma-Aldrich) at

a final concentration of 1 mg mL21 in liquid medium or by

applying 5 mL from a 2 mg mL21 stock solution on 5 mm

diameter filter paper discs for plate tests. Liquid cultures were

grown in New Brunswick gyratory shakers, and growth was

monitored by measuring the optical density at 600 nm with a

Milton-Roy Spectronic 301 spectrophotometer.

Genetic techniques
Generalized transduction was carried out using the high

frequency transducing mutant of phage P22, HT 105/1 int-201

[39]. Typically, P22 lysates were used at a 1:50 dilution, mixed

with aliquots from overnight cultures of recipient bacteria in a 1:2

ratio, and incubated for 30 min at 37uC prior to being plated on

selective media. Transductant colonies were purified by two se-

quential passages on selective plates and verified to be free of

phage by streaking on Evans Blue Uranine plates [40]. Chro-

mosomal engineering was carried out by the l Red recombination

method [41–43] as previously described [20]. Donor DNA

fragments were generated by PCR using plasmid or chromosomal

DNA templates. A complete list of the oligonucleotides used as

primers in these experiments is in Table S1. Amplified fragments

were electroporated into appropriate strains harboring the

conditionally replicating plasmid pKD46, which carries a l red

operon under the control of the PBAD promoter [41]. Bacteria

carrying pKD46 were grown at 30uC in the presence of ampicillin

and exposed to arabinose (10 mM) for 3 hours prior to pre-

paration of electrocompetent cells. Electroporation was carried out

using a Bio-Rad MicroPulser under the conditions specified by the

manufacturer. Recombinant colonies were selected on LB plates

containing the appropriate antibiotic. Constructs were verifed by

PCR and/or DNA sequencing. When needed, the antibiotic

resistance cassette was excised by transforming strains with pla-

smid pCP20, which encodes the Flp recombinase [44].

Plasmids
Plasmids used as PCR templates for l Red-mediated gene

disruptions included pKD3, pKD4 and pKD13 [41]. Plasmid

pSUB11 was the template in the construction of 3x-FLAG epitope

fusions [20]. Additional plasmid templates constructed in the

present work were pSEB1, which carries the spectinomycin-

resistance aadA cassette, and pSEB3, carrying an aph-araC-PBAD

module. For the construction of pSEB1, the aadA gene of plasmid

pBT22 [45] was amplified by PCR with primers pp411 and pp412

(Table 2); the resulting fragment was digested with EcoRI and

ligated into EcoRI-cleaved plasmid pSUB2. The latter is a

derivative of pGP704 [46] lacking the BamHI segment spanning

the RP4 tra operon. Plasmid pSEB3 was derived from a chro-

mosomal construct carrying the kanamycin-resistance aph gene

immediately downstream from araC gene (strain MA7794; Table 1

and Table S1). The aph-araC-PBAD segment was amplified from

MA7794 chromosomal DNA with primers le41 and le42 (Table 2),

cleaved with EcoRI, and cloned into pSUB2.

A second set of recombinant plasmids was constructed to

overproduce and purify phage repressor and antirepressor pro-

teins. Repressor genes gftR and gfoR were amplified from wild-type

ATCC14028 chromosomal DNA with primer pairs le146/le147

and le144/le145, respectively (Table 2). In both cases, the forward

primer contained a 59 extension designed to produce an N-

terminal 6xHis tag fusion. The amplification products were doubly

digested with SalI and EagI restriction endonucleases and ligated

to SalI6EagI-cleaved pKTQ12 DNA [45] yielding plasmids

pSEB10 (gftR) and pSEB11 (gfoR). A different vector, pNFB28, was

used for cloning antirepressor genes. Plasmid pNFB28 is a

derivative of Novagen’s pET-16b plasmid modified so as to allow

the construction of both N-terminal and C-terminal 7xHis tag

fusions. The modification involved ligating a DNA fragment

produced by annealing oligonucleotides pp849 and pp850
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(Table 2) to pET-16b DNA doubly digested with XbaI and XhoI

endonucleases. gftA and gfoA genes were amplified from wild-type

ATCC14028 chromosomal DNA with primer pairs pp864/pp865

and pp866/pp867, respectively. The amplified fragments were

doubly digested with NcoI and SacI (gftA), and BspHI and SacI

(gfoA), and ligated to pNFB28 DNA digested with NcoI and SstI. In

the resulting plasmids, pSEB12 and pSEB13, the gftA and gfoA

genes carry 7xHis-encoding sequences at their 39 ends and are

under the control of the T7 promoter.

Protein purification
For the purification of repressors and repressor/antirepressor

complexes, strains MA8567 (PBAD-gftA-3xFLAG) and MA8731

(PBAD-gfoA-3xFLAG), carrying or lacking plasmids pSEB10 and

pSEB11, respectively, were grown to an OD600<0.15 at 37uC and

exposed to 0.1% L-arabinose (Sigma-Aldrich) or left untreated.

Bacteria were cultivated at 37uC for additional 6 hours, Cells were

harvested by centrifugation at 10000G and rinsed once in PBS

(137 mM NaCl, 2.7 mM KCl, 100 mM Na2HPO4 and 2 mM

KH2PO4). Pellets were then submitted to several freeze-thaw

cycles in a dry-ice/ethanol bath before being resuspended in IP

buffer (Tris-HCl 20 mM pH 8, NaCl 500 mM, Igepal 0.1%

(Sigma-Aldrich), imidazole 20 mM) and sonicated on ice until

complete but gentle lysis. Cell debris was spun down and the

supernatant applied to Nickel nitrilotriacetic acid (Ni-NTA) resin

(Qiagen). Incubation was continued for 2 hrs at 4uC. Liquid was

removed and the resin was rinsed twice with 10 times the extract

volume of buffer IP. Proteins still specifically bound to the resin

were eluted in buffer IPE identical to buffer IP except for

imidazole concentration (250 mM). Fractions were then adjusted

to 15% glycerol and frozen at 280uC for storage. The purity as

assessed from the repressor content was greater than 80% and

concentration was in the range of 0.1–1 mg mL21.

C-terminally 7xHis tagged GftA protein was purified from E.

coli strain BL21 carrying plasmid pSEB12. Cells were grown

essentially as described above but induction was carried out with

IPTG (0.1 mM final concentration) for 3 hrs. Bacterial pellets

were processed as described above, except that Igepal was omitted

from IP and IPE buffers.

Size-exclusion chromatography
A Sephadex G75 column (Amersham) previously calibrated

with a-chymotrypsin, ovalbumin and bovine serum albumin pur-

chased from Sigma-Aldrich was connected to an Äkta P-9000

HPLC apparatus and a Frac-950 fraction collector. To eliminate

any aggregate that might have formed during storage, protein

samples were systematically centrifuged at maximum speed in a

micro centrifuge for 15 min prior to loading. About 10 mg of pro-

teins were loaded onto a column pre-equilibrated with about 2

volumes of IPE buffer. After the passage of the void volume,

0.5 mL fractions were collected and vacuum dried. Samples were

resuspended in loading buffer, boiled and separated on a 12%

SDS-polyacrylamide gel.

Western blot analysis
Western blotting was conducted essentially as previously

described [47]. Briefly, bacteria from 2 ml overnight cultures

were harvested by centrifugation and resuspended in 50–80 mL of

Laemmli buffer. Cells were lysed by boiling 10 min and lysates

loaded onto 15% SDS-polyacrylamide gels. Biorad’s Precision

Plus Kaleidoscope standards were included as migration markers.

After the gel run, proteins were electro-transferred to a PVDF

membrane, which was blocked with PBS containing 3% skimmed

milk and 0.05% Tween 20. The blocking buffer was then replaced

with a similar buffer containing the primary anti-FLAG antibody

(anti-FLAG M2 from Sigma-Aldrich) for 30 min. The membrane

was rinsed thoroughly in PBS 0.05% Tween 20 before the

secondary antibody (anti-mouse peroxidase-labeled secondary

antibodies from Sigma-Aldrich) was applied. Finally, results were

revealed with the ECL kit from Amersham and imaged on a Fuji

LAS3000 apparatus.

Gel-shift assays
A DNA fragment spanning the binding site of the GftR was

amplified by PCR from strain LT2 chromosomal DNA with

primers le127 (59-GTTCGCCGATGCTCATTT-39) and le128

(59-CCGTGAGAGGTCAGCCATA-39). The PCR product was

then radioactively labeled with T4 polynucleotide kinase (NEB)

and c-32P-ATP as recommended by the manufacturer. Labeled

Table 2. DNA oligonucleotides used as PCR primers for plasmid construction and cloning.

Primera Sequence (59– 39)

pp411 TTTCCTCTTCCTTCTCTCGAATTCACCTTGCCGTAGAAGAACA

pp412 TTTCCTCTTCCTTCTCTCGAATTCTTTGGCTGTGAGCAATTATG

le41 CTTCTCTCCCTCCTCCTCCGAATTCACCCCGTCCCCCTTCGTC

le42 CCTCCTCCTCCCTCTCTTCTGAATTCCATCGTCTTACTCCATCCAG

le144 AATTAGTCGACAGGAGGAGGACGTTCATGCACCACCATCATCACCATAAAGAAAAAACTCATCAGATTAAT

le145 TATTAATATTATATATTACGGCCGTTACTCCGAGCTTTTATCTTAA

le146 AATTAGTCGACAGGAGGAGGACGTTCATGCACCACCATCATCACCATAACAAAAATCTTCATCCCAT

le147 TATTAATAATATATATACGGCCGTTACTATTTTTTGAGGTCGTTAATT

pp849 CTAGAAGGAGATATACCATGGGCCACCACCACCACCACCACCACTCTCGAGCTCCACCACCACCACCACCACCACTAGTAAG

pp850 TCGACTTACTAGTGGTGGTGGTGGTGGTGGTGGAGCTCGAGAGTGGTGGTGGTGGTGGTGGTGGCCCATGGTATATCTCCTT

pp864 ATATAATAATTAAATATAAACTCGAGCCATGGCAGAGGGAGTCCTATCA

pp865 ATATTTAATTATCAAACTAGTGGAGCTCATTATTAGAGCCCATCTCTCTGAC

pp866 ATATAATAATTAAATATAAACTCGAGTCATGAGTAATTCAGCTTTGCAA

pp867 ATATTTAATTATCAAACTAGTGGAGCTCTATATCAGAAGGTGGTGTTACC

aRelevant restriction enzyme cleavage sites are underlined. The sequences annealing to template DNA are shown in bold italics.
doi:10.1371/journal.pgen.1002149.t002
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DNA (approximately 5 ng) was mixed with 5 mL of 56buffer BB

(Tris-HCl pH 7.5 100 mM, NaCl 250 mM, EDTA 1 mM, MgCl2
5 mM, glycerol 25%, PMSF 250 mM sonicated salmon sperm

DNA 250 mg mL21) and varying amounts of protein. The reac-

tion volume was adjusted with water to a final reaction volume of

20 mL. When appropriate, GftA antirepressor was added to

GftR:DNA complexes formed during an initial 15 min incubation

at room temperature. Incubation was continued at the same tem-

perature for additional 30 min (for samples with or without added

GftA). Samples were loaded onto a 5% non-denaturing polyacryl-

amide gel. After electrophoretic separation, gels were fixed in 20%

ethanol 10% acetic acid, dried, and imaged with a Storm 820

apparatus from Molecular Dynamics.

Supporting Information

Figure S1 Analysis of gfhR expression patterns. The gfhR gene

contains two functional in-frame AUG initiation codons. DNA

segments corresponding to the long (gfhR*) and the to short (gfhR)

open reading frame (including a C-terminal 3xFLAG tag) were

fused to the chromosomal PBAD promoter by recombineering

techniques. The resulting strains, MA8427 (A) and MA8428 (B)

were grown in the absence or in the presence of arabinose, lysed,

and processed for Western blot analysis. Detection of high levels of

GfhR protein in construct A in the absence of arabinose suggests

that the interval between the two initiating AUGs contains a

promoter element.

(TIF)

Figure S2 Relevant constructs used in this study. A. Structure of

Gifsy-2 prophage in strains MA8756, MA8757, MA8468 and

MA8540. B. Structure of Gifsy-2 prophage in strains MA8325,

MA8327, MA8361 and MA8363. C. Structure of Gifsy-1

prophage in strains MA8424 (D106) and MA8425 (D107). D.

Structure of Gifsy-1 prophage in strain MA7990. Genes marked

by an asterisk are named on the basis of their sequence similarity

to known genes of other phages or bacteria.

(TIF)

Figure S3 Sequence alignement of proteins with homology to

the GfoR repressor (A) and to the GftR repressor (B). Protein

database were searched using the BlastP program with a cut-off -

value of ,1023. Hits originating from Salmonella sequences were

omitted. Conservation is expressed as shades of red with a darker

color corresponding to better conservation. No highlight indicate

,50% conservation.

(TIF)

Figure S4 Sequence alignement of proteins with homology to

the GfoA antirepressor (A) and to the FsoA antirepressor (B). Data

were obtained and processed as described in the legend to Figure

S3. Hits originating from Salmonella sequences were omitted.

(TIF)

Table S1 DNA oligonucleotides used as PCR primers in l Red-

mediated constructions.

(DOC)
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