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Does cognitive training work? There are numerous commercial
training interventions claiming to improve generalmental capacity;
however, the scientific evidence for such claims is sparse. Never-
theless, there is accumulating evidence that certain cognitive
interventions are effective. Here we provide evidence for the effec-
tiveness of cognitive (often called “brain”) training. However, we
demonstrate that there are important individual differences that
determine training and transfer.We trained elementary andmiddle
school children by means of a videogame-like working memory
task. We found that only children who considerably improved on
the training task showed a performance increase on untrainedfluid
intelligence tasks. This improvement was larger than the improve-
ment of a control group who trained on a knowledge-based task
that did not engageworkingmemory; further, this differential pat-
tern remained intact even after a 3-mo hiatus from training. We
conclude that cognitive training can be effective and long-lasting,
but that there are limiting factors that must be considered to eval-
uate the effects of this training, one of which is individual differ-
ences in training performance. We propose that future research
should not investigate whether cognitive training works, but
rather should determine what training regimens andwhat training
conditions result in the best transfer effects, investigate the under-
lying neural and cognitive mechanisms, and finally, investigate for
whom cognitive training is most useful.
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Physical training has an effect not only on skills that are trained,
but also on skills that are not explicitly trained. For example,

running regularly can improve biking performance (1). More
generally, running will improve performance on activities that
benefit from an efficient cardiovascular system and strong leg
muscles, such as climbing stairs or swimming. This transfer from
a trained to an untrained physical activity is, of course, advanta-
geous; we do not have to perform a large variety of different
physical activities to improve general fitness. Although the exis-
tence of transfer in the physical domain is not surprising to any-
one, demonstrating transfer from cognitive training has been
difficult (2, 3), but there is accumulating evidence that certain
cognitive interventions yield transfer (4–6).
Fluid intelligence (Gf), defined as the ability to reason ab-

stractly and solve novel problems (7), is frequently the target of
cognitive training because Gf is highly predictive of educational
and professional success (8, 9). In contrast to crystallized in-
telligence (Gc) (7), it is highly controversial whether Gf can be
altered by experience, and if so, to what degree (10, 11). Never-
theless, it seems that Gf is malleable to a certain extent as in-
dicated by the fact that there are accumulating data showing an
increase in Gf-related processes after cognitive training (6). The
common feature of most studies showing transfer to Gf is that the
training regimen targets working memory (WM). WM is the cog-
nitive system that allows one to store and manipulate a limited
amount of information over a short period, and its functioning
is essential for a wide range of complex cognitive tasks, such as
reading, general reasoning, and problem solving (12, 13). Re-
ferring back to the analogy in the physical domain, we can char-
acterize WM as taking the place of the cardiovascular system;
WM seems to underlie performance in a multitude of tasks, and
training WM results in benefits to those tasks.

Given the importance of WM capacity for scholastic achieve-
ment (14), even beyond its relationship to Gf (12, 15, 16), im-
proving children’s WM is of particular relevance. Although there
is some promising recent research demonstrating that transfer of
cognitive training is an obtainable goal (4–6), there is minimal
evidence for training and transfer in typically developing school-
aged children. Furthermore, whether there are long-term transfer
effects is largely unknown. Our goal in this study was to adaptWM
training interventions that have been found effective for adults
(17, 18) to train children’s WM skills with the aim of also im-
proving their general cognitive abilities. We trained 62 children
over a period of 1 mo (see Table 1 andMaterials and Methods for
demographic information). Participants in the experimental
group trained on an adaptive spatial n-back task in which a series
of stimuli was presented at different locations on the computer
screen one at a time. The task of the participants was to decide
whether a stimulus appeared at the same location as the one
presented n items back in the sequence (Fig. 1) (17, 18). Partic-
ipants in the active control group trained on a task that required
answering general knowledge and vocabulary questions, thereby
practicing skills related to Gc (Fig. S1) (7). Both training tasks
were designed to be engaging by incorporating video game-like
features and artistic graphics (19–22) (Fig. 2 and Materials and
Methods). Before and after training, as well as 3 mo after com-
pletion of training, participants’ performance was assessed on two
different matrix reasoning tasks (23, 24) as a proxy forGf. Because
the research on training and transfer sometimes yields in-
consistent results (2), we also investigated the extent to which
individual differences in training gain moderate transfer effects.
Finally, we assessed whether transfer effects are maintained for
a significant period after training completion—a critical issue if
training regimens are to have any practical importance.

Results
Our analysis revealed a significant improvement on the trained
task in the experimental group [performance gain calculated by
subtracting themean n-back level achieved in the first two training
sessions from the mean n-back level achieved in the last two
training sessions; t(31) = 6.38; P < 0.001] (Table 1 and Fig. S2). In
contrast, there was no significant performance improvement in
the active control group [rate of correct responses; performance
gain two last minus two first sessions: t(29) < 1] (Table 1). How-
ever, despite the experimental group’s clear training effect, we
observed no significant group× test session interaction on transfer
to the measures of Gf [group × session (post vs. pre): F(1, 59) < 1;
P = not significant (ns); (follow-up vs. pre): F(1, 53) < 1; P = ns;
with test version at pretest (A or B) as a covariate] (Table 1). To
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examine whether individual differences in training gain might
moderate the effects of the training on Gf, we initially split the
experimental group at the median into two subgroups differing
in the amount of training gain. The mean training performance
plotted for each training session as a function of performance
group is shown in Fig. 3. A repeated-measures ANOVA with
session (mean n-back level obtained in the first two training ses-
sions vs. the last two training session) as a within-subjects factor,
and group (low training gain vs. high training gain) as a between-
subjects factor, revealed a highly significant interaction [F(1, 30)=
43.37; P < 0.001]. Post hoc tests revealed that the increase in
performance was highly significant for the group with the high
training gain [t(15) =14.03; P< 0.001], whereas the group with the

small training gain showed no significant improvement [t(15) =
1.99; P= ns]. Inspection of n-back training performance revealed
that there were no group differences in the first 3 wk of training;
thus, it seems that group differences emerge more clearly over
time [first 3 wk: t(30)< 1; P=ns; last week: t(16) = 3.00; P < 0.01]
(Fig. 3). It is important to note that there were no significant dif-
ferences between the training performance groups in terms of sex
distribution, age, grade, number of training sessions, initial WM
performance (performance in the first two training sessions), or
pretest performance on the two reasoning tasks (Table 1).
Next, we compared transfer to Gf between these two training

subgroups and the control group. Our results indicate that only
those participants above the median in WM training improve-

Table 1. Demographic and descriptive data

Intervention
group Age Grade

No. of
training
sessions

Training
performance

first two sessions

Training
performance

last two sessions
SPM
pre

SPM
post

SPM
FU

TONI
pre

TONI
post

TONI
FU

Active control
group

Mean 8.83 3.63 19.40 59.10 58.80 15.33 16.20 16.59 20.87 22.50 24.81
(SD) (1.44) (1.47) (2.09) (12.80) (17.70) (4.32) (5.10) (3.95) (6.04) (5.06) (7.30)

N-back group Mean 9.12 3.72 19.09 2.17 2.93 15.44 16.94 16.52 20.41 22.03 24.07
(SD) (1.52) (1.55) (2.28) (0.85) (0.84) (5.15) (4.75) (5.27) (6.51) (7.16) (7.79)

Large training
gain
(n-back)

Mean 9.00 3.75 19.19 2.04 3.30 14.06 17.19 15.67 18.50 21.56 24.67
(SD) (1.79) (1.65) (2.26) (0.75) (0.75) (4.91) (4.74) (5.07) (4.91) (6.93) (8.15)

Small training
gain
(n-back)

Mean 9.25 3.69 19.00 2.30 2.55 16.81 16.69 17.43 22.31 22.50 23.43
(SD) (1.24) (1.49) (2.37) (0.95) (0.78) (5.17) (4.91) (5.52) (7.45) (7.57) (7.64)

Note: n = 62 (experimental group: n = 32, 14 girls; large training gain: n = 16, 7 girls; small training gain: n = 16; 7 girls; active control group: n = 30, 15 girls).
There were no significant group differences on any of the pretest measures or the demographic variables. Training performance in the experimental group is
given as mean n-back level; training performance in the active control group is given as percent correct responses. FU, follow-up test.

Fig. 1. N-back training task. Example of some two-back trials (i.e., level 2), alongwith feedback screens shown at the end of each round (Materials andMethods).
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ment showed transfer to measures of Gf [group × session (post vs.
pre); F(2, 58) = 3.23; P < 0.05 (Fig. 4A), with test version at
pretest (A or B) as a covariate]. Planned contrasts revealed sig-
nificant differences between the group with the large training gain
and the other groups (P < 0.05; see Fig. 4A for effect sizes); there
were no significant differences between the active control group
and the group with the small training gain. Note that the pattern of
transfer was the same for each of the individual matrix reasoning
tasks. Furthermore, there was a significant positive correlation
between improvement on the training task and improvement on
Gf (r = 0.42, P < 0.05; Fig. S3), suggesting that the greater the
training gain, the greater the transfer.* Unlike the training group,
the active control group did not show differential effects on
transfer to Gf as a function of training gain [t(28) < 1; P= ns; r=
−0.03; P = ns; Table S1].
Interestingly, the group differences in Gf gain remained sub-

stantially in place even after a 3-mo hiatus (Fig. 4B). There was
still a strong trend for differences between the group with the
large training gain and the two other groups (P < 0.055; planned
contrast); furthermore, the difference between the two n-back
groups remained statistically significant (P < 0.05; see Fig. 4A for
effect sizes), whereas there was no difference between the active
control group and the group with the small training gain (P =
ns). Whereas participants who trained well on the n-back task
maintained their performance gain over the 3-mo period, the
group with the small training gain and the active control group
improved equally well over time from posttest to follow-up,
probably a result of the natural course of development.
Because there are numerical differences at pretest between

the experimental group’s participants with the large and small
training gain (Table 1), we calculated additional univariate

ANCOVAs with the mean standardized gain for both Gf
measures, using standardized pretest scores (pretest score di-
vided by the SD) as well as the test version at pretest (A or B) as
covariates. The group effects were significant at posttest [pre- to
postgain; F(1, 28) = 3.06; P < 0.05; one-tailed], and also at
follow-up 3 mo later [pre- to follow-up gain; F(1, 25) = 6.13; P =
0.01; one-tailed].

Discussion
Our findings show that transfer toGf is critically dependent on the
amount of the participants’ improvement on the WM task. Why
did some children fail to improve on the training task and sub-
sequently fail to show transfer to untrained reasoning tasks? Two

Fig. 2. Task themes. Outline of the four different training game themes. The treasure chest shown in the center is presented after each round and at the end
of the training session when participants could trade in coins earned for token prizes (Materials and Methods).

Fig. 3. Training performance. Training outcome plotted as a function of
performance group. Each dot represents the average n-back level reached
per training session. The lines represent the linear regression functions for
each of the two groups. ***P < 0.001.

*The reported correlation is with one outlier participant removed; when this outlier is
included, the correlation is r = 0.25 (P = ns). Note that all reported results are comparable
regardless of inclusion or exclusion of this outlier.
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plausible explanations might be lack of interest during training, or
difficulty coping with the frustrations of the task as it becamemore
challenging. Data from a posttest questionnaire are in accordance
with the latter: In general, children in both performance groups
stated that they enjoyed training equally well [t(28) = 1.64; P =
0.11]. However, the children who improved the least during the
n-back training rated the game as more difficult and effortful,
whereas children who improved substantially rated the game as
challenging but not overwhelming [t(28) = 2.05; P = 0.05]. This
finding is consistent with the idea that to optimally engage par-
ticipants, a task should be optimally challenging; that is, it should
be neither too easy nor too difficult (25, 26). However, the fact
that some of the participants rated the task as too difficult and
effortful, and further, that this rating was inversely related to
training gain, poses the question whether modifying the current
training regimenmight be beneficial for the group of children who
did not show transfer to Gf. Although the adaptive training al-
gorithm automatically adjusts the current difficulty level to the
participants’ capacities, the increments might have been too large
for some of the children, and consequently, they may not have
advanced as much as the other children. A more fine-grained
scaffolding technique (e.g., by providing additional practice
rounds with detailed instructions and feedback as new levels are
introduced, or by providing more trials on a given level) might
better support those students and ensure that they remain within
their zone of proximal development (27).
One alternative explanation for these results could be that the

children with a large training gain improved more in Gf because
they started off with lower ability and had more room for im-
provement. A related explanation is that the children who did not
show substantial improvement on the transfer tasks were already
performing at their ceiling WM capacity at the beginning of
training. Such factors might explain why there is more evidence
for far transfer in groups with WM deficits (28–31). We note that
in our sample, pretest as well as initial training performance in
these two groups was not significantly different. Nevertheless,
there was a small numerical difference between groups. Also,
although participants in the large training grain group show
greater improvement in Gf, they do not end up with significantly
higher Gf scores at posttest (Table 1). Furthermore, children with
an initially high level of Gf performance started with higher WM
training levels than children with lower initial Gf performance
(approximately one n-back level; P < 0.01) but showed less gain in

training [t(30) = 3.19; P < 0.01]. However, there were no signif-
icant group differences between the participants with high initial
Gf performance and those with low initial Gf in terms of magni-
tude of transfer [F(1,29) = 1.98; P=0.17; test version at pretest as
covariate]. Finally, there was no correlation between Gf gain and
initial n-back performance (Gf gain and the first two training
sessions: r = 0.00). Thus, consistent with a prior meta-analysis
(32), preexisting ability does not seem to be a primary explanation
for transfer differences. Rather, our data reveal that what is
critical is the degree of improvement in the trained task as well as
the perceived difficulty of the trained task.
Finally, it might be that some of the transfer effects are driven

by differential requirements in terms of speed between the two
interventions: Whereas the active control group performed their
task self-paced, the n-back task was externally paced (although
speed was not explicitly emphasized to participants). Neverthe-
less, given previous work that shows some transfer after speed
training (33, 34), we were interested in whether speed might ac-
count for some of the variance in transfer. However, our results
show that the mean reaction times (RT) for correct responses to
targets (i.e., hits) as well as for false alarms did not significantly
change over time; in fact, RT slightly increased over the course of
the training (Fig. S2) [hits: t(31) = 1.45; P = 0.16; false alarms:
t(31) = 0.93; P=0.36, calculated as gain subtracting the mean RT
of the individual last two training sessions from the mean RT in
the first two training sessions]. Of course, the numerical increase
in RT is most likely driven by the increasing level of n on which
participants trained (35). Thus, to control for difficulty, we cal-
culated regression models for each participant as a function of n-
back level using RT as the dependent variable, and session as the
independent variable. Because only the minority of participants
consistently trained at n-back levels beyond 4, we analyzed only
levels 1–4. Inspection of the average slopes of the whole experi-
mental sample revealed positive slopes for all four levels of n-
back, both for hits and false alarms. Inspection of the slopes for
the two performance groups revealed the same picture. That is,
the slopes of the two training-gain groups did not significantly
differ from each other at any level, neither for hits nor for false
alarms (all t < 0.24). In sum, there is no indication that the dif-
ferential transfer effects were driven by improvements in
processing speed.
The current study has several strengths compared with pre-

vious training research and follows the recommendations of re-

Fig. 4. Transfer effect on Gf. (A) Immediate transfer. The columns represent the standardized gain scores (posttest minus pretest, divided by the SD of the
pretest) for the group with large training gain, the group with small training gain, and the active control group. (B) Long-term effects. Standardized gain
scores for the three groups comparing performance at follow-up (3 mo after training completion) with the pretest. Error bars represent SEMs. Effect sizes for
group differences are given as Cohen’s d.
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cent critiques of this body of work (6, 36, 37): Specifically, in
contrast to many other studies, we used only one well-specified
training task; thus, the transfer effects are clearly attributable
to training on this particular task. Second, unlike many previous
training studies, we used an active control intervention that
was as engaging to participants as the experimental intervention
and designed to be, on the surface, a plausible cognitive training
task. Finally, we report long-term effects of training, something
rarely included in previous work. Although not robust, there was
a strong trend for long-term effects, which, considering the
complete absence of any continued cognitive training between
posttest and follow-up, is remarkable. However, to achieve stron-
ger long-term effects, it might be that as in physical exercise,
behavior therapy, or learning processes in general, occasional
practice or booster sessions are necessary to maximize retention
(33, 38–41).
One potential downside of our current median split approach is

that it does not provide a predictive value in the sense of a clearly
defined training criterion a participant has to reach in order to
show transfer effects. Of course, the definition of such a criterion
will depend on the population, but also on the training and
transfer tasks used. Though the strength of our approach is that it
reveals the importance of training quality, future studies have to
be designed that specify the degree of training gain required to
achieve reliable transfer.
To conclude, the current findings add to the literature dem-

onstrating that brain training works, and that transfer effects may
even persist over time, but that there are likely boundary con-
ditions on transfer. Specifically, in addition to training time (17,
42), individual differences in training performance play a major
role. Our findings have general implications for the study of
training and transfer andmay help explain why some studies fail to
find transfer to Gf. Future research should not investigate whether
brain training works (2), but rather, it should continue to de-
termine factors that moderate transfer and investigate how these
factors can be manipulated to make training most effective. More
generally, prospective studies should focus on (i) what training
regimens are most likely to lead to general and long-lasting cog-
nitive improvements (5); (ii) what underlying neural and cognitive
mechanisms are responsible for improvements when they are
found (43–46); (iii) under what training conditions might cogni-
tive training interventions be effective (47), and, finally, (iv) for
whom might training interventions be most useful (48).

Materials and Methods
Participants. Seventy-six elementary and middle school children from south-
eastern Michigan took part in the study. Because we included children from
both the Detroit and Ann Arbor metropolitan areas, we had a broad range of
socioeconomic status, race, and ethnicity. All participants were typically de-
veloping; that is, we excluded childrenwhohadbeen clinically diagnosedwith
attention-deficit hyperactivity disorder or other developmental or learning
difficulties. Participants were pseudorandomly assigned to the experimental
or control group (i.e., continuously matched based on age, sex, and pretest
performance) and were requested to train for a month, five times a week, 15
min per session. Further, they were requested to return for a follow-up test
session ∼3 mo after the posttest session. For data analyses, we included only
participants who completed at least 15 training sessions and who trained for
at least 4 wk, but not longer than 6 wk, and who had no major training or
posttest scheduling irregularities. The final sample used for the analyses
consisted of 62 participants (see Table 1 for demographic information). Six
participants (three from each intervention group) failed to complete the
follow-up session, resulting in a total of 56 participants for the analyses in-
volving follow-up sessions.

Training Tasks. Participants trained on computerized video game-like tasks.
The experimental group trained on an adaptive WM task variant (spatial
single n-back) (18). In this task, participants were presented with a sequence
of stimuli appearing at one of six spatial locations, one at a time at a rate of
3 s (stimulus length = 500 ms; interstimulus interval = 2,500 ms). Participants
were required to press a key whenever the currently presented stimulus was

at the same location as the one n items back in the series (targets), and
another key if that was not the case (nontargets; Fig. 1). There were five
targets per block of trials (which included 15 + n trials), and their positions
were determined randomly.

The active control group trained on a knowledge- and vocabulary-based
task for the same amount of time as the experimental group. In this self-
paced task, questions were presented in the middle of the screen one at the
time, and participants were required to select the appropriate answers of
four alternatives presented below the question (Fig. S1). After each
question, a feedback screen appeared informing the participant whether
the answer was correct, along with additional factual information in some
cases. There were six questions per round, and the questions that were
answered incorrectly were presented again at the beginning of the next
training session.

To maximize motivation and compliance with the training, we designed
both tasks based on a body of research that identifies features of video games
that make them engaging (20–22, 19). For example, the tasks were presented
with appealing artistic graphics that incorporated four different themes (lily
pond, outer space, haunted castle, and pirate ship; Fig. 2). The theme
changed every five training sessions. There were background stories linked
to the themes, providing context for the task (e.g., “You have to crack the
secret code in order to get to the treasure before the pirate does”); in the
case of the control training, vocabulary and knowledge questions were
loosely related to each theme. Posttest questionnaires indicated that par-
ticipants found the training tasks and active control tasks to be equally
motivating [t(56) = 1.22; P = ns].

In each training session, participants in both intervention groups were
required to complete 10 rounds. Each round lasted approximately 1min, after
which performance feedback was provided; thus, one training session lasted
∼15 min. The performance feedback consisted of points earned during each
round: For each correct response, participants earned points that they could
cash in for token prizes such as pencils or stickers. In the experimental task,
the difficulty level (level of n) (17, 18) was adjusted according to the par-
ticipants’ performance after each round (it increased if three or fewer errors
were made, and decreased if four or more errors were made per round in
three consecutive rounds). In the control task, the levels increased accord-
ingly; that is, a new level was introduced if maximally one error was made,
and decreased if three or more errors were made per round in three con-
secutive rounds. Further, once a question was answered correctly, it never
reappeared. Thus, the control task adapted to participants’ performance in
that only new or previously incorrect questions were used. In both tasks,
correct answers were rewarded with more points as the levels increased.

In addition to the points and levels, there were also bonus rounds (two per
session, randomly occurring in rounds 4–10) in which the points that could be
earned for correct answers were doubled. Finally, if participants reached
a new level, they were awarded a high score bonus. The current high score
(i.e., the highest level achieved) was visibly displayed on the screen.

Transfer Tasks. We assessed matrix reasoning with two different tasks, the
Test of Nonverbal Intelligence (TONI) (23) and Raven’s Standard Progressive
Matrices (SPM) (24). Parallel versions were used for the pre, post-, and follow-
up test sessions in counterbalanced order. For the TONI, we used the standard
procedure (45 items, five practice items; untimed), whereas for the SPM, we
used a shortened version (split into odd and even items; 29 items per version;
two practice items; timed to 10 min after completion of the practice items.
Note that virtually all of the children completed this task within the given
timeframe). The dependent variable was the number of correctly solved
problems in each task. These scores were combined into a composite measure
of matrix reasoning represented by the standardized gain scores for both
tasks [i.e., the gain (posttest minus pretest, or follow-up test minus pretest,
respectively) divided by the whole population’s SD of the pretest].

Posttest Questionnaire. After the posttest, we assessed the children’s en-
gagement and motivation for training with a self-report questionnaire
consisting of 10 questions in which they rated the training or control task on
dimensions such as how much they liked it, how difficult it was, and whether
they felt that they became better at it. Participants responded on five-point
Likert scales that were represented with “smiley” faces ranging from “very
positive” to “very negative.” A factor analysis (varimax rotation with Kaiser
normalization) resulted in three factors explaining 67% of the total vari-
ance. These factors include interest/enjoyment, difficulty/effort, and per-
ceived competence—dimensions that can be described as aspects of intrinsic
motivation (49). Based on these factors, we created three variables, one for
each factor, by averaging the products of a given answer (i.e., the individual
score) and its factor loading.
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