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Introduction

Signal transduction pathways in plants are very well developed 
while at the same time they are extremely complex to reveal 
all the cross talks. The simple reason behind these complexi-
ties is that the plants are sessile and experiences all cues, biotic 
or abiotic being stationed at one position. Signaling pathways 
are induced in response to environmental stresses, and recent 
molecular and genetic studies have revealed that these pathways 
involve a host of diverse responses.1,2 It has been well established 
that abiotic stress response is a complex trait governed by mul-
tiple genes. In the last two decades, basic biological research has 
taken a big leap from studying the expression of single genes or 
proteins to focusing on a large number of genes or gene products 
simultaneously, enabling genome-wide expression strategies for 
better understanding of these complex traits.
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Mitogen-activated protein kinase cascade is evolutionarily 
conserved signal transduction module involved in transducing 
extracellular signals to the nucleus for appropriate cellular 
adjustment. This cascade consists essentially of three 
components, a MAPK kinase kinase (MAPKKK), a MAPK kinase 
(MAPKK) and a MAPK connected to each other by the event of 
phosphorylation. These kinases play various roles in intra- and 
extra-cellular signaling in plants by transferring the information 
from sensors to responses. Signaling through MAP kinase 
cascade can lead to cellular responses including cell division, 
differentiation as well as responses to various stresses. MAPK 
signaling has also been associated with hormonal responses. 
In plants, MAP kinases are represented by multigene families 
and are involved in efficient transmission of specific stimuli 
and also involved in the regulation of the antioxidant defense 
system in response to stress signaling. In the current review 
we summarize and investigate the participation of MAPKs as 
possible mediators of various abiotic stresses in plants.
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Out of many signaling pathways involved in abiotic stress 
response in plants, mitogen activated protein kinase (MAPK) 
cascade is one of the major pathway. This signaling module 
links external stimuli with several cellular responses and is evo-
lutionary conserved among eukaryotic organisms.3,4 MAPK 
cascades are conserved signaling modules found in all eukary-
otes, which transduce environmental and developmental cues 
into intracellular responses. A MAPK cascade minimally com-
posed of MAP kinase kinase kinases (MAP3Ks/MAPKKKs/
MEKKs), MAP kinase kinases (MAP2Ks/MAPKKs/MEKs/
MKKs) and MAP kinases (MAPKs/MPKs).5,6 During stress, 
stimulated plasma membrane activates MAP3Ks or MAP 
kinase kinase kinase kinases (MAP4Ks).7 MAP4Ks may act as 
adaptors linking upstream signaling steps to the core MAPK 
cascades. MAP3Ks are serine/threonine kinases phosphorylat-
ing two amino acids in the S/T-X

3-5
-S/T motif of the MAP2K 

activation loop. MAP2Ks phosphorylate MAPKs on threonine 
and tyrosine residues at a conserved T-X-Y motif.8 MAPKs are 
serine/threonine kinases able to phosphorylate a wide range of 
substrates, including other kinases and/or transcription factors. 
The formation and integrity of a specific MAPK cascade can 
be mediated by scaffold proteins, shared docking domains and 
adaptor or anchoring proteins.9-11 MKPs (MAPK phosphatases) 
are involved in the time-dependent controller in the shut down 
of the pathway after signaling.12

In several species, including Arabidopsis, MAPK cascades 
have been shown to be involved in signaling pathways activated 
by abiotic stresses such as cold, salt, touch, wounding, heat, UV, 
osmotic shock, heavy metals, etc. We list in Table 1 all the com-
ponents of MAPK cascade reported to be involved in various 
abiotic stress. The review will focus on the cross-talk of MAPKs 
and -omics strategies used to unravel the MAPK cascade.

Cross-talk between Plant MAP Kinases  
in Abiotic Stress Signaling

The term ‘cross-talk’ is used generally to refer to situations where 
different signalling pathways share one or more intermediates/
components or have some common outputs. Various abiotic 
stresses result in both general and specific effects on plant growth 
and development. Based on the presence of general and specific 
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contains approximately 80 MAPKKKs, 10 MAPKKs and 20 
MAPKs which offer scope for cross-talk between different stress 
signals. MAPKs are involved in developmental, hormonal, biotic 
and abiotic stress signaling.6 Members of MAPK cascades are 
activated by more than one types of stress (Fig. 1) for example, 
AtMPK6 is involved in O

3
, H

2
O

2
, Ethylene, ABA and JA signal-

ing pathways, and also in important developmental processes 

abiotic stress tolerance mechanisms, it is logical to expect plants 
to have multiple stress perception and signal transduction path-
ways, which may cross-talk at various steps in the pathways. As 
discussed above, MAP kinases play a central role in transduc-
tion of different types of signals. Perhaps some of the strongest 
evidence for cross-talk during abiotic stress signaling in plants 
comes from studies of MAPK cascades. The Arabidopsis genome 

Table 1. List of MAPKs from different plant sources involved in abiotic stresses

Plant Component of MAPK cascade Remarks Reference

Alfalfa

SIMK
Activated by hyper-osmotic conditions and 

metal stress
Munnik, et al. 1999;22  

Jonak, et al. 200474

MMK2, MMK3, SAMK Activated by heavy metal stress Jonak, et al. 200474

P44MKK4 Activated by cold and drought Jonak, et al. 199637

MMK4/MKK4 Wound stress Bogre, et al. 199771

OMTK1 Oxidative stress Nakagami, et al. 200457

HAMK Heat stress Sangwan, et al. 200246

SAMK Cold stress Jonak, et al. 199637

Arabidopsis

AtMEKK1, AtMPK3 Touch, cold and salt stress Mizoguchi, et al. 199619

AtMPK3, AtMPK6 Hypo-osmolarity Ozone
Droillard, et al. 2002;25  
Ahlfors, et al. 200463

AtMPK1, AtMPK4,6
Salt stress, Low temperature, dehydration, 

touch, wounding, hyper-osmotic stress
Ichimura, et al. 200021

MAPKK, MKK2 Cold and salt stress Teige, et al. 200413

Chorispora bungeana CbMAPK3 Cold, salt Zhang, et al. 200631

Cotton
GhMAPK Wounding, cold, salinity Wang, et al. 200775

GhMPK7 Salt, wounding Shi, et al. 201029

Maize

ZmMPK3
Activated by cold, drought, UV, salinity, 

heavy metal, wound
Wang, et al. 201029

ZmMPK7 H2O2, Osmotic stress Zong, et al. 200958

ZmMAPK5 H2O2, PEG, NaCl, CdCl2, cold, wound, UV Ding, et al. 200927

ZmMPK5 Low temperature stress Berberich, et al. 199942

ZmSIMK1 Salt dtress Gu, et al. 201028

Pea PsMPK2 Wounding, ABA, H2O2 Ortiz-Masia, et al. 200859

Potato StMPK1 Wound, heat Blanco, et al. 200649

Rice

OsMSRMK2
Wound, UV, metal, salt, drought, ozone, high 

and low temperature
Agrawal, et al. 200238

MAPKK4, 6 Cold and salt

Kumar, et al. 200892MAPKK1 Salt, drought

MAPKK10-2 cold

OsMAPK5 Wound, drought, salt, cold Xiong and Yang 200330

OsBWMK1 Mechanical wounding He, et al. 199972

DSM1(MAPKKK) drought Ning, et al. 201039

OsMPK3, OsMPK4, OsMKK4 Arsenic stress Rao, et al. 201079

Salicornia brachiata SbMAPKK Dehydration, cold, salt Agarwal, et al. 201044

Soybean MAPK Activated by light, Wound stress Lee, et al. 200174

Tobacco

SIPK Salt and osmotic stress, Ozone
Mikołajczyk, et al. 2000;24  

Samuel, et al. 200061

NtWIPK1 Wound Seo, et al. 199570

NtMPK4 Wound, ozone tolerance Gomi, et al. 200565

Tomato tMEK2 Wound Xing, et al. 200173
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of a 48-kDa kinase, the SIPK (salicylic acid-induced protein 
kinase).24 Osmotic stress reportedly activated the expression of 
AtMPK3, AtMPK4 and AtMPK6 in Arabidopsis.25,26 Recently 
three salt stress-induced MAPKs, ZmMPK3, ZmMAPK5 and 
ZmSIMK1, have been identified in Zea mays.27-29 Overexpression 
of OsMAPK5 in rice transgenic plants increased tolerance while 
suppression led to hypersensitivity to various stresses including 
salt.30 Salt stress also activated expression of CbMAPK3,31 and 
GhMPK7.32

Drought stress. Among the stresses, drought is a major 
environmental factor limiting productivity and distribution of 
plants.33,34 When soil moisture is continuously low, water extrac-
tion by root and water transport within the plant is reduced and 
a drought like situation prevails. Drought is a major constraint 
to increase yield in crop plants. Many stress-responsive genes 
have been identified and their altered gene expression plays an 
important role in plant drought resistance.17,35,36 In gel kinase 
assays followed by immunoprecipitation with specific peptide 
antibodies raised against different alfalfa MAP kinases showed 
that alfalfa p44MKK4 (MAP kinase kinase) gene expression 
and kinase activity got activated under drought conditions in an 
ABA independent manner.37 Research in Arabidopsis found that 
the expression of AtMEKK1 and AtMPK3 could be induced 
by drought.19 Drought stress resulted in the activation of 
OsMSRMK2 and OsMAPK5 in rice plants.30,38 Overexpression 
of DSM1 (a putative rice MAPKKK gene in rice) increased the 
tolerance to dehydration stress.39 Peng et al.40, investigated the 
expression patterns of MaMAPK and showed that activity of 
MAPK might be one of the molecular mechanisms of different 
drought tolerance in Malus. ZmMPK3 also play an important 

such as epidermal patterning, and anther and embryo develop-
ment. The functional interaction of MPK6 has been demon-
strated by a wide set of MAP2Ks such as MKK2,13 MKK3,14 
MKK4, MKK5,15 and MKK9.16 Thus, it suggests that MAPK 
cascades act as points of convergence in stress signalling.

Involvement of MAPK Cascades in Abiotic Stresses

Salt stress. Plant agriculture in many parts of the world, particu-
larly irrigated land are severely afflicted with salinity stress.17,18 In 
Arabidopsis, previous study has demonstrated that the MEKK1 
(a MAPKKK) mRNA accumulated in response to environ-
mental stresses, including high salinity.19 Yeast two-hybrid 
analyses showed protein-protein interactions between MEKK1 
and MKK2/MEK1 (MAPKKs), between MKK2/MEK1 and 
MPK4 (a MAPK), and between MPK4 and MEKK1.20 Further 
studies demonstrated that environmental stress signals are trans-
mitted to at least two MAPK cascades. One is the MPK4 cas-
cade (MEKK1-MEK1/MKK2-MPK4) and the other involves 
MPK6 and p44MAPK.21 Under salt or cold stress, MAPK path-
way involves MEKK1 as an upstream activator of MKK2 and 
the downstream MAPKs MPK4 and MPK6.13 MKP1 plays a 
negative role in salt stress signaling through MAPKs (MPK6 
and MPK4).12

A 46 kDa SIMK (salt stress-induced MAPK) in alfalfa was 
reported to be activated by salt.22 Yeast-2-hybrid identified an 
upstream activator kinase SIMKK that interacts specifically 
with SIMK and enhanced the salt-induced activation of SIMK 
in vivo, as well as in vitro.23 It was also reported that tobacco pro-
toplasts exposed to salt and osmotic stress showed enhancement 

Figure 1. Schematic representation of cross-talk among different plant MAP kinase signaling components. The scheme of general signal transduction 
is shown on the left. The homologs in Arabidopsis (At), tobacco (Nt), maize (Zm), pea (Ps) and Chorispora bungeana (Cb) are shown. Solid arrows show 
proven pathways; dashed arrows indicate postulated pathways; question marks indicate unknown cascade components.
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balance of cells, resulting in oxidative stress.50 Oxidative stress 
is a term used to describe the effect of oxidation in which an 
abnormal level of reactive oxygen species (ROS), such as the 
free radicals (e.g., hydroxyl, nitric acid, superoxide) or the non-
radicals (e.g., hydrogen peroxide, lipid peroxide) lead to damage 
(called oxidative damage) to specific molecules with consequen-
tial injury to cells or tissue.51 Removal or neutralization of ROS 
is achieved with antioxidants, endogenous (e.g., catalase, gluta-
thione, superoxide dismutase) or exogenous (e.g., vitamins A, 
C, E, bioflavonoids, carotenoids). Plants overcome oxidative 
stress with the production of scavenger enzymes such as cata-
lases, which decompose H

2
O

2
. For example, A. thaliana CAT1 

is regulated by ABA, and Xing et al.,52 found that the MAP2K 
inhibitor PD98059 hindered ABA-mediated CAT1 expression. 
In addition, the A. thaliana mkk1 and mpk6 mutants were 
altered in their responses to ABA and desiccation stress. These 
results, together with the lack of ABA-mediated activation of 
MPK6 in mkk1 mutants, suggested that MKK1-MPK6 regu-
late H

2
O

2
 metabolism through CAT1.53 In contrast with CAT1, 

the closely related CAT2 expression seems to be regulated by 
MEKK1 and MPK4,54 which are involved in plant defense and 
SA accumulation. The MEKK1-MPK4 cascade playing an 
important role in ROS metabolism was first demonstrated by 
Nakagami et al.55 In addition, other MAPKKKs are activated in 
A. thaliana protoplasts by H

2
O

2
 that include ANP1, which may 

cause the downstream activation of MPK3 and MPK6.56 These 
findings imply that multiple MAPK modules mediate oxida-
tive stress responses and that MAP kinase cascades are not only 
induced by ROS but may also regulate ROS levels by affecting 
catalase activity. Notably, ROS homeostasis is a convergence 
point that indicates plant stress status because oxidative stress is 
a common response to biotic and abiotic stress. A recent review 
compiled ROS-mediated MAPK signaling literature.54 The con-
tinued examination of available A. thaliana mutants and other 
in planta studies of stress-specific protein interactions will help 
dissect the roles of MAPK modules. An important issue that has 
emerged in this field is how cellular redox status determines cell 
growth and differentiation and, thus, development. In alfalfa, a 
novel MAPKKK, OMTK1 (oxidative stress-activated MAP tri-
ple-kinase 1) was identified which further activated downstream 
MAPK, MMK3.57 H

2
O

2
 induced activation of plant MAPK has 

also been reported in various genera e.g., maize27,58 and pea.59 
Lately, Lumbreras et al.,60 demonstrated that MKP2 positively 
controls abiotic oxidative stress responses and is a key regulator 
of MPK3 and MPK6 networks controlling stress responses in 
plants.

Ozone stress. Ozone is a strong oxidant and atmospheric 
pollutant and is known to activate MAPK signaling pathway. 
MAP kinases in plants are also activated by exposure to ozone.61 
A 46 kDa MBP kinase activity immunoprecipitable with anti-
SIPK is induced in tobacco leaves and cells after ozone treat-
ment. Ozone treatment also triggers the accumulation of H

2
O

2
, 

superoxide anion and hydroxyl radicals that ultimately cause an 
oxidative burst in cells.62 Ozone also showed a dramatic increase 
in the transcript level of OsMSRMK2 gene (MAP kinase) in 
rice.38 In A. thaliana, MPK3 and MPK6 were activated by ozone 

role in response to environmental stresses including drought 
stress.29

Temperature stress. Change of temperature is one of the 
most common responses a plant experience during its com-
plete life cycle. They depend on the perception of both high 
and low temperatures, both for their survival and for the regu-
lation of key developmental events. Although environmental 
change is expected to increase average temperatures, this will 
also have important consequences for the way in which plants 
perceive low temperature. A lot of studies have been carried 
out in Arabidopsis which indicated the role of MAPKs in tem-
perature stress. AtMEKK1 and AtMPK3 are transcriptionally 
induced19 while AtMPK4 and AtMPK6 are activated by cold 
stress.21 Arabidopsis MAPKK, AtMKK2, also got upregulated 
in response to cold stress.13 Yeast-two-hybrid as well as protein 
kinase assays revealed that AtMPK4 and AtMPK6 were direct 
and specific substrates of MKK2.41 Functional and interaction 
analysis in yeast suggested that MEKK1 functions upstream of 
MKK1, MKK2 and MPK4,20 and a role for the MAPK mod-
ule consisting of MEKK1-MKK2-MPK4/6 has now been con-
firmed in cold stress. The transcript level of ZmMPK3 increased 
markedly within 30 min and remained high during a 4 h 
period.29 Cold stress also induced the expression and activity of 
ZmMAPK5.42,43 Recently, a lot of information has been gathered 
where cold stress led to the activation of MAPKs in different 
plant genera for example, Chorispora bungeana,31 Gossypium hir-
sutum (GhMAPK),32 and Salicornia brachiata (SbMAPKK).44

It was not only low temperature, but also high temperature 
led to the activation of MAPKs. The sudden increase in ambi-
ent maximum temperature, in a matter of few days, by 5–7°C 
with corresponding increase in the minimum temperature, cre-
ates heat stress on plants. The normal physiology of the plant 
gets affected and the plant maturity is accelerated. In practi-
cal agriculture, such heat stress inflicts enormous crop losses. In 
the European heat-wave of 2003, crop production was reduced 
by around 30%.45 Due to global weather change, the frequency 
of heat stress is predicted to increase in different parts of the 
world. Sangwan et al.46, identified the first plant heat shock-
activated MAPK (HAMK) from alfalfa cells. In tomato pho-
toautotrophic cell cultures, a partially purified heat activated 
MAPK was shown to phosphorylate HsFA3 transcription fac-
tor.47 Recently, high and low temperature exhibited an internal 
rhythm in the activity of MAPK in rice.48 Another report was 
published in Solanum tuberosum where heat treatment to potato 
tubers elevated StMPK1 transcript levels.49 In rice, changes in 
temperature affected the transcript levels of OsMSRMK2.38 
High temperature (37°C) resulted in a considerable decrease 
in its transcript level at 30 min, where as at 25°C an increase 
was observed at 30 min, which drastically decreased with time. 
Interestingly, at low temperature (12°C) the OsMSRMK2 tran-
script started to accumulate only around 60 min, reaching a 
maximum at 90 min, followed by a slight decline at 120 min. 
Thus, rapid induction of OsMSRMK2 mRNA at 37°C suggests 
its role in sensing high temperatures.38

Oxidative stress. Most types of abiotic stresses such as 
drought, salinity, heat and cold stresses disrupt the metabolic 
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Conclusion

The information generated by studying abiotic responses in 
plants is basically implied to improve the abiotic tolerance of 
plants by different means of genetic manipulation. The find-
ings reported using model research plants like Arabidopsis have 
been used to improve several plants, including crop species.80-82 
The complete genome sequence of rice, and Arabidopsis and 
emerging sequence information for several other plant genomes, 
such as Populus, Medicago, lotus, tomato, maize and chickpea, 
have given rise to the use of tools which can aid in the determi-
nation of the function of many genes simultaneously. All these 
studies have made it convenient for the researchers around the 
globe to answer important biological question which can be 
used for improving the crop plants. The omics approaches like 
transcriptomics, proteomics, metabolomics, bioinformatics and 
high-throughput DNA sequencing have enabled active analy-
sis of regulating networks that control abiotic stress responses. 
Recently, Popescu et al.,83 identified several MKK/MPK/sub-
strate signaling pathways by employing Arabidopsis protein 
microarrays. Ding et al.,84 generated a Rice Kinase-Protein 
interaction map and reported a protein interaction map of 116 
representative rice kinases and 254 of their interacting partners. 
Similarly, a directed protein-protein interaction screen between 
all the Arabidopsis MAPKs and their upstream activators 
MAPKKs was carried out to gain insight into their potential 
relationships.85 Recently, Jung et al.,86 described the application 
of phylogenomics to elucidate the functions of individual mem-
bers of the large rice kinase gene-family. The authors developed 
rice kinase database for 1,508 rice kinases87 and also identi-
fied the functions of MAPKs, MAP2Ks and six MAP3K genes 
playing important roles in a broad range of stress responses. 
Here we used the publicly available microarray GEO database 
to generate a heat map of rice MAPK, MAP2K and MAP3K in 
different abiotic stress and hormone treatments (Fig. 2). The 
information of rice MAP3K was gathered from Rao et al.,88 
where 75 members are reported through an in-silico analy-
sis of the rice genome. Based on the expression information 
of Figure 2A, we deduced a possible chain of MAPK compo-
nents working in abiotic stress and hormone signaling in rice 
in Figure 2B. Though this is just a speculation, stringent bio-
chemical, molecular and genetic studies are required to appro-
priate validation. Integrating the orthologous gene information 
from other recently sequenced crop plants with rice database 
will enable the prediction of gene function in these species. 
Recently, it has been shown that MPK2 from Reaumuria soong-
orica (a stress tolerant woody shrub) is involved in the regula-
tion of the antioxidant defense system in the response to stress 
signaling, which suggests that MAPKs also function as possible 
mediators of abiotic stresses.89 Recently, the MAPK machinery 
in plants has also been reviewed by Taj et al.90 Recently, DNA 
sequence of the AtMPK3 promoter for responses to drought, 
high salinity, low temperature, and wounding has been iden-
tified, which advances our understanding of the molecular 
mechanisms controlling AtMPK3 expression in response to 
abiotic stress.91

exposure,63 and plants lacking these kinases became hypersen-
sitive to ozone.64 Similarly, NtMPK4 silenced tobacco plants 
showed enhanced sensitivity to ozone.65 In poplar, ozone treat-
ment activated two MAPKs and activation of these MAPKs was 
dependent on the production of reactive oxygen species (ROS); 
the influx of calcium ions via membrane channels; the activa-
tion of an upstream, membrane-localized component; and a 
cognate MAPK kinase.66 Recently, a MKP2 was identified as an 
important regulator for controlling both ozone induced MPK3, 
and MPK6 and MKP2 RNAi plants were shown to exhibit 
hypersensitivity to ozone.67

Wounding. Many physical injuries caused by anthropogenic 
activity, herbivore or insect attack results in wounding. When 
wounded, plants express several sets of defense-related genes 
that are involved in healing damaged tissues and protecting 
against pathogen infection and insect attack.68,69 These genes 
are activated through signaling pathways that include various 
protein kinases. Many plant species demonstrate an increase in 
MAPK levels after being wounded. First report of the activa-
tion of a MAP kinase in response to wounding was published in 
tobacco70 and named as WIPK (wound induced MAP kinase). 
Bogre et al.,71 demonstrated that wounding alfalfa leaves specifi-
cally induced the activation of MMK4 (MAPK). AtMPK4 and 
AtMPK6 are also shown to get rapidly activated by wounding.21 
NtMPK4, a tobacco homolog of AtMPK4, revealed wound 
induced activation along with two other wound-responsive 
tobacco MAPKs, WIPK and SIPK.65 Molecular characteriza-
tion of StMPK1 (potato MAPK) revealed its transcriptional 
upregulation upon wounding.49 In last 10 years, several wound-
activated MAPKs have been identified in various plant species 
for example, rice,30,38,72 tomato,73 soybean,74 cotton,32,75 pea59 and 
maize.27,29

Heavy metal stress. Higher dose of these heavy metals 
adversely affects plant growth and development even though 
heavy metal ions are essential in many physiological and devel-
opmental processes. The presence of enhanced level of heavy 
metal ions triggers a wide range of cellular responses. In plants, 
higher amount of copper, cadmium and mercury ions resulted 
in the activation of a novel MAPK gene OsMSRMK2 from 
japonica-type rice (cv. Nipponbare).38 Yeh et al.,76 confirmed 
the activation of a MAPK gene and MBP kinases in rice in 
response to cadmium stress. Exposure of Medicago seedlings to 
excess copper or cadmium ions resulted in a complex activation 
pattern of four distinct MAPKs: SIMK, MMK2, MMK3 and 
SAMK (stress activated MAPK).77 In protoplasts, the Medicago 
MAPKK, SIMKK, only conveyed activation of SIMK and 
SAMK, but not of MMK2 and MMK3. Furthermore, SIMKK 
only mediated activation by copper but not by cadmium ions. 
Gupta et al.,78 reported the activation of MAPK activity in 
response to As(III) treatment indicating a role of this impor-
tant cascade in transducing As(III) mediated signals. Recently, 
involvement of OsMPK3, OsMPK4 and OsMKK4 has been 
shown in As(III) mediated in rice seedlings.79 Heavy metals 
activation of MAPKs was also demonstrated in maize.27,29 These 
data show that MAPK cascades are involved in signaling acti-
vated by different heavy metals.
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Note

Please visit http://www.landesbioscience.com/
journals/psb/article/14701 to download a color 
versions of the images in this article.

Figure 2. Differential expression of rice MAP kinase 
genes in response to various abiotic stress and 
hormonal treatment. (A) Heat map showing the 
expression patterns of mitogen activated protein 
kinase (MAPK), MAPK kinase (MAP2K) and MAP2 
kinase (MAP3K) genes in rice under abiotic stress and 
hormonal treatment. The microarray data publicly 
available at GEO database under the series accession 
numbers GSE6901 (abiotic stress) and GSE5167 (auxin 
and cytokinin treatment) were used for expression 
analysis. The color scale is give at the bottom. (B) 
Deduced MAPK cascade from heat map under abiotic 
stress and hormone treatment.
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