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Introduction

Cytokinins control a wide range of developmental and physi-
ological processes, including cell proliferation, apical dominance, 
nutrient mobilization, seed germination, vascular patterning and 
cambial activity.1,2 However, their functions in sexual reproduc-
tion have not been examined in detail.

The female gametophyte is generated from a megaspore, 
which is formed after meiosis. The megaspore undergoes three 
rounds of karyokinesis to form an 8-nucleus syncytial cell. This 
cell, the embryo sac, is then cellularized to form seven cells: an 
egg, two synergid cells, three antipodal cells and a central cell. 
In Arabidopsis thaliana, the central cell initially has two nuclei. 
Female gametophyte formation finishes when the two nuclei of 
the central cell are fused to form a diploid nucleus.3

A number of genes in female gametophytes are known to be 
required for their development. SPOROCYTELESS/NOZZLE 
(SPL/NZZ) is necessary to form cells that undergo meiosis in 
both carpel and stamen.4,5 Mutations in SWITCH1/DYAD 
(SWI1/DYAD), which is required for meiosis, impair megaspore 
formation.6,7 Several mutations are also known to cause devel-
opmental arrest during karyokinesis. These include a mutation 
in genes for anaphase-promoting complex (APC) components 
NOMEGA8 and APC2,9 double mutations in RPT5a and RPT5b, 
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which code for components of the 26S proteasome,10 and double 
mutations in RHF1a and RHF1b, which code for components 
of the E3 ubiquitin ligase.11 The slow walker 1 (swa1) mutation 
delays the mitotic division cycle,12 and the retinoblastoma-related 
(rbr) mutation causes extra mitotic divisions.13 The ovules of the 
cytokinin independent1 (cki1) mutants abort after the 4-nucleus 
stage. As CKI1 is a histidine kinase, phosphorelay is required for 
female gametophyte development.14,15 GEMINI2/MOR1, which 
codes for a microtubule-associated protein,16 and TWO IN ONE 
(TIO), which codes for a phragmoplast-associated protein kinase, 
are required for the cellularization process.17 An asymmetric auxin 
gradient in the embryo sac plays a key role in gametic cell speci-
fication.18 Finally, LACHESIS (LIS) and CLOTHO/GFA1 (CLO/
GFA1) play a central role in gametic cell fate specification.19,20

Several genes in the sporophytes are also known to be indis-
pensable for female gametophyte development. For example, 
mutants with defective integument initiation and outgrowth, 
such as ainteguments (ant), inner no outer (ino), bell1 (bel), tousled 
(tsl) and short integuments1/dicer like1 (sin1/dcl1), are associated 
with aborted embryo sac development.21 ANT, INO, BEL1, TSL 
and SIN1/DEL1 code for an AP2-class transcription factor, a 
YABBY-class transcription factor, a homeodomain-containing 
transcription factor, a serine/threonine protein kinase and a 
dicer-like protein, respectively.22-26 These observations suggest 
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transcription factor; ABORTED MICROSPORE (AMS), cod-
ing for a bHLH transcriotion factor; and MALE STERILITY 1 
(MS1), coding for a PHD-finger transcription factor are required 
for normal tapetal function and viable pollen production.38

There is some evidence that cytokinins are involved in male 
reproductive development. For example, anthers of several 
male-sterile mutants, including the stamenless-2 (sl-2) mutant of 
tomato (Solanum lycopersicum)39 and a genetic male-sterile line of 
rapeseed (Brassica napus),40 have lower endogenous cytokinin lev-
els. Cytokinins have also been shown to reverse cytoplasmic male 
sterility in barley (Hordeum vulgare).41 Accumulation of CKX 
(cytokinin oxidase/dehydrogenase) in male reproductive tissues 
of transgenic maize (Zea mays) resulted in male-sterile plants.42 
Fertility of Arabidopsis overexpressing AtCKX1 was greatly 
diminished.43 In rice, the trans-zeatin-type cytokinins were 
slightly higher in the anther than in the leaf blade and pistil.44

To clarify the role of sporophytic cytokinins in reproductive 
growth, we carefully examined the phenotypes of a cytokinin-
receptor triple mutant (cre1-12 ahk2-2tk ahk3-3), indicating that 
cytokinin receptors in the sporophyte are required for female 
gametophyte development and function of pollen and pistil.

Results

Male and female functions are impaired in the cytokinin-
receptor triple mutants. Although a triple mutant containing 
weaker alleles (ahk2-5 ahk3-7 cre1-2) set a few seeds,45 two other 
cytokinin-receptor triple mutants (cre1-12 ahk2-2tk ahk3-3, 
ahk2-1 ahk3-1 ahk4-1) with a stronger phenotype do not produce 
seeds.46,47 We first examined segregation ratio of the triple-mutant 
phenotype in a population generated by selfing cre1-12/cre1-12 
ahk2-2tk/ahk2-2tk AHK3/ahk3-3 plants (i.e., heterozygous for 
one of the three cytokinin receptor genes). The triple-mutant 
phenotype appeared in 24.5% of the plants (147 mutant phe-
notype: 451 normal phenotype; χ2 = 0.055741, p > 0.05, based 
on an expected ratio of 1 small: 3 normal), indicating that the 
presence of the triple-mutant genotype in either male or female 
gametophytes does not distort the segregation ratio.

The triple mutant plants (cre1-12 ahk2-2tk ahk3-3) were small 
but occasionally produced an inflorescence with a few flowers. 
The flowers were smaller than the wild type and looked normal, 
but did not produce seeds (Fig. 1). This indicates that cytoki-
nin receptors in sporophytic tissue are required for reproductive 
functions, because the segregation experiment demonstrated that 
cytokinin receptor genes in gametophytes are dispensable.

To know which male or female functions of the triple mutants 
are impaired, we performed reciprocal crosses between triple-
mutant and wild-type plants. Both male and female functions 
were impaired in these crosses (Table 1). Although the triple 
mutant female set a few seeds when pollinated with wild-type 
pollen, those seeds did not germinate. This suggests that female 
gametophyte functions or pistil functions necessary to support 
fertilization and embryogenesis are also impaired.

Mutant anthers do not dehisce, and pollen germination 
is decreased. To clarify what male processes are impaired, we 
observed both pollen and anthers in detail. During anther 

that the sporophytic tissue surrounding the female gametophyte 
plays a role in controlling female gametophyte development.

Formation of the male gametophyte (i.e., the pollen) is ini-
tiated by periclinal divisions that form archesporial cells in the 
anther primordium. Mitotic divisions of the archesporial cells 
then occur to form the different cell layers: the inner primary 
sporogenous cells and the outer primary parietal cells. The pri-
mary sporogenous cells undergo a small number of divisions to 
form pollen mother cells, which go through meiotic divisions 
to form tetrads consisting of four microspores. The microspore 
undergoes an asymmetric cell division to form the larger vegeta-
tive cell and the smaller generative cell. The smaller generative 
cell again divides to form two sperm cells, which are engulfed 
in the vegetative cell. The primary parietal cells go through a 
series of further divisions to form endothecial cells and second-
ary parietal cells; the secondary parietal cells then divide to form 
the middle cell layer and the tapetum. After pollen maturation, 
anthers dehisce to release pollen.27

Mutations that affect each step of pollen development are 
also known. For example, the spl/nzz mutant fails to form the 
pollen mother cells and the surrounding cell layers.4,5 EXTRA 
SPOROGENOUS CELLS/EXCESS MICROSPOROCYTES1 
(EXS/EMS1), which encodes a leucine-rich repeat receptor kinase 
and TAPETAL DETERMINANT1 (TPD1), which encodes for a 
small secreted protein, may regulate archesporial cell number in 
the anther.28-32 The sidecar pollen (scp) mutant affects microspore 
asymmetric division and cellular pattern.33 Mutations in genes 
for the A-type cyclin-dependent kinase (CDKA;1) and F-box-
Like 17 (FBL17) are also known to cause arrest during genera-
tive cell division.34,35 DUO POLLEN1 (DUO1), which encodes 
a R2R3 MYB protein, may function as a generative cell fate 
determinant, linking cell division and gamete specification.36,37 
DYSFUNCTIONAL TAPETUM1 (DYT1), coding for a bHLH 

Figure 1. Phenotype of the triple mutant (cre1-12 ahk2-2tk ahk3-3). The 
triple mutant formed fewer and smaller flowers than wild type. (a) 
6-week-old plants of wild type (left) and triple mutant (right). Bars = 1 cm. 
(B) Wild-type and (c) triple-mutant flowers immediately after opening. 
Bars = 1 mm.
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development in Arabidopsis, the male sporophyte and gameto-
phyte tissues undergo unique biological processes, including spe-
cific cell divisions (meiosis and division of the haploid nuclei), 
cell differentiation of the male gametophyte, cell-cell commu-
nication between the tapetum and the microspore/pollen, and 
death of tapetum cells. The process of dehiscence, which involves 
opening the anther wall to release the mature pollen grains, 
requires the degeneration of specific anther tissues called the sep-
tum and the stomium.48

At anthesis, the stamen filaments of the triple mutants elon-
gated normally (Fig. 1B and C), but the anthers were slightly 
smaller than the wild type and failed to dehisce (Fig. 2A and B). 
To analyze the developmental defects in the triple mutant, we 
compared the terminal phenotypes of anthers in transverse 
section (Fig. 2C and D). The mutant anthers showed several 
defects. First, only two- or three-lobed structures were formed in 
the mutant anthers, whereas four-lobed structures were formed in 
wild-type anthers. Second, the number of pollen grains was less 
than that in wild type. Third, degeneration of the tapetum and 
the break of the septum and stomium were incomplete. Finally, 
the vascular tissues within the center of the anther failed to form 
normally.

Despite these defects in anther development, the mutant pol-
len grains from undehisced anthers were indistinguishable in size 
and shape from wild type. Both wild-type and mutant pollen 
grains contained a single vegetative nucleus and two generative 
nuclei (Fig. 2E and F). To test whether the viability of mutant 
pollen grains differs from that of wild type, we put both wild-
type and mutant pollen grains on artificial germination medium. 
Pollen from the triple mutant germinated, but at a lower fre-
quency than the wild type, and the pollen tubes were shorter 
than those of the wild type (Fig. 2G and H).

Female gametophyte development is abnormal in the triple 
mutant. To determine the steps of female gametophyte develop-
ment that were affected by the lack of cytokinin receptors, we 
observed the megagametophyte terminal phenotypes by using 
confocal laser scanning microscopy (CLSM).49,50 In Arabidopsis, 
the megaspore mother cell undergoes meiosis to produce four 
megaspores in the ovule. Only one functional megaspore out of 
the four survives, and it then undergoes three rounds of mitotic 
divisions and subsequent cellularization to produce a seven-celled 
mature female gametophyte.51,52

All female gametophytes of opened wild-type flowers were 
at the terminal developmental stage (Fig. 3B). We observed 
73 ovules of triple-mutant flowers, and the phenotypes of the 
mutant female gametophytes fell into three categories. In the first 

Table 1. Reciprocal crosses between wild-type and triple mutants 
indicated that male and female functions were impaired

Female parent Male parent Ratio* N

Wild type Wild type 0.86 15

Wild type Triple mutant 0 98

Triple mutant Wild type 0.03 60
*Ratio of the number of siliques containing at least one seed to total 
number of pistils pollinated. N, number of pistils pollinated.

Figure 2. Triple mutant anthers did not dehisce. Pollen of the triple 
mutant was morphologically normal, but less fraction of pollen, when 
compared to wild-type, germinated in vitro. (a and B) anthers removed 
from open flowers. (a) Wild-type anther. (B) Triple-mutant anther.  
Bars = 200 μm. (c and D) Transverse sections of anthers. (c) a wild-type 
anther from a flower immediately before opening. (D) a triple-mutant 
anther at a similar stage as in (c). In wild-type anthers, the septum (sm) 
and stomium (st) degenerated, which allow release of pollen grains, 
whereas in mutant anthers, the septum and stomium did not degener-
ate. PG, pollen grain. Bars = 50 μm. (e and F) Pollen grains stained with 
4',6-diamidino-2-phenylindole. One vegetative (v) and two generative 
(g) nuclei were observed in both wild-type (e) and triple-mutant (F) 
pollen grains. Bars = 10 μm. (G and h) In vitro germination of pollen. 
(G) Wild type. (h) Triple mutant. Triple-mutant grains germinated less 
frequently than wild-type, and germinating pollen tubes were shorter 
than those of wild type. Bars = 50 μm.

and most frequent category (57/73 ovules), the female gameto-
phytes lacked the embryo sac (Fig. 3C). In the second category 
(7/73 ovules), development was terminated before completion 
(Fig. 3D) and most female gametophytes had either 2 or 4 nuclei. 
In the third category (9/73 ovules), the female gametophytes 
appeared to be morphologically normal (Fig. 3E), but the ovules 
were slightly smaller than the wild type. In the triple mutant, both 
inner and outer integuments were formed normally, suggesting 
that the integuments can develop without female gametogenesis.

Pollen-pistil interaction is impaired in the cytokinin receptor 
triple mutants. Although a fraction of the female gametophytes 
appeared to be morphologically normal, the triple mutants were 
female sterile and produced very few seeds upon pollination with 
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Pollen produced by the triple mutant deficient in the three 
cytokinin receptors had the usual two sperm nuclei and one 
vegetative nucleus, and germinated on an artificial medium, 
albeit with a reduced efficiency. However, these pollen grains 
did not germinate on wild-type stigmas. The inability to germi-
nate might have been caused by incomplete maturation, because 
tapetum degeneration was incomplete and anthers did not 
dehisce. Tapetum degeneration and anther dehiscence normally 
require jasmonic acid,53 but application of methyl jasmonate 
(MeJA) to bud clusters had no effect on pollen maturation or 
anther dehiscence of the cytokinin receptor triple mutant (data 
not shown). Thus, jasmonic acid and cytokinin independently 
regulate anther maturation and dehiscence.

In the cytokinin-receptor triple mutant, the integuments, 
which are sporophytic tissue surrounding the female gameto-
phytes, looked normal. However, a large majority of ovules either 
lacked female gametophytes altogether or possessed abnormal 
ones, indicating that cytokinin receptor genes in the sporophyte 
are required for normal development of the female gametophyte. 
It is yet to be determined what cytokinin-mediated processes in 
the sporophyte are required for gametophyte development.

In the triple mutant, the pistil function required to induce 
pollen germination was impaired. In wild-type plants, stigmatic 
papillae provide water to pollen in response to stimulus by pollen 
of the same species; this water then induces pollen germination. 
It is possible that the triple mutant is deficient in these processes.

Materials and Methods

Plant materials and growth conditions. Arabidopsis ecotype 
Columbia was used in all experiments. Plants were grown on 
plates containing GM medium (MS salts, 1% sucrose, 1/100 
vol. of 2.5% MES-KOH at pH 5.7, 0.3% Phytagel) under 

Figure 3. cLSM (confocal laser scanning microscopy) images of mutant 
and wild-type female gametophytes. The majority of triple-mutant 
ovules were abnormal. (a) Schematic diagram of ovule, with female 
gametophyte encircled by red line. (B) Wild-type ovule. (c–e) Triple-
mutant ovules. Of the 73 triple-mutant ovules observed, 57 lacked the 
embryo sac (c), 7 carried a female gametophyte that terminated its 
development before completion (D), and 9 appeared to be morphologi-
cally normal (e). ecn, egg cell nucleus; scn, synergid cell nucleus; sen, 
secondary nucleus. Bars = 20 μm.

Figure 4. aniline blue-stained pistils 24 h after reciprocal crosses 
between wild-type and triple-mutant plants. (a) Wild-type stigma 
pollinated with wild-type pollen. (B) Wild-type stigma pollinated with 
triple-mutant pollen. (c) Triple-mutant stigma pollinated with wild-
type pollen. White on the stigma (arrow, a) indicates pollen germina-
tion. In contrast, no signal was observed in (B and c). pt, pollen tubes; v, 
vasculature. Bars = 50 μm.

wild-type pollen. Also, although some of the triple-mutant pollen 
grains germinated in vitro, triple mutant pollen did not produce 
seed when applied to wild-type pistils (Table 1). To investigate 
whether the sterility is caused by defects in pollen-pistil inter-
action, we placed pollen from the triple mutant onto wild-type 
pistils, and wild-type pollen on mutant pistils, and checked for 
pollen germination. In both cases, the pollen grains did not ger-
minate (Fig. 4), indicating that cytokinin receptors in the spo-
rophyte are required for pollen germination, which depends on 
pollen-pistil interaction.

Discussion

We have shown that cytokinin receptor genes within the male 
and female gametophytes are not required for the development 
of the gametophytes in Arabidopsis. But those in the sporophyte 
are required for the production of functional gametophytes.
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4',6-diamidino-2-phenylindole and 7% sucrose and viewed by 
fluorescence microscopy under UV light excitation. For female 
gametophyte analysis, tissue preparation and microscopy were 
performed as previously described in reference 49 and 50, with a 
slight modification: the pistils fixed in 4% glutaraldehyde, 12.5 
mM cacodylate (pH 6.9) and 0.005% Silwet L77 for several 
hours on ice.

Pollen germination and staining. In vitro pollen germina-
tion and aniline blue staining of pollinated pistils was performed 
as previously described in reference 53.
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continuous light at 22°C. The triple-mutant genotype used was 
cre1-12 ahk2-2tk ahk3-3.46

Microscopy. Anther structure was examined as described 
previously in reference 29, with the following modifications. 
Dissected floral buds and inflorescences were fixed in 2.8% 
(vol/vol) glutaraldehyde in 0.1 M HEPES (N-2-hydroxyethyl 
piperazine-N'-2-ethanesulfonic acid) buffer (pH 7.2) and 0.02% 
Triton X-100 overnight at 4°C. Samples were washed twice 
for 15 min each in 0.1 M HEPES buffer (pH 7.2) and then 
fixed in 1% OsO

4
 overnight. Samples were then dehydrated 

in a graded acetone series and embedded in Spurr’s resin. Thin 
(0.5 μm) sections were made and stained with 1% Toluidine 
Blue O in 1% H

3
BO

3
-NaOH (pH 9.5). For examination of 

pollen, pollen grains were immersed in a solution of 2 μg/mL 
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