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Chemical ecology, be it the study of 
plant volatiles or insect cuticular hydro-
carbons, largely involves the analysis of 
compositions or “blends” of a mixture 
of compounds. Compositional data have 
intrinsic properties such as a “constant-
sum constraint,” which should be taken 
into account when statistically analyzing 
these data. The field of compositional data 
analysis has greatly improved our under-
standing of the nature of such composi-
tions and has provided us with insights 
on statistically rigorous ways of analyz-
ing such constrained data. Employment 
of standard multivariate statistical proce-
dures on compositional data necessitates 
the use of appropriate transformation pro-
cedures, which removes the non-indepen-
dence of data points, thus rendering the 
data suitable for such analysis. Here we 
present the current situation of the analy-
sis of compositional data in chemical ecol-
ogy; the awareness of this constraint of 
compositional data; and alternative ways 
of analyzing such constrained data using 
Random Forests, a data-mining algorithm 
that has many features that facilitate the 
analysis of such data. Two such features of 
particular relevance to compositional data 
are that Random Forests does not incor-
porate implicit assumptions about the 
distribution of the data and can deal with 
auto-correlations between data points.

Compositional Data  
in Chemical Ecology

Plant volatile bouquets or insect cuticular 
hydrocarbons are usually analyzed as rela-
tive proportions or percentages that are 
always bounded, i.e., all the data points 
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add to a constant of 1 or 100%. Thus any 
increase in the value of a data point auto-
matically requires the other data points 
to decrease, demonstrating the “constant-
sum constraint” of such data.1 This non-
independence of data points makes the 
data unsuitable for analysis using standard 
conventional statistical procedures such 
as multiple pairwise correlations, prin-
cipal component analysis (PCA), multi-
variate analysis of variance (MANOVA) 
and multiple regressions. This is because 
all these procedures implicitly assume a 
data distribution, independence of data 
points, as well as absence of interactions 
between data points. Additional prob-
lems encountered in such data in chemi-
cal ecology include log-level differences in 
the percentage values of the data points, 
presence of a large number of zeroes and 
auto-correlations between data points.2 
These features are natural constraints in 
chemical ecology since many compounds 
could share common biosynthetic path-
ways, have isomeric forms, and also be 
selectively regulated based on the ecologi-
cal context, resulting in large absences or 
large presences based on context.3,4

The statistical analysis of composi-
tional data saw a surge of improvement 
borrowing heavily from the field of geolog-
ical chemistry. The study of mineral com-
positions usually involved categorisation 
into “major” elements that are present in 
percent to tens of percent values, “minor” 
elements that are present at around 1% 
concentrations and “trace” elements that 
are present in parts per million or parts 
per billion levels.5 Such data were ana-
lyzed using standard statistical procedures 
without being aware of the fact that the 
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Although dedicated software packages 
for analyzing compositional data exist, 
e.g., compositions, robCompositions and 
MixeR for R software, as well as CoDa 
developed by Aitchison, many studies 
use square-root transformations or log 
transformations with the addition of a 
constant (ranging from 0.01–0.00001) to 
accommodate zero data points. The addi-
tion of such seemingly arbitrary constant 
values would greatly affect/alter the pro-
jection of such data points in multivari-
ate space.9 Thus, if one sets out to study 
compositional data within the framework 
of standard multivariate procedures, it is 
imperative that the researcher be aware 
of the limitations and/or assumptions 
of such procedures and uses appropriate 
transformation procedures to incorporate 
statistical rigor into the analysis. If the 
researcher desires not to use such model-
based methods with built-in assumptions, 
alternate algorithm-based methods such 
as Random Forests are at the researcher’s 
disposal.

Random Forests  
and Compositional Data

Random Forests10 is a data-mining algo-
rithm that has many features which 
make it suitable for analyzing complex 
data sets.11 For example, there is increas-
ing use of Random Forests in the analy-
sis of complex microarray data since 
year-wise microarray studies citing this 
approach that were retrieved using the 
keywords (microarray + “random forest”) 
were the following: 2002:10, 2003:30, 
2004:70, 2005:130, 2006:280, 2007:472, 
2008:706, 2009:1021, 2010:1300. This 
indicates an increasing adoption of this 
method by molecular biologists. Of par-
ticular interest to chemical ecologists 
are two features of Random Forests: no 
implicit assumptions on the structure 
of the data points and accommodation 
of any interactions and/or correlations 
between data points. As Random Forests 
is a non-parametric method,12 it can also 
deal with data points varying in log-scales 
and with zeroes. Random Forests con-
structs decision-based trees selecting a 
subset of samples and variables at random. 
This combined with bootstrap aggre-
gations gives estimates of classification 

advocated the use of data transformation.8 
We employed the key words: (plant + vola-
tiles + “GC-MS”) and (cuticular + hydro-
carbons + “GC-MS”) to retrieve citations 
which we used as surrogates for published 
literature in this area of chemical ecology. 
We restricted our search with the keyword 
(GC-MS) as this would capture the spe-
cific subset of studies that identify and 
analyze compounds in chemical ecology. 
Along with this search, we were able to 
retrieve literature that contained the key-
word (Aitchison) and literature that did 
not contain the keyword. The results of 
this survey revealed a disproportionately 
small number of studies that actually con-
tained the keyword (Aitchison) and thus 
by proxy have cited Aitchison’s paper and 
transformed their data as recommended by 
Aitchison (Fig. 1). We repeated this sur-
vey using the phrase (“Random Forests”) 
to retrieve literature that has used this 
relatively new algorithm. We found just 
five results with “plant volatiles” and none 
with “cuticular hydrocarbons” (Fig. 1).

basic assumptions of normality, among 
others, were being violated. Although this 
was pointed out as early as 1897 by Karl 
Pearson writing on spurious correlations, 
it was not until the 1960s that such pitfalls 
were acknowledged and were taken into 
consideration.1 Several transformations 
were proposed to render the data suitable 
for analysis. These include the centered 
log ratio transformation (clr), additive log 
ratio transformation (alr) and isometric 
log ratio transformation (ilr), of which clr 
is most often used.6,7

Transformation of Compositional 
Data in Chemical Ecology

To understand the extent of transforma-
tions of compositional data in chemical 
ecology, we performed a literature sur-
vey using Google Scholar. We limited 
our search period to 1986–2010, since it 
was in 1986 that J. Aitchison published 
the seminal work titled “The statistical 
analysis of compositional data,” which 

Figure 1. Literature survey using Google Scholar from 1986–2010 to retrieve publications in 
chemical ecology which transformed their proportion data as recommended by Aitchison in the 
fields of plant volatile (or) insect cuticular hydrocarbon analysis. The number of publications citing 
both the Aitchison transformation and Breiman’s Random Forests is also shown.
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and Leo Breiman to turn their attention 
to such specific problems that will help to 
shed light on the genuine dilemma facing 
researchers in this area: to transform or 
not to transform?
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Should a researcher be more comfort-
able with the results from transformed or 
untransformed data in this case? We sug-
gest that since Random Forests coupled 
with varSelRF employs bootstrapping in 
which various compounds are selected at 
random may times over, in various com-
binations, it should not be necessary to 
transform the data to employ such algo-
rithms in the search for predictor vari-
ables. However, this suggestion needs to 
be examined and verified statistically. We 
urge statisticians such as John Aitchison 

errors. Such attractive features provide 
possibilities of using such algorithms for 
data sets in chemical ecology which have 
the additional constraint of comprising of 
compositional data.

We reanalyzed data on volatile organic 
compounds (VOCs) produced by ripe figs 
of three species and two sexes within these 
species (Ficus hispida male and female 
figs, Ficus exasperata male and female figs, 
and Ficus tsjahela monoecious figs) that 
we had analyzed using Random Forests 
in an earlier paper,2,13 this time by trans-
forming the data by adding 0.0001 to 
all values. In comparison with an earlier 
PCA plot of untransformed VOC values, 
we found that a PCA with transformed 
VOC values gave better separation 
between species and sexes (Fig. 2) in com-
parison to untransformed data (Fig. 4a of 
the earlier publication13). Furthermore, 
a multidimensional scaling plot using 
the MDSplot function in the Random 
Forests package with untransformed 
proportions showed the same separation 
as did the PCA plot with transformed 
proportions (Fig. 2). This indicates that 
a PCA with transformed proportions is 
equivalent to a multidimensional scaling 
(MDS) plot with untransformed propor-
tions with these data (the MDSplot func-
tion does not provide stress values as in 
other MDS analysis). Furthermore, we 
used the varSelRF routine11 with Random 
Forests on transformed data to separate 
the five classes of figs and found some 
interesting similarities and differences 
from our earlier results (Table 1). In the 
case of male F. hispida and F. tsjahela, 
there were no differences from our ear-
lier predictor VOC compounds. In the 
case of F. hispida female, we found that 
Random Forests had substituted 2-heptyl 
acetate instead of iso-amyl acetate as a 
predictor compound (Table 1). In female 
F. exasperata, Random Forests substi-
tuted undecane instead of p-cymene 
and β-caryophyllene with a lower model 
frequency of 83% compared to the ear-
lier model frequency of 98% (Table 1). 
In male F. exasperata, Random Forests 
added allo-aromadendrene, γ-terpinene 
and terpinolene to a previous list of pre-
dictor VOCs with a now much higher 
model frequency of 82% compared to the 
earlier 31% (Table 1).

Figure 2. Unsupervised classification of fruit-dispersal volatile organic compounds (VOCs) of 
three sympatric Ficus species using proportional abundance of VOCs. (A) A PCA plot of VOC 
proportions after transformation employing the clr (centered log ratio) method as recommended 
by Aitchison. (B) An MDS plot of the untransformed proportions of the same VOCs using Random 
Forests.
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Table 1. Comparison of results from Random Forests on ripe fig fruit volatile organic compounds (VOCs) using untransformed and transformed data

Group of 
interest

Model frequency 
(untransformed 

data)a

Predictor VOCs 
(untransformed 

data)a

Model frequency 
(transformed 

data)

Predictor VOCs 
(transformed data)

Percentage of VOCs 
in headspacea CVa,b

F. hispida female 100 2-amyl acetate 100 2-amyl acetate 63.3 0.3

iso-amyl acetate 1.3 1.5

2-heptyl acetate 23.2 0.7

F. hispida male 100 indole 100 indole 32.1 0.6

α-trans bergamotene α-trans bergamotene 20.9 0.5

F. tsjahela 
monoecious

100 α-pinene 100 α-pinene 31.5 0.2

camphene camphene 3.1 0.3

F. exasperata 
female

98 γ-terpinene 83 γ-terpinene 21.7 0.5

p-cymene 5.4 0.3

β-caryophyllene 0.2 1.5

undecane 1.3 1.1

F. exasperata 
male

31 daucene 82 daucene 2.9 1.0

β-copaene β-copaene 0.9 0.9

allo-aromadendrene 3.3 1.0

γ-terpinene 7.9 0.6

terpinolene 0.5 0.9
aData from Ranganathan & Borges (2010).2 bCoefficient of variation of VOC headspace percentage.


