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The covalent addition of Small 
Ubiquitin-Like Modifier (SUMO) 

to various intracellular proteins is an 
essential regulatory step in most eukary-
otes. Due to its necessity and the large 
number of putative targets, SUMO is 
thought to be second only to ubiquitin 
(Ub) among Ub-fold proteins in terms 
of regulatory influence. Whereas, ubiq-
uitylation (i.e., the attachment of Ub) is 
generally associated with protein degra-
dation, SUMOylation appears to have 
more diverse consequences, including the 
regulation of transcription, chromatin 
structure/accessibility, nuclear import 
and various protein-protein interactions, 
and even appears to block the action of 
Ub by competing for the same binding 
sites on targets.1-3 Paramount to under-
standing SUMO function(s) is knowing 
the complete catalog of SUMO targets. 
In the following addendum we review 
our recent publication4 describing the 
proteomic identification of SUMO sub-
strates in the model plant, Arabidopsis 
thaliana, and expand our analyses with 
regard to the changes in SUMOylation 
patterns that are induced by heat stress. 
Collectively, our data indicate that 
SUMOylation is highly dynamic with 
evidence that SUMO addition globally 
modifies transcription and chromatin 
accessibility, especially during stress.

SUMOylation of accessible lysines on 
target proteins is mediated by a sequen-
tial three-enzyme conjugation pathway, 
which in plants is comprised of an E1 
activating enzyme heterodimer (SAE1a or 
b combined with SAE2), a single E2 con-
jugating enzyme (SCE1), and at least two 
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E3 ligases (SIZ1 and MMS21/HPY2).5-8 
Often but not always, SUMO becomes 
bound within a SUMO-acceptor motif—
ΨKxE, where Ψ is a large hydrophobic 
residue, K is the modified lysine, x is any 
residue and E is a glutamic acid.9,10 In 
plants, the SUMO pathway is essential,11 
and has been shown genetically to control 
multiple cellular processes, including the 
response to various stresses, cell division, 
flowering time, pathogen defense and 
signaling by the hormones ABA and sali-
cylic acid.1,7,12,13 Of special interest are the 
observations that various abiotic stresses 
induce a substantial and reversible rise in 
SUMO1/2 conjugates, presumably as a 
way to protect plants from environmental 
insults.5,11,14,15

Prior to our proteomic analyses, only 
a few SUMO substrates were described 
in plants (e.g., ABI5, PHR1, ICE1 and 
FLD1,12). To expand this list, we took 
a proteomic approach, similar to those 
using yeast and mammalian cell cul-
tures,16,17 to identify SUMO substrates 
both before and during stress. Key to our 
success was the creation of an Arabidopsis 
line in which the essential SUMO1/2 iso-
forms were replaced with a tagged variant 
(6His-SUMO1-H89R) designed for faith-
ful rescue, stringent purification, and the 
ability to more easily map SUMO attach-
ment sites by mass spectrometry (MS).4 
SUMO conjugates were then purified 
from these 6His-SUMO1-H89R sum1-1 
sum2-1 plants by a three-step affinity 
procedure that employed strong dena-
turants (8 M urea/7 M guanidine HCl) 
to minimize contaminants and proteins 
that bind non-covalently to SUMO or 
to SUMOylated proteins. The enriched 
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revealed an intriguing crosstalk between 
the SUMO and Ub pathways as has 
been seen in other eukaryotes.20-22 These 
SUMO+Ub-modified proteins dramati-
cally increase upon heat stress, with our 
mapping studies suggesting that some 
Ubs are directly attached to the SUMO 
moieties.4 An intriguing possibility is that 
this Ub addition directs the degradation 
of a subset of SUMOylated proteins with 
the SUMO moiety providing the signal 
for ubiquitylation.

Arabidopsis like other eukaryotes 
examined,16,23,24 dramatically and revers-
ibly increase the levels of SUMOylated 
proteins upon various abiotic stresses.4,5,11 
This increase involves the SUMO1/2 iso-
forms specifically and requires the SIZ1 
E3,11 which may explain the pleiotropic 
phenotype of siz1 null mutants and their 
sensitivity to stress.8,11,12,14,25 One goal of 
our study was to identify the changes in 
Arabidopsis SUMOylation patterns dur-
ing heat stress. As can be seen in Figure 1, 
a 37°C heat stress for 30 minutes increases 
the level of SUMO1/2 conjugates by 
3  fold (measure 30 minutes later at the 
peak), which is paralleled by a commen-
surate drop in the level of free SUMO1/2.

Semi-quantitative analysis of individ-
ual SUMO conjugates indicates that heat 
stress can dynamically affect their levels. 
Here, we compared the spectral counts 
obtained from MS precursor scans of spe-
cific peptides from non-stressed and heat-
stressed seedling, which were normalized 
by the number of total spectral counts. In 
total, the analyses combined datasets from 
five independent MS experiments (three 
heat-stress and two non-stress datasets). 
Given the likely role of SUMO in regu-
lating transcription,26 we expected to see 
a significant over-representation of tran-
scription factors and chromatin remolding 
complexes in the heat-stress versus non-
stress datasets. Surprisingly, most tran-
scription factors, including some HSFs 
were present in both. However, a few were 
significantly increased upon heat stress. 
For example, the TOPLESS (TPL) and 
SEUSS (SEU) corepressors and several 
components of the SWI/SNF chromatin 
modification complex (PICKLE, SWI3C 
and CHR11), which have important regu-
latory roles in plant development,27,28 were 
substantially more SUMOylated during 

suggests that SUMOylation modifies a 
conserved set of targets and their asso-
ciated processes in eukaryotes. Third, 
the SUMO pathway itself is a main tar-
get of SUMOylation, which may have 
important regulatory consequences.18,19 
The detection of SUMO footprints on 
SUMO1 also unequivocally demonstrates 
that poly-SUMO chains are assembled 
in plants. Fourth, we found that the 
Arabidopsis conjugation machinery likely 
uses the same SUMO-acceptor sites as 
in other eukaryotes.9,10 Our substrate list 
was similarly enriched for proteins with 
predicted ΨKxE motifs. And for sites 
mapped via our engineered SUMO MS 
footprint, ~60% conformed to the ΨKxE 
sequence.4 Sequences surrounding the 
remaining SUMO acceptors sites were 
highly divergent, indicating that a variety 
of other recognition motifs are possible. 
And fifth, our detection of proteins that 
are both SUMOylated and ubiquitylated 

samples from non-stressed plants or plants 
subjected to heat or oxidative stress were 
then analyzed by tandem MS to identify 
SUMO substrates generated in planta.

In total, we identified 357 high prob-
ability SUMO substrates in Arabidopsis, 
which upon inspection provide a number 
of important insights into SUMO func-
tions in plants.4 First, in agreement with 
cell fractionation studies,11 most of the 
SUMO substrates identified reside in the 
nucleus. Consistent with this location, 
many are known or predicted to regulate 
nuclear activities, including roles in tran-
scription, chromatin remodeling, DNA/
RNA modifications, DNA repair and 
nuclear pore shuttling. Second, many of 
these Arabidopsis targets overlap with 
those identified in yeast and metazoans 
with the list similarly enriched for pro-
tiens harboring domains common among 
DNA/RNA interactors and chromatin 
modifiers.16 This connection strongly 

Figure 1. Effect of heat stress on the levels of free SUMO and SUMO conjugates in Arabidopsis. 
(A) Profile of SUMO conjugates in seedlings before and after heat stress. Seven-day-old seedlings 
were grown at  24°C, exposed to 37°C for 30 min, and then returned to 24°C for 30 min before 
harvest. Crude protein extracts were subjected to SDS-PAGE and immunoblot analysis with anti-
SUMO1 antibodies. Levels of the proteasome subunit PBA1 were used to confirm equal loading. 
HS, heat-stressed seedlings. RT, seedlings not exposed to heat stress. (B) Quantification of high 
molecular mass SUMO conjugates and free SUMO. Levels of each fraction were quantified by den-
sitometric scanning of the immunoblot membranes probed with anti-SUMO1 antibodies. Error 
bars represent the standard deviation of three independent heat-stress experiments.
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Certainly, a more complete understand-
ing of the dynamics of SUMOylation, 
especially during stress, will be essential 
to fully understand the exact role(s) of 
SUMO. While MS spectra counts can 
provided a rudimentary picture, more 
quantitative MS methods will be needed 
to better clarify the role of stress-induced 
SUMOylation on specific substrates.
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an important epigenetic mark to glob-
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Figure 2. Effect of heat stress on the SUMOylation levels of representative Arabidopsis targets. 
Seven-day-old seedlings were subjected to heat stress as in Figure 1. HS, heat-stressed seedlings. 
RT, seedlings not exposed to heat stress. Levels of each protein in the RT and HS MS datasets were 
estimated by the number of spectral counts in the MS precursor scans that were obtained for 
each target; these numbers were then normalized by the total number of spectral counts for each 
MS run. (A) SUMOylated transcription and DNA repair components that increase in abundance 
during heat stress. (B) SUMOylated proteins that decrease in abundance during heat stress. (C) 
Members of the SUMO conjugation pathway.
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