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Abstract
The shape of the mitral valve annulus is used in diagnostic and modeling applications, yet
methods to accurately and reproducibly delineate the annulus are limited. This paper presents a
mitral annulus segmentation algorithm designed for closed mitral valves which locates the annulus
in three-dimensional ultrasound using only a single user-specified point near the center of the
valve. The algorithm first constructs a surface at the location of the thin leaflets, and then locates
the annulus by finding where the thin leaflet tissue meets the thicker heart wall. The algorithm
iterates until convergence metrics are satisfied, resulting in an operator-independent mitral annulus
segmentation. The accuracy of the algorithm was assessed from both a diagnostic and surgical
standpoint by comparing the algorithm’s results to delineations made by a group of experts on
clinical ultrasound images of the mitral valve, and to delineations made by an expert with a
surgical view of the mitral annulus on excised porcine hearts using an electromagnetically tracked
pointer. In the former study, the algorithm was statistically indistinguishable from the best
performing expert (p = 0.85) and had an average RMS difference of 1.81 ± 0.78mm to the expert
average. In the latter, the average RMS difference between the algorithm’s annulus and the
electromagnetically tracked points across six hearts was 1.19 ± 0.17mm.

Index Terms
Mitral Valve; Annulus; Segmentation; Ultrasound; Graph Cuts

I. Introduction
The mitral valve annulus is an important cardiac structure that is defined as the fibrous
saddle-shaped structure that anchors the mitral leaflets. Characterization of the geometry of
the mitral annulus has proven valuable in an array of applications. Clinically, studies on
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annulus shape have shown that there is a correlation between annular geometry and
pathology [1]–[5], and that the annulus can be used in the assessment of valve function [6],
[7]. The annulus shape is also commonly used in surgical planning for valve repair [8] and
in prostheses design [9]. In modeling, the annulus defines the boundary conditions for
models simulating the mechanics of the leaflets during valve closure [10]–[14].

The mitral annulus is most commonly visualized using ultrasound, given that ultrasound is a
cheap, portable, and non-ionizing imaging modality capable of capturing the fast moving
valve structures. Prior to three-dimensional ultrasound (3DUS), delineating the shape of the
annulus was difficult, leading to the assumption that the annulus was planar, instead of
saddle-shaped as is now apparent [6]. Even after the advancement from 2D to 3D
ultrasound, visualizing the annulus remains a problem due to imaging noise and volume
visualization limitations.

Despite widespread use of the annulus in both clinical and research applications, available
methods to extract an accurate and reproducible geometry remain limited. One of the most
common methods used in research applications is to segment and track implanted fiducials,
such as tracking radiopaque markers with fluoroscopy [15]–[18] or tracking sonomicrometry
transducers [19]. This is an invasive approach not feasible in a clinical setting. Another
common method is manual segmentation of images [2]–[5], [20]–[22], which in addition to
being tedious and time consuming, is also prone to inaccuracies. One reason is that the usual
practice is to pick points in 2D slices taken from a 3D volume, so the user only has access to
a portion of the available information at any given step, forcing the user to mentally
interpolate 3D information. The methods presented in [23] and [24] attempt to correct for
the deficiencies in these manual slice-based segmentations, but do so by smoothing the
segmentations without referring back to the original 3D data from which they were made.

Semi-automatic methods to delineate the 3D annulus from 3DUS are presented in [25] and
[26]. The former method segments the annulus by compiling semi-automated annulus point
delineations in 2D slices into a 3D annulus structure. As in the case of manual segmentation,
this method does not take into account information in neighboring slices, so it suffers from
inaccuracies and spatial inconsistencies. The latter method segments the annulus as a
consequence of fitting an entire mitral valve model to 3DUS data using learning techniques,
which consequently requires a training database of manually delineated points. The resulting
accuracy of the method for the purpose of patient-specific annulus segmentation is unclear,
as comparisons are only made to published population valve dimensions.

We present in this manuscript an accurate and robust segmentation algorithm (Fig. 1)
designed to segment the mitral annulus in an ultrasound volume containing a closed valve.
The algorithm begins by first finding a surface at the location of the thin leaflets. The
surface is constructed near a user-provided point using a thin tissue detector and the max-
flow algorithm. The algorithm then locates the annulus by finding where at the surface the
thin leaflet tissue meets the thicker tissue of the surrounding heart wall. This is done using
the max-flow algorithm and active contour methods in projection images created from the
surface and surroundings. A 3D mitral annulus contour is computed by projecting the
annulus contour in the images back onto the mitral leaflet surface.

The details of the algorithm are described in Section II. An analysis of the algorithm is then
presented in Section III, which includes studies which validate the algorithm’s accuracy
(Sections III-A and III-B), and an analysis of the sensitivity of the algorithm to the user-
provided point (Section III-C).
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II. Algorithm Design
A. Ultrasound Data

The acquired data for this study was in the form of full volume reconstructions, allowing for
the visualization of the entire mitral valve in a single 3DUS volume (iE33 Echocardiography
System with transesophageal, X7-2t, and transthoracic, X7-2, probes, Philips Healthcare,
Andover, MA, USA). The condition of the valves ranged from normal to varying types and
degrees of pathology. While the position and orientation of a valve within a volume varied,
the segmentation algorithm requires that the thin tissue of the leaflets can be seen across the
entire valve.

From each 4D data set (3D + time), a single ultrasound frame containing a closed valve was
selected. The frame was chosen at or near peak systole, as this is a time in the cardiac cycle
when the valve is closed and moving slowly. Restricting the selection to closed valves
enabled accurate computation of a surface at the location of the leaflets. The dimensions of
the volume were roughly 200×200×200 voxels, with a resolution on the order of 0.5–0.75
mm per voxel. In this manuscript, the selected 3DUS volume is referred to as Ω, and
individual voxel locations as vi, where each vi has corresponding (xi, yi, zi) coordinates. For
Ω with N voxels, i ∈ {1, …,N}.

B. Thin Tissue Detector
Delineating the location of the annulus directly from 3DUS is difficult, so the algorithm first
segments the location of the leaflets using a thin tissue detector. The thin tissue detector
(TTD) highlights thin structures at a particular scale in the 3DUS volume. The TTD is
computed using characteristics of the gradient field of both Ω and ΩF, where ΩF is a filtered
version of Ω, reducing the effects of speckle in the volume. ΩF is computed by convolving Ω
with a Gaussian kernel, G(σ), with standard deviation, σ, approximately equal to half the
maximum expected thickness of the mitral leaflets, taking into account any abnormal
thickness due to disease state. The kernel dimension is 4σ+1 to include two standard
deviations.

The TTD is computed using the results of three computations. The first of these

(1)

is a measure of the average angle between gradient vectors of ΩF within a neighborhood,
where ∇ denotes the gradient operator. A neighborhood at vi is defined as the set of all
neighboring voxels, vj, which are contained within the cube of side length p centered at
voxel vi, making j ∈ {1, …, J}, with J = p3 for a cubical neighborhood. At the location of the
leaflets, there will be opposing gradient fields as a result of the dark blood pools above and
below the thin, bright leaflets. Therefore, Θ will have a higher value at the leaflets in
comparison to more homogeneous regions, such as in the middle of the blood pool or thick
tissue regions.

The gradient vectors at the leaflets should be pointing inward, so
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(2)

measures the flux of the vectors across the neighborhood boundary faces. In computing Φ,
the inward directed unit normal of each boundary face is denoted fq,norm, where q ∈ {1, …,
6} for a cubical neighborhood. Neighbors with a face adjacent to face q are denoted fk,
where k ∈ {1, …,K} and K = p2 for a cubical neighborhood.

Θ and Φ are computed using directions of gradient vectors but not their magnitude, meaning
they contain no information about edges. However, the mitral leaflets are near two strong
edges as a consequence of the thin tissue residing between two blood pools. Therefore, to
quantify the number and proximity of strong edges to a voxel

(3)

The complete TTD is then (ΘΦ[0–1] Π)[0–1], where (·)[0–1] indicates that the values for that
term are normalized to the range of 0 to 1. High TTD values indicate that the voxel is likely
part of a thin structure and potentially at the location of the mitral leaflets. The TTD
computed for a 3DUS image of a prolapsed mitral valve is shown in Fig. 2, where the TTD
is inverted to better show the highlighted thin tissue regions.

C. Valve Position & Orientation
To accurately construct a surface at the location of the mitral leaflets, an initial estimation of
the position and orientation of the mitral valve relative to the volume is needed. In the first
iteration of the algorithm, the position is determined by the user, who is asked to provide a
point, xc, somewhere near the center of the valve but not necessarily on the valve. In
subsequent iterations, assuming they are needed, xc is defined as the center of the computed
annulus from the previous iteration.

Given xc near the center of the valve, the orientation of the mitral valve is then estimated by
computing a corresponding best-fit mitral valve plane. The idea is to threshold to separate
leaflet tissue and blood, then fit a plane to the tissue. This is done by first clustering the
values of the TTD from voxels residing in a spherical region of interest of radius rpca
centered at xc into two clusters using a k-means algorithm. The sample mean and standard
deviation of the TTD at voxels for the cluster likely containing the leaflets, which is the
cluster with the higher TTD average, are denoted μhigh and σhigh, respectively. A principle-
component analysis (PCA) on the set of voxels vpca: {vi|TTD(vi)>(μhigh − σhigh) ∩ |vi − xc|
≤ rpca} then defines the orientation of the cluster. The mitral valve plane, MVplane, is then
the plane passing through xc with normal direction nc equal to the direction of least variance
as determined in the PCA.

D. Graph Construction and the Max-Flow Algorithm
The annulus segmentation algorithm makes extensive use of the max-flow algorithm [27].
Generically, a graph, Γ=〈V,E〉, is a set of nodes, V, connected by edges, E, which have
either a directed or undirected capacity. In the case of the max-flow algorithm, there are also
two special nodes called the source and the sink. The max-flow algorithm finds the
maximum flow which can originate from the source, flow through the edges of predefined
capacity, and enter the sink. In doing so, according to the min-cut/max-flow theorem [28],
the max-flow algorithm generates a set of saturated edges called the min-cut which separates
the graph into two regions – one containing the source and another containing the sink.
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A generalization of the graph construction used in the algorithm is shown in Fig. 3, where
the 2D and 3D graphs are used to find contours and surfaces, respectively. The graph
construction, in particular attaching the source and sink to opposite ends of the graph, allows
us to enforce prior knowledge that the min-cut should reside between the opposite ends.

E. Mitral Leaflet Surface via Max-Flow
With an estimation of the valve position and orientation, a graph can be constructed on
which we implement the max-flow algorithm to find a surface at the location of the mitral
leaflets. The graph, Γsurf =〈Vs,Es〉, resides within a cylinder of radius rgraph and height
2rgraph which is centered at xc with an axis directed along nc. The graph consists of nodes Vs
located on a rectilinear grid directed along nc with a one voxel spacing, and undirected
edges Es which connect the nodes, making Γsurf 6-connected except on the edges of the
graph. The source connects to all nodes on one face of the cylinder, while the sink connects
to all nodes on the opposite face (Fig. 4).

To find a surface at the location of the leaflets, we define the edge capacities, Es,p and Es,o,
in (4) and (5), respectively, such that between connected nodes Vs,i and Vs,j

(4)

(5)

where ωp, ωo, and αs are scalar weights. This form lowers the edge capacity around the
leaflets, encouraging the min-cut to be located at the leaflets. Es,p defines the capacity for
edges parallel to nc, and Es,o the capacity for all other edges. This is an anisotropic edge
capacity assignment [29] used to control the curvature of the surface: ωp < ωo encourages a
flat surface, while ωp > ωo allows for a high curvature surface. For those edges where one of
the nodes is either the source or the sink, the edge capacity is set to infinity.

The min-cut is found using the max-flow implementation by Kolmogorov [30]. The
resulting min-cut defines the mitral valve leaflet surface, MVsurf. Assuming xc is located
near the center of the valve and rgraph is sufficiently large, MVsurf extends beyond the
leaflets and contains the mitral annulus.

F. Projection Image Formation
The annulus is where the thin leaflets connect to the thicker cardiac walls. We therefore
search at and around MVsurf, which contains the annulus, for this location. Because the
curvature of MVsurf was controlled using ωp and ωo in the max-flow implementation,
MVsurf is a regular surface in ℜ3 that can be described as the graph of a function, Zsurf,
described in the x′y′-plane

(6)

The x′y′z′-coordinate system is centered at xc with the z′ axis parallel to nc (Fig. 5).

The annulus, a closed curve on MVsurf, therefore projects to a closed planar curve in the x′y
′-plane. To locate this planar curve, two images, Pint and Pttd, are used, where
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(7)

(8)

Examples of the images are shown in Fig. 5. Pint is the value of Ω in regions above and
below MVsurf, excluding a band of thickness 2σ where the leaflets are located, and provides
information about where the tissue surrounding the leaflets resides. Pttd is the value of the
TTD at MVsurf, and provides information about where the thin tissue resides at the surface.
It is clear from the example images of Pint and Pttd in Fig. 5 that there exists a centrally
located dark region in Pint and a bright region in Pttd. This region corresponds to the location
of the mitral valve in the projection space, making the annulus the border of this region.

G. Projected Mitral Annulus Contour
The border that we wish to delineate in the projection space, which corresponds to the
projected location of the mitral annulus, is a single closed contour which can be delineated
with such methods as snakes [31] or level sets [32]. These methods, however, are sensitive
to initial contour position and generally require a manually initialized contour. To avoid the
variability inherent in user input, we developed an automated method which initializes
contours by computing min-cuts on 2D graphs using the max-flow algorithm, with edge
capacities derived from both Pint and Pttd for added robustness. This method is preferred
over our preliminary method which initialized generic contours in the projection images
[33]. To overcome noise and anatomic variability in Pint and Pttd, multiple spatial scales of
the projection images are used to construct multiple resolution-specific contours. Treating
these contours as snakes and forcing them to a common location in high resolution versions
of Pint and Pttd produces a single contour at the desired location. A summary of the approach
is shown in Fig. 6. The advantage of using the method of snakes versus level sets is it allows
for a simple integration of an attractive energy between contours and does not allow a
contour to split during its evolution.

1) Contour Initialization via Max-Flow—The graph, Γcont=〈Vc,Ec〉, used in the max-
flow implementation to initialize a contour in the projection space is shown in Fig. 7. The
nodes, Vc, are positioned along rays emanating from a center point, xo. The rays span the
defined projection space and are evenly spaced at an angular offset of Δγ, while nodes are
evenly spaced along the rays at an offset of Δr. The nodes nearest to the center connect to
the source, while nodes farthest from the center connect to the sink.

To initialize a contour at a specific resolution of the projection images, Pint and Pttd are first
filtered using a Gaussian, G(σn), to generate Fint,n and Fttd,n, respectively. For the case
where m different contours will be initialized at m different resolutions, n ∈ {1, …, m}. The
values of Fint,n and Fttd,n at the node locations are found using bilinear interpolation and are
normalized across all nodes to the range [0–1].

It is assumed that the border of the centrally located regions surrounds the center of the rays,
xo. To find this border, we first compute at the node locations

(9)
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where λint and λttd are scalar weights and R is the direction along a ray. This is a drive
image that will help to define the graph edge capacities, with high values at locations that
are most likely the desired border. Partial derivatives of Fint,n and Fttd,n are computed along
the rays because we would like to find the location where Fint,n changes from dark to light as
we travel out from xo along a ray, rather than light to dark. Similarly, we want to find the
location where Fttd,n changes from light to dark. Fdrv,n is scaled by the inverse of Fint,n to
encourage the contour to be found near the darker regions of Fint,n.

The edge capacities, Ec,s,n and Ec,d,n, of the graph are undirected and defined using Fdrv,n
such that between connected nodes Vc,i and Vc,j

(10)

(11)

where ωs, ωd, and αc are scalar weights. Ec,s,n defines the capacity for edges between nodes
on the same ray, and Ec,d,n defines the capacity for edges between nodes on different rays.
This is done to control the deviation of a contour from a circle: ωs < ωd encourages a more
circular min-cut, while ωs > ωd allows for a less circular min-cut.

Due to the construction of the graph, nodal resolution varies with distance from the center.
Minimizing these variations along the min-cut requires iterating the contour initialization to
force the ray center to the centroid of the area contained within the min-cut. For the first
iteration, xo is the projection of the point xc onto the projection space. The final location of
the ray center is xf,n, and the final min-cut is contour Cn, where n is specific to the resolution
of the projection images.

2) Contour Convergence via Active Contours—The multiple contours initialized
using m different resolutions of Pint and Pttd are forced to converge as snakes. This allows us
to find a balance between the expected shape of the contour and the expected location of the
contour determined from the images.

We restrict the nodes of the snake to reside on rays emanating from a center point, xs, which
is computed as the centroid of the ray centers, xf,n, where n ∈ {1, …,m}. The rays are
equally spaced at an angular offset of Δφ (Fig. 8). For snake n, the radial location of the
snake node on ray φτ is referred to as Rn(φτ), where τ∈ {1, …, T} and T is the number of
rays, and is initially determined from the location of Cn.

Snakes evolve simultaneously such that they are forced to converge to a single snake. The
energy used in the snake evolution is

(12)

where ωdrv, ωxy, ωz, and ωatt are scalar weights. Edrv,n is an image energy derived from the
projection images, Exy,n is the curvature energy of the snake in the projection plane, Ez,n is
the curvature energy of MVsurf at the snake location, and Eatt is an attractive energy which
forces the multiple snakes to converge to a single snake.
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Image Energy—The image energy, Edrv,n, is derived in much the same way that Fdrv,n is
derived for the graph. Pint and Pttd are first filtered using a Gaussian, G(σs), and normalized
to the range of [0–1] to generate Fint,s and Fttd,s, respectively. The image energy is then

(13)

where λint and λttd are the same scalar weights used in (9), and Edrv,n is normalized so that
its magnitude is less than one. Imparting force Udrv,n defined as

(14)

on the snake nodes subsequently minimizes the image energy at the location of the snake.

Contour Curvature Energy—To account for contour curvature but avoid undesirable
evolution of the snake in the absence of strong image forces, as is common with typical
methods [34], we use the method presented in [35]. This method, instead of minimizing the
curvature of the snake, minimizes the change in curvature. The energy Exy,n is then

(15)

where κ is the curvature of the contour and s is arc length.

Whereas the method in [35] minimizes (15) by moving snake nodes to the perpendicular
bisector of neighboring nodes, we restrict the nodes to move along the rays. In doing so, we
find Rn,des(φi), which is the desired location of the node from snake n along ray φi which
will minimize (15). Snake nodes are forced toward the location of Rn,des(φi) using Uxy,n(φi)
= Rn,des(φi) − Rn(φi).

Surface Height Curvature Energy—The shape of the surface at a snake’s location is
easily obtained, as it is known that MVsurf can be described as the graph of a function, Zsurf,
which is defined in the projection space. Therefore, we can define Zn(φτ ) to be the height of
MVsurf above the node on snake n residing on ray φτ. Since the annulus is not flat, but rather
saddle-shaped, Ez,n is defined as

(16)

This energy is minimized by imparting a force

(17)

on the nodes, which encourages a constant local change in elevation of the annulus contour
with respect to changes in φ.
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Attractive Energy—As a means to allow the snakes to interact - so that a node of one
snake which is at the global minimum can draw nodes of other snakes away from local
minimums - and consequently force the snakes to converge to a common location, we
designed the attractive energy Eatt

(18)

Eatt is minimized in each ray by driving the nodes from the different snakes on that ray
towards the center of the node range, , using Uatt,n = Rmid
− Rn.

Snake Update—Given the described energies which evolve the individual snakes, and the
methods designed to minimize the energies, the snakes update according to

(19)

where Rn,t+1 is the updated snake, Rn,t is the current snake, and dt is a time step. The snakes
are updated until they stabilize to within 0.1 pixels, which occurs in roughly 100 iterations
using the parameter values shown in Table I.

H. 3D Mitral Annulus Contour
The three-dimensional annulus is constructed from the final snake by computing the x′ and
y′ coordinates using the angle of the rays and radial location of the nodes, and the z′
coordinates using Zn. We compute a continuous annulus contour in ℜ3 using a cubic
interpolation of the defined points.

I. Algorithm Convergence
The point xc which initially positions and orients the graph used to find MVsurf is provided
initially by a user who is asked to provide a point near the center of the valve. Therefore, the
location of the user-specified point could have an effect on the shape of the 3D annulus
contour. However, this dependency is resolved by iterating the algorithm until convergence
metrics are satisfied (Fig. 9).

After the first execution of the algorithm, and in subsequent iterations, the center point of the
resulting 3D annulus contour, xc,new, is compared to the location of xc. If |xc,new − xc| > ε,
where ε is a pre-defined scalar distance, xc is set equal to xc,new and the algorithm iterates.
Otherwise, it is assumed the annulus contour has been accurately segmented. Enforcing this
convergence means the resulting annulus segmentation is independent of the initial user-
provided point, making the algorithm’s results operator-independent. Section III-C shows
that a relatively large region of convergence exists.

III. Validation
To determine the appropriateness of the algorithm for diagnostic applications, we assessed
the algorithm’s abilities to accurately locate the mitral annulus in 3DUS compared to a
group of experts (Sec. III-A). For surgical planning purposes, we compared the algorithm’s
results to the appearance of the mitral annulus as seen in a surgical view (Sec. III-B). We
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also explored the sensitivity of the algorithm to the initial user-specified point which serves
as the algorithm’s input (Sec. III-C).

It is important to note that in these studies, the same parameter values (Table I) were used
for every valve and every study. These parameters were found by testing the algorithm on
11 clinical images, none of which were included in the validation studies. The clinical
images contained both normal and diseased mitral valves (3 normal, 4 with mitral prolapse,
and 4 with mitral regurgitation). Of the 11 images, 10 were acquired with a transesophageal
approach (X7-2t probe), and one with a transthoracic approach (X7-2 probe).

The algorithm was coded mostly in MATLAB (The Math-Works, Natick, MA, USA), but
used C++ for both computing Φ in the TTD, and for the implementation of the max-flow
algorithm. Approximate running times for various portions of the algorithm (64-bit PC, 3.0
GHz Intel Core 2 Duo processor with 4GB of RAM) were 30 seconds to compute the TTD,
30 seconds to compute the mitral leaflet surface, and 15 seconds to subsequently initialize
and converge the contours, meaning each iteration took roughly 45 seconds. Typically two
iterations were needed for convergence.

A. Validation Study Using Manual Image Delineations
Noise in 3DUS and volume visualization limitations make delineating the annulus from
3DUS difficult. As a result, a ground truth segmentation of the annulus cannot be defined
from images. Therefore, to validate the annulus segmentation algorithm, we compared the
algorithmic annulus to manual segmentations of the annulus performed by a group (n = 10)
of cardiologists and trained echocardiography technicians, who will be collectively referred
to as experts. We performed the analysis by first comparing the segmentations made by each
expert to the collection of segmentations made by the rest of the experts for each valve. In
this way, a measure of the performance for each expert could be quantified. We then
compared the algorithm segmentations to the collection of segmentations made by the entire
group of experts for each valve.

Experts were provided with 3DUS images of 10 different closed valves. The state of the
valve and the nature of the 3DUS acquisition for each valve is summarized in Table II. The
images were slices at 10° increments about a mitral valve center point and axis. We asked
the experts to delineate the two annulus points in each image of the valve, for a total of 36
annulus points per valve. While the segmentations were performed in a single frame,
temporal information in each image was available to the experts to allow them to accurately
delineate the location of the annulus. To reduce the effects of training and fatigue in the
analysis, we presented the valves to the experts in random order.

The comparison of an expert to other experts, or the algorithm to the group of experts, was
done on a point-by-point basis. As some annulus points were better defined than others, it
was appropriate to penalize more for deviations of a point from a well-defined annulus
location than from a poorly-defined location. The measure of a well-defined and poorly-
defined annulus location was based on the collection of segmentations to which a particular
segmentation was being compared. Additionally, as the experts could only provide points in
the space of the image, points did not deviate out of the image plane. Therefore, the analysis
of points was done in ℜ2 space.

When comparing an expert’s segmentation to the collection of segmentations made by the
remaining experts, we refer to the ith point of the expert’s segmentation as Ai, where i ∈ {1,
…, 36}. The mean and covariance of the ith point as determined from the segmentations
from the rest of the group are referred to as Āi and Σi, respectively. A normalized
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(Mahalanobis) distance was then computed for each Ai, and the performance of an expert
quantified as

(20)

which is the mean normalized distance (MND) across all points for a valve.

We then analyzed the algorithm results in much the same way we analyzed the
segmentations from each expert, where the ith point of the algorithm’s segmentation was Ai,
and Āi and Σi were the mean and covariance, respectively, of the ith point from the entire
group of experts. The MND computation for the algorithm was then the same as shown in
(20).

A typical comparison between the algorithm’s resulting annulus and the points manually
delineated by the experts can be seen in Fig. 10. Table III shows the MND values for each
expert and for the algorithm across all valves, along with the sample mean and standard
deviation of the MND values from each group. Based on the distribution parameters of the
two groups, we concluded that the algorithm (MND= 1.11 ± 0.19) had a lower mean MND
than the group of clinicians (MND= 1.63 ± 0.76), and that this difference was statistically
significant (p < 0.001). If instead of looking at the group, we look at the best scoring expert
(Expert 6: MND= 1.13±0.33), we found that the algorithm and the best scoring expert were
statistically indistinguishable (p = 0.85).

We also compared the algorithm and experts by computing the RMS difference between the
algorithm and the expert average (Table IV), as this is a commonly used accuracy metric
and allows for comparisons to be drawn to other studies and methods. The average RMS
difference between the algorithm and the expert average was 1.81 ± 0.78mm. The larger
RMS differences usually coincided with a disagreement among the experts as to the annulus
location (i.e. a large spread of experts’ annular points), which could typically be attributed to
poor image quality.

B. Validation Study Using Surgical View Delineations
Given the poor image quality of 3DUS, validating the algorithm by comparing the
algorithm’s annulus to manual delineations made in 3DUS only answered the question of
whether the algorithm was interpreting the images in the same way as a group of experts.
The conclusion could not be made, however, that the annulus was understood to be the same
shape as seen in a surgical view. Therefore, we further validated the algorithm by comparing
the algorithm results to a fully visible mitral annulus delineated by a pointing device tracked
using an electromagnetic (EM) tracker (miniBIRD - Model 800, Ascension Technology
Corporation, Burlington, VT, USA).

We performed this validation study using six freshly excised porcine hearts. We removed
the left atrium to fully expose the mitral annulus, and to inhibit motion, secured the heart to
a plastic frame using suture. After securing the heart in a water tank, to roughly simulate a
peak systolic state, we artificially distended the left ventricle by connecting the aorta to a
tube from a container of water elevated about two meters above the heart, and by closing the
coronary arteries using suture (Fig. 11). An expert acquired a 3DUS volume of the loaded
mitral valve with a transthoracic probe, and shortly after, used an EM tracked pointing
device to delineate the fully visible mitral annulus with about 30 evenly placed points.
Taking into account the sensor resolution and calibration procedure, point locations were
computed to within a measured accuracy of 0.21 mm.
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We segmented the annulus from the acquired 3DUS volume using the semi-automatic
algorithm, and registered the EM delineated points to the algorithmic annulus by first
manually aligning the two segmentations and then using an iterative-closest-point algorithm
to refine the alignment. The RMS differences between the two can be seen in Table V, with
Fig. 12 showing a typical comparison. The average RMS distance of the EM delineated
annulus from the algorithmic annulus was 1.19±0.17mm, where we computed the standard
deviation of the RMS distance from three different EM delineations of the annulus made by
the expert on each mitral valve.

C. Sensitivity Study
Just as important as the algorithm’s accuracy is the accuracy needed for the algorithm’s
input, which is the user-specified point. For this study, we first established a baseline
segmentation for each valve, i.e. the algorithm’s segmentation resulting from a carefully
placed user-specified point near the center of the valve. The algorithm was then run on test
points that were placed in the region around the center point, where we determined the
center point from the baseline segmentation. If we refer to a segmentation resulting from a
test point as a test annulus, then a test annulus was said to converge to the baseline if all
points from the test annulus were less than 0.5 millimeters away from the baseline. The
3DUS images used in this study were the same as those used in the imaging validation study
described in Section III-A.

Based on the test points that resulted in the algorithm converging to the baseline, we could
then establish a region of convergence. To describe the region of convergence in general
terms, we refer to two directions – an axial direction, which is an estimation of the mitral
valve axis from the baseline segmentation, and a radial direction, which is any direction
perpendicular to the axis extending out from the center point towards the annulus. We
represent the location of all test points relative to these axes, and normalize the coordinates
by the radius of the baseline annulus in the plane defined by the axis and the test point. We
then approximate the region of convergence as the ellipsoidal region shown in Fig. 13. Table
VI shows the results of the sensitivity study, where it can be seen that the region of
convergence extends to an average of 85% of the annulus radius in the axial direction and
106% of the annulus radius in the radial direction.

IV. Discussion
A. Performance and Validation

In both validation studies, the mitral annulus segmentation algorithm accurately and robustly
segmented the three-dimensional mitral annulus contour from 3DUS. When comparing the
algorithm to a group of experts, results showed that the algorithm consistently segmented
the annulus near the location selected by the experts (Table III). The consistency of the
algorithm was better than the group of experts, i.e. while the algorithm might not have the
lowest MND values for each valve, across all valves, the algorithm had a lower mean MND
than the group of clinicians (p < 0.001). Additionally, the algorithm and the best scoring
expert were statistically indistinguishable (p = 0.85). We also analyzed the expert
segmentations by computing the RMS difference between the algorithm and the expert
average, in which we found an average RMS difference of 1.81 ± 0.78mm. Lastly, we
compared the computed annulus shape to a fully exposed porcine annulus delineated using
an EM tracked pointer. Results showed an average RMS difference of 1.19±0.17mm
between the algorithm and the delineated points. This smaller RMS difference, compared to
the validation study using the group of experts, is due to the fact that the true annulus could
be seen. In contrast, the group of experts could only use 3DUS images to interpret the
annulus location. Consequently, when image quality was poor, there was typically a lack of
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consensus as to the annulus location, resulting in a larger RMS difference between the
expert average and the algorithm.

The two validation studies were complimentary. The first study used actual clinical images,
which display the full range of noise and distortion encountered in medical practice. Here
the performance of the algorithm cannot be compared to a “gold standard” determination of
the annulus location; instead, the results were compared to the annulus location determined
by a group of practicing clinicians. This approach is most immediately relevant to diagnostic
applications, where determination of the annulus shape provides insight into various
pathological states [1]–[5]; current clinical practice is based on the expert segmentations
which are the standard for comparison here.

In the water tank study, the quality of the 3DUS images is significantly better than in vivo,
which may improve algorithm performance compared to clinical images. The annulus
location, however, could be directly designated using visual inspection and a pointing
device, which is likely to produce a good estimate of the “true” annulus location. This
method is particularly pertinent to surgical planning applications [8], as the mitral annulus is
viewed from a similar perspective during annuloplasty. While both validation studies have
limitations, the results in combination suggests that the algorithm is able to estimate annulus
location with an accuracy comparable to current clinical practice.

The sensitivity study suggests that the algorithm is robust to variation in user input. So long
as the user-specified point is located within about a half-diameter of the valve’s center, the
algorithm converges to the same annulus location. Given that this point is the only
information the algorithm requires from the user, the results of the semi-automatic annulus
segmentation algorithm are consequently independent of the user as well. Additionally,
despite variation in the states and degrees of pathology of the mitral valves, the probe
orientation relative to the valve, and the ultrasound machine settings, the algorithm
accurately segmented the annulus using the same algorithm parameter values for every
image, reinforcing the robustness of the method.

The measured accuracy of this algorithm is difficult to compare to prior work, as previously
published semi-automatic mitral annulus segmentation algorithms include minimal
validation [25], [26]. In [26], indirect quantitative analysis of the method was performed by
comparing measurements from a model to published population valve dimensions. As an
example, for average annulus diameter dimensions, the method reported errors of roughly
15%. We measured the annuli from our algorithm and the EM delineations discussed in III-
B and found an average diameter difference of under 4%.

B. Algorithm Design
The algorithm uses a thin tissue detector which can be likened to a simplified three
dimensional ridge detector [36] for determining the valve orientation, computing the mitral
leaflet surface, and finding the location of the projected mitral annulus contour. This is a key
reason the algorithm is successful: the only extensive regions of thin tissue in the image
volume are the mitral valve leaflets, so the algorithm focuses on the mitral apparatus and
ignores the rest of the volume. This generates accurate results despite poor placement of the
user input point.

Characterizing the leaflet location using the thin tissue detector, however, does place
restrictions on the ultrasound imaging, in that the thin leaflet tissue needs to be visible (Fig.
14(a)). This is not the case when the ultrasound wave propagation is parallel to the leaflet
surface orientation (Fig. 14(b) and 14(c)), as this produces little acoustic return. The
algorithm will fail on images such as these. However, similar restrictions would also exist
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for the previous work in annulus segmentation presented in [25] and [26], and is to be
expected for algorithms wishing to delineate the mitral annulus from a single ultrasound
frame and with no use of temporal information.

With ultrasound imaging, anatomical structures become more or less defined depending on
their orientation to the acoustic propagation (Fig. 14). This helps to explain why the
presented method cannot be used to find the annulus throughout the cardiac cycle, but rather
was designed for just closed valves. For instance, if the probe orientation such as that shown
in Fig. 14(a) was used to view the mitral valve throughout the cardiac cycle, when the valve
opens (Fig. 14(b)), the leaflets become oriented such that they become poorly defined.
Additionally, when the valve opens, the leaflets can become difficult to distinguish from the
left ventricle wall that they are pushed against.

The graph cut method (max-flow algorithm) is used in the annulus segmentation algorithm
first in a 3D graph to find a surface at the location of the mitral leaflets, and then in a 2D
graph to find a contour at the location of the projected mitral annulus in the projection
images. There are several reasons why we use the graph cut method. One of the main
reasons is the fact that it finds an optimal solution to an energy minimization problem,
meaning we will not fall victim to the local minima that many methods are subject to which
attempt to find an optimal surface or contour (i.e. active contours [31], level sets [32], etc.).
This is especially important in cardiac ultrasound, where anatomic variation along with the
noise, artifacts, and inhomogeneities inherent in ultrasound imaging have the potential to
create several local minima. Other reasons to use the graph cut method are that it does not
require an initialization, and a limited amount of prior knowledge can be enforced through
mindful construction of the graph. Therefore, the need for additional user input, for either
initialization or to encourage a specific geometry, is eliminated without sacrificing accuracy,
and we avoid the variation inherent in any additional user inputs. The combination of these
characteristics of the graph cut method helps to make the annulus segmentation algorithm
accurate, and also helps to explain why the algorithm has such a large region of convergence
relative to the user-provided point.

The annulus segmentation algorithm can be simplified to two main steps: find the leaflets,
then search along the leaflets to find the annulus. This was consistent with the approach used
by the experts (cardiologists and technicians) to delineate the annulus. Fig. 15 shows an
example of the distribution of the human selected annular points which are aligned along the
leaflets. The main difference was that after finding the leaflets, the human observers had
access to temporal information to delineate the annulus location, whereas the algorithm used
only a single 3DUS volume.

C. Future Work
One of the most significant improvements to the algorithm would be to integrate temporal
information to more accurately and robustly locate the annulus. Currently, the algorithm
finds the annulus as the location at the leaflets where the tissue thickness changes abruptly
along the computed leaflet surface. A drawback of this approach, however, is that if the
TTD is improperly tuned or if the leaflets are severely calcified, the annulus might not be
accurately located, which might be ameliorated when temporal information is used.

The large region of convergence for the algorithm makes it an attractive candidate for
complete automation. Because the only input to the algorithm is the user-specified point, if
this point can be delineated by some automated process, the annulus segmentation algorithm
could be made fully automatic. Special care would need to be taken, however, to account for
the different appearances of valves due to varying pathologies, ultrasound probe
orientations, and ultrasound machine settings. An example of a method that could be used
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for this automatic selection is the work presented in [37], which automatically segments the
mitral valve plane and left ventricular long-axis. The intersection of the plane and the axis
could be used to define the user-specified point.

The annulus segmentation algorithm presents many opportunities in clinical studies. The
algorithm can help to analyze large clinical databases to explore correlations between
pathologies and annular geometries. It can also be used to monitor patient anatomy over
time to determine if geometry at an earlier age has any indication as to pathologies that may
develop at later ages.

To build on this algorithm, future work will also include segmentation and/or tracking of the
annulus over the duration of the cardiac cycle. However, given that the algorithm can
segment the mitral annulus whenever the leaflets are coapted, the shape and motion of the
annulus throughout most of the cardiac cycle can already be obtained from the present
method.

V. Conclusion
The annulus segmentation algorithm accurately and robustly segments the mitral annulus
from a 3DUS frame using only a single user specified point. The approach first uses a thin
tissue detector to localize the mitral leaflets, and then the graph cut algorithm to define the
leaflet surface. The annulus is detected as the curve where the thin leaflet surface meets the
thick heart wall using another graph cut implementation and multiscale active contours.
Validation using clinical 3DUS images showed that estimated annulus positions were
comparable to expert manual segmentation. A second validation study showed that the
algorithm matched annulus delineations made by an expert using an EM tracked pointing
device, with an RMS error of 1.19 ± 0.17mm across six valves. The algorithm is insensitive
to the placement of the user-specified point within about half of the valve radius, and a
single set of parameters was used for all valve images, with no fine-tuning required. The
algorithm can be used to increase speed and consistency in determining annulus location for
diagnostic, surgical planning, and database applications.
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Fig. 1.
Flow chart for the mitral annulus segmentation algorithm designed for closed valves which
locates the annulus by first finding the thin leaflet tissue and then finding where the thin
tissue meets the thick tissue of the surrounding heart wall. Specific details for the respective
processes can be found in the indicated sections.
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Fig. 2.
(Left) Slice from a 3DUS volume of a prolapsed mitral valve showing the location of the
mitral valve annulus (MVA), left atrium (LA), left ventricle (LV), and ventricular septum
(VS). (Right) Corresponding slice from the thin tissue detector (inverted for clarity)
computed for the 3DUS volume.
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Fig. 3.
Generalized graph structures used in the mitral annulus segmentation algorithm: (a) 2D
graph with a min-cut example, (b) 3D rectilinear graph
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Fig. 4.
Position, orientation, and cylindrical boundary of the 3D rectilinear graph used to find the
mitral leaflet surface
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Fig. 5.
(a) Slice normal to the valve plane from 3DUS of a prolapsed mitral valve (same data as
shown in Fig. 2) showing MVsurf (black) and adjacent regions (white striped) used to form
Pint, (b) intensity projection Pint, and (c) thin tissue detector projection Pttd. Projection
images are only defined within the dotted circles.
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Fig. 6.
Contour initialization and evolution scheme for finding the annulus in the projection plane
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Fig. 7.
Graph used in the max-flow algorithm for contour initialization in the projection space,
along with an example of a min-cut
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Fig. 8.
Ray system on which snake nodes are forced to reside during contour refinement and
convergence, shown with an example snake
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Fig. 9.
Simplified flow chart for the mitral annulus segmentation algorithm; the algorithm iterates
until the computed annulus center stops changing.
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Fig. 10.
Typical comparison between the algorithmic annulus (solid line) and points delineated
manually by experts on clinical 3DUS images
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Fig. 11.
Typical view of a loaded mitral valve in a water tank that was used in the surgical view
delineation study.
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Fig. 12.
Typical comparison between the algorithmic annulus (solid line) and points delineated by an
expert on a porcine mitral annulus using an EM tracked device.
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Fig. 13.
Estimated shape and size of the region of convergence relative to a baseline segmentation
and described using the axial and radial directions
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Fig. 14.
Mitral valve leaflet appearance of the same valve in several scenarios. (a) Closed mitral
valve in a long-axis view (LA - left atrium; LV - left ventricle). Leaflet surface is well
defined. Dashed red lines are the approximate border of the LV. (b) Open mitral valve in a
long-axis view. Leaflets are poorly defined. (c) Closed mitral valve in a short-axis view
shown with the border taken from (a). Leaflet surface is poorly defined and chordae
insertions are visible.
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Fig. 15.
Slice from 3DUS of the mitral valve used in the manual segmentation study showing typical
distributions of the annulus points selected by the experts. The first standard deviation (solid
line) and second standard deviation (dotted line) are shown. The red point is the location of
the algorithm-generated annulus in the slice. This suggests that human observers, much like
the algorithm, select annulus points along the leaflet structure.
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TABLE II

Summary of Clinical Mitral Valve Images Used in Manual Image Delineation Validation Study

Valve Mitral Valve State Acquisition Type Probe

1 Prolapse; Regurgitation Transesophageal X7-2t

2 Normal Transesophageal X7-2t

3 Normal Transthoracic X7-2

4 Normal Transesophageal X7-2t

5 Cleft Mitral Transesophageal X7-2t

6 Prolapse; Dilated Annulus Transesophageal X7-2t

7 Prolapse; Myxomatous Valve Transesophageal X7-2t

8 Prolapse; Regurgitation Transesophageal X7-2t

9 Normal Transesophageal X7-2t

10 Prolapse Transthoracic X7-2
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TABLE IV

RMS Difference Between the Algorithmic Annulus and Manual Delineations Made by Experts on Clinical
Images

Valve RMS Difference (mm)

1 1.95

2 1.37

3 2.75

4 0.96

5 1.19

6 2.50

7 3.22

8 1.82

9 1.27

10 1.09

Mean±Std. Dev. 1.81±0.78

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 June 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Schneider et al. Page 37

TABLE V

RMS Difference Between the Algorithmic and EM Delineated Annulus from Freshly Excised Porcine Hearts

Valve RMS Difference (mm) (average ± std. dev.)

1 1.15 ± 0.04

2 1.35 ± 0.18

3 1.42 ± 0.01

4 1.38 ± 0.12

5 0.95 ± 0.42

6 0.91 ± 0.26

Mean 1.19 ± 0.17
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TABLE VI

Estimated Region of Convergence Dimensions for Each Valve Normalized by the Annular Radius

Valve Axial Radial

1 0.96 1.34

2 0.44 0.65

3 0.76 1.13

4 1.24 1.08

5 0.72 1.11

6 0.71 0.98

7 0.96 1.16

8 0.78 0.68

9 1.26 1.17

10 0.67 1.26

Mean ± Std. Dev. 0.85 ± 0.26 1.06 ± 0.23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 June 24.


