
Blockade of Hsp90 by 17AAG antagonizes MDMX
and synergizes with Nutlin to induce p53-mediated
apoptosis in solid tumors
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Strategies to induce p53 activation in wtp53-retaining tumors carry high potential in cancer therapy. Nutlin, a potent highly
selective MDM2 inhibitor, induces non-genotoxic p53 activation. Although Nutlin shows promise in promoting cell death in
hematopoietic malignancies, a major roadblock is that most solid cancers do not undergo apoptosis but merely reversible
growth arrest. p53 inhibition by unopposed MDMX is one major cause for apoptosis resistance to Nutlin. The Hsp90 chaperone is
ubiquitously activated in cancer cells and supports oncogenic survival pathways, many of which antagonize p53. The Hsp90
inhibitor 17-allylamino-17-demethoxygeldanamycin (17AAG) is known to induce p53-dependent apoptosis. We show here that in
multiple difficult-to-kill solid tumor cells 17AAG modulates several critical components that synergize with Nutlin-activated p53
signaling to convert Nutlin’s transient cytostatic response into a cytotoxic killing response in vitro and in xenografts. Combined
with Nutlin, 17AAG destabilizes MDMX, reduces MDM2, induces PUMA and inhibits oncogenic survival pathways, such as PI3K/
AKT, which counteract p53 signaling at multiple levels. Mechanistically, 17AAG interferes with the repressive MDMX–p53 axis by
inducing robust MDMX degradation, thereby markedly increasing p53 transcription compared with Nutlin alone. To our
knowledge Nutlinþ 17AAG represents the first effective pharmacologic knockdown of MDMX. Our study identifies 17AAG as a
promising synthetic lethal partner for a more efficient Nutlin-based therapy.
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Fifty percent of human tumors retain wild-type (wt) p53, albeit
with inadequate function due to abnormalities in p53 regulation
or defective p53 pathway signaling. Mechanisms that suppress
wtp53 function in tumors include overexpression of the p53
repressors murine double minute-2 (MDM2) and murine double
minute-X (MDMX).1 The concept of targeted reactivation of
wtp53 for therapy is greatly strengthened by mouse models,
where genetic restoration of p53 in established tumors leads to
clinical tumor regression.2,3 Thus, pharmacological strategies to
induce p53 activation in human tumors carry high potential in
cancer therapy. Nutlin-3a is a potent and highly selective small-
imidazoline-based MDM2 inhibitor. It blocks MDM2-mediated
p53 degradation and transcriptional repression, thereby leading
to non-genotoxic p53 stabilization and activation of growth arrest
and apoptosis.4–6

Nutlin promotes cell death in cultured leukemia cells, select
osteosarcoma cells and their xenografts.7,8 It is currently
undergoing phase-I and II clinical trials for hematologic and
some solid malignancies in combination with conventional
chemotherapeutics.6,7 However, its clinical development has
been plagued by a major roadblock that became apparent for
most solid cancers. Although Nutlin efficiently induces
transient cell-cycle arrest, pre-clinical and clinical data from

a wide array of solid tumors indicate that it is inefficient in
inducing definitive apoptosis.9–11 Thus, turning Nutlin into an
efficient cytotoxic killer by identifying a synthetic lethal partner
drug is of paramount clinical importance.

Mechanistically, robust upregulation of Nutlin-induced p21,
concomitant with attenuated expression of pro-apoptotic
genes, has long been thought to be a major reason why
many tumors merely undergo reversible growth arrest rather
than apoptosis upon exposure to Nutlin.9–11 However, while
the p21 link is true after genotoxic p53 activation, one recent
in vitro study found that high p21 levels after non-genotoxic
Nutlin-induced p53 activation did not protect solid cancer cells
from apoptosis, which puts this mechanism into question
for some circumstances.12 Alternatively, and not mutually
exclusive, p53 inhibition by the remaining MDMX was
proposed as a cause for apoptosis resistance after exposure
to Nutlin.13 Although MDMX is highly homologous to MDM2,
Nutlin is inefficient in interrupting the transcription-repressive
MDMX–p53 complex, which prevents p53 transcriptional
activity in numerous cancer cell lines, including retinoblasto-
mas, which harbor MDMX upregulation.13–16 Indeed, knock-
down of MDMX by RNAi renders Nutlin more efficient in
promoting the apoptosis of cultured tumor cells.15,17
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Here we show that the apoptotic efficiency of Nutlin for solid
tumor cells in vitro and in xenografts is dramatically enhanced
when combined with the non-genotoxic heat-shock protein-90
(Hsp90) inhibitor 17-allylamino-17-demethoxygeldanamycin
(17AAG). The Hsp90 chaperone complex is highly upregu-
lated and cancer cells are addicted to Hsp90 for their
survival. Mechanistically, 17AAG interferes with the repres-
sive MDMX–p53 complex and induces robust MDMX degra-
dation, thereby increasing p53 transcriptional activity by
about 2.5-fold compared with Nutlin alone. In addition,
17AAG affects other anti-p53 regulatory pathways such as
the phosphatidylinositol-3-kinase (PI3K)/serine/threonine
protein kinase-B (AKT) pathway that depend on Hsp90. As
Nutlin and Hsp90 inhibitors are currently undergoing separate
clinical trials, our results provide a molecular rationale for a
more efficient Nutlin-based anticancer therapy by concomi-
tantly targeting an essential anti-p53 directed cofactor.

Results

17AAG enhances wtp53 signaling by stabilizing p53,
destabilizing MDMX and disrupting p53–MDMX inter-
action. The Hsp90 chaperone machinery is highly and
almost ubiquitously activated specifically in cancer cells18

and p53 is an important client protein. The aberrant
conformation of mutant p53 proteins requires permanent
heat-shock support; thus mutant p53 is stably engaged in
Hsp90 complexes to prevent aggregation.19,20 For wtp53,
Hsp90 also fulfills an important role by promoting its proper
conformation through transient interaction.21–23 Importantly,
inhibition of Hsp90 by the highly specific geldanamycin-deri-
ved Hsp90 inhibitor 17AAG or 17-dimethylaminoethylamino-
17-demethoxy-geldanamycin (17DMAG) was reported to
increase wtp53 protein in cancer cells24,25 and induce apop-
tosis in a wtp53-dependent manner in both mouse embryo
fibroblasts and in allotransplanted primary medulloblastomas
in vivo.25

We therefore first examined how 17AAG affects wtp53 and
its negative regulators MDMX and MDM2. A panel of
randomly selected wtp53 human cancer cell lines from solid
tumors (RKO colorectal, MCF7 breast, AGS gastric adeno-
carcinoma and U2OS osteosarcoma) were treated with
17AAG to assess protein levels. As expected, in all four cell
lines 17AAG increased p53 significantly within 4–8 h
(Figure 1a). Surprisingly, 17AAG dramatically decreased the
level of MDMX protein in all the lines tested. Concomitant
downregulation of MDM2 was observed in RKO and AGS,
whereas p21 protein was upregulated in all the lines
(Figure 1a).

To determine the extent to which these changes in protein
expression were due to transcriptional regulation, we per-
formed qRT-PCR on 17AAG-treated cells. 17AAG increased
both p53 mRNA and protein stability (Figure 1b). Conse-
quently, 17AAG increased the gene expression of the classic
p53 targets MDM2, p21 and p53 upregulated modulator of
apoptosis (PUMA), validating p53 activation (Figure 1c).
However, concerning MDM2 protein, 17AAG promoted
MDM2 destabilization (see Figure 1a), consistent with
MDM2 also being an Hsp90 client.20 Of note, MDMX message

levels remained unaffected by 17AAG in this system,
indicating that downregulation of MDMX protein occurred
mainly at the posttranscriptional level (Figure 1c). The pan-
caspase inhibitor Z-VAD did not block MDMX destabilization
(whereas the proteasome inhibitor ALLN did), indicating that
17AAG-induced MDMX destruction was a primary cellular
response, rather than simply a secondary caspase-mediated
degradation event. By contrast, the latter was the case for the
observed MDM2 degradation in RKO cells (Figure 1d). As
ALLN stabilized both MDMX and MDM2 upon 17AAG
exposure, this also indicated that 17AAG did not interfere
with proteasome degradation (Figure 1d, right).

As Hsp90 binds to MDM2 and p53,20,21 and MDM2 binds to
p53 and MDMX,26 we determined whether 17AAG could
affect these interactions. Importantly, in co-immunoprecipita-
tions 17AAG rapidly disrupted the complex between MDMX
and p53 within 2 h of treatment, a time point when MDMX
levels were still not affected (Figure 1e, left). Furthermore,
17AAG disrupted the MDMX–MDM2 complex (Figure 1e,
left) possibly explaining the rapid p53 accumulation. Addition-
ally, 17AAG also disrupted the Hsp90–MDM2 complex
(Figure 1e, right), but did not affect the MDM2–p53 interaction
(Figure 1e, left).

17AAG kills cancer cells in a wtp53-dependent
manner. In MEFs and allotransplanted primary murine
medulloblastomas, 17AAG was shown to induce apoptosis
in a wtp53-dependent manner.25 To examine whether this
also holds true for human cancer cells, we compared the
response of the isogenic colorectal cancer pair HCT116
p53þ /þ and p53�/� to17AAG. As already seen for other
wtp53 lines, 17AAG treatment of HCT116 p53þ /þ
increased their p53, p21 and PUMA protein levels but
decreased their MDMX levels (Figure 2a). By contrast,
HCT116 p53�/� cells lacked this response. Moreover,
17AAG-induced poly(ADP-ribose)polymerase (PARP)
cleavage was largely dependent on the presence of p53
(Figure 2a).

Higher caspase activation in HCT116 p53þ /þ versus
p53�/� cells confirmed the p53 dependence of 17AAG-
induced apoptosis (Figure 2b, left). This was further confirmed
by significantly lower survival of p53þ /þ versus p53�/�
cells in Annexin-V/propidium iodide (PI) FACS analysis
(Figure 2b, right). As expected, 17AAG also induced the
transcriptional activation of p53, indicated by induction of
p21, PUMA and MDM2 in p53þ /þ cells only (Figure 2c).
MDMX message was not affected by 17AAG in p53þ /þ or
p53�/� cells.

17AAG synergizes with Nutlin to induce apoptosis in a
p53-dependent manner. As 17AAG caused p53-depen-
dent cell death by stabilizing and activating wtp53, we
reasoned that 17AAG might synergize with Nutlin to enhance
net p53 signaling and induce a stronger apoptotic response
than Nutlin alone. Of note, 17AAG did not disrupt the
interaction between MDM2 and p53 (Figure 1e), indicating
that it stabilized p53 through a mechanism different than
Nutlin. We therefore treated cancer cells with Nutlin alone,
17AAG alone or a combination of Nutlin and 17AAG. Indeed,
in all five lines tested, PARP cleavage was dramatically
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higher when both drugs were combined compared with each
drug alone (Figures 3a and e). Similarly, caspase activation
(Figure 3b and Supplementary Figure 1) and the number
of Annexin-V/PI-positive apoptotic cells (Figure 3c and
Supplementary Figure 2) were much higher when both

drugs where combined compared with each drug alone in all
seven cell lines tested (RKO, U2OS, MCF7, AGS, HCT116
p53þ /þ , SJSA and RPMI-1788).

To determine whether the increase in cell death after drug
combination was truly synergistic rather than merely additive,
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Figure 1 17AAG stabilizes wtp53, destabilizes MDMX and disrupts p53–MDMX interaction. (a) 17AAG increases p53 and p21, but decreases MDMX protein levels. RKO,
MCF7, U2OS and AGS human cancer cells were treated with 2mM of 17AAG for the indicated time periods. The levels of p53, MDMX, MDM2 and p21 proteins were analyzed
by immunoblots. PCNA is a loading control. (b) 17AAG increases both the mRNA levels and the protein stability of p53. Left: p53 mRNA levels in RKO cells treated with 1.5mM
of 17AAG or DMSO for 24 h. qRT-PCR, mRNA levels were normalized to actin. The error bars represent standard errors from two independent experiments, each performed in
triplicate. Right: Cycloheximide (CHX) chase of RKO cells treated as indicated. PCNA is a loading control. (c) 17AAG increases the transcription of the p53 target genes p21,
PUMA and MDM2. RKO cells were treated with 1.5mM of 17AAG or DMSO for 24 h. The mRNA levels of MDMX, p21, PUMA and MDM2 were evaluated by qRT-PCR as
shown in panel b. (d) Destabilization of MDMX by 17AAG is caspase-independent and proteasome-dependent, whereas destabilization of MDM2 is a secondary caspase-
dependent event. RKO cells were pretreated with 20 mM of the pan-caspase inhibitor Z-VAD-FMK (left) or 5 mM of the proteasome inhibitor ALLN (right) 1 h before adding
17AAG at the indicated doses of for an additional 24 h. (e) 17AAG disrupts p53–MDMX and MDM2–Hsp90 interactions. RKO cells were treated with 1.5mM of 17AAG for 2 h
followed by immunoprecipitation using MDMX or MDM2 antibodies. MDMX–p53, MDM2–MDMX and MDM2–p53 complexes (left), as well as MDM2–Hsp90 complexes (right),
were detected by immunoblots. Isotype-matched IgGs serve as controls. Middle: Immunoblot indicating the relative input of the proteins used in the left panel
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we calculated combinatorial indexes (CIs). A CI value o1
indicates synergism; CI¼ 1 indicates additive effects and
CI41 indicates antagonism.27 In all four lines tested, the CI
was o1 ranging from 0.23 to 0.33, confirming strong
synergistic effects of the 17AAG/Nutlin combination in all the
cases (Figure 3d). The 17AAG/Nutlin combination induced
significant PARP cleavage and caspase activation in HCT116

p53þ /þ cells but not in p53�/� cells, verifying that this
synergistic effect was p53-dependent (Figure 3e).

17AAG destabilizes MDMX protein in Nutlin-treated
cancer cells and can potentiate Nutlin-induced p53
transcription of PUMA. Next, we examined how 17AAG
might modulate Nutlin-induced p53 signaling to explain its
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Figure 2 17AAG kills cancer cells in a p53-dependent manner. (a) In response to 17AAG, p53�/� tumor cells show much lower PARP cleavage and lack p21 and PUMA
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synergism in promoting Nutlin-induced apoptosis. In
engineered H1299 cell systems with ectopic wtp53, it was
previously shown that p53 levels can be a determinant of
arrest (lower levels) versus apoptosis (higher levels).28

However, in our cell lines, endogenous p53 did not further
increase with Nutlinþ 17AAG compared with Nutlin alone
(Figure 4a). Thus, increased apoptosis was not simply due to
higher p53 levels.
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Importantly, in the presence of Nutlin, 17AAG still
decreased MDMX protein levels, and in most cases
sharply (RKO, AGS and HCT116) (Figure 4a). Again, this

combined drug-mediated MDMX destruction was primarily a
caspase-independent effect, as shown by Z-VAD treatment
(Figure 4b). The robust MDMX degradation coincided with a
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further surge of the p53 transcriptional response compared
with Nutlin or 17AAG alone, as judged by the representative
induction of p21, PUMA and MDM2 targets (Figure 4c).

On the protein level, addition of 17AAG induced differential
regulation of these three Nutlin-induced p53 targets, likely due
to direct or indirect Hsp90 influence on their stability, which
altogether likely generated the apoptosis-promoting drug
effects. Importantly, PUMA protein was significantly upregu-
lated in RKO, MCF7 and HCT116 cells upon combined
treatment compared with Nutlin or 17AAG alone (Figures 4a
and e). Nutlin alone invariably induced the robust upregulation
of the p53 target MDM2 (Figure 4a).6 At the same time, non-
toxic doses of Nutlin – although to a very significant extent –
do not completely disrupt all p53–MDM2 complexes, creating
a dampening loop that decreases its maximum efficiency.29

Interestingly, Nutlinþ 17AAG significantly downregulated
MDM2 protein levels compared with Nutlin alone in all five
lines tested (Figures 4a and d). This was a secondary
caspase-mediated effect as it was blocked by Z-VAD
(Figure 4b). Thus, although not affecting p53 levels, by
lowering inhibitory MDM2, the 17AAG co-drug possibly also
enhanced Nutlin’s efficacy by relieving MDM2’s repression
on p53 as well (Figure 4c). Nutlin invariably induces the
robust induction of p21 protein,9–11 again seen here (Figures
4a and d). However, the Nutlin-induced p21 induction
was significantly suppressed toward near-basal levels by
concomitant 17AAG exposure (Figures 4a and d). While
robust p21 induction has been considered a major determi-
nant of the Nutlin-associated apoptosis resistance,9–11 one
study of seven cancer lines (three of which overlapped with
ours) found p21 irrelevant in protecting Nutlin-treated cells
from apoptosis.12 Thus, the combination-induced p21 down-
regulation that we observed might not contribute to enhanced
apoptosis, at least in some cancers.

Finally, the modulating effect of 17AAG on the protein
stability (Figure 4d) and transcription (Figure 4e) of Nutlin-
induced p21, PUMA and MDM2 was p53-dependent, as it was
only present in HCT116 p53þ /þ but not in p53�/� cells. As
well, degradation of MDMX incurred by 17AAG was not p53-
dependent (Figure 4d).

Nutlin synergizes with 17AAG in part by inhibiting
MDMX and AKT signaling. Although MDMX is highly
homologous to MDM2, Nutlin is inefficient at interrupting
the repressive MDMX–p53 complex. Nutlin binds to MDM2
versus MDMX with a 40-fold stronger inhibition constant
(Ki of 0.7 versus 28 mM), whereas MDMX and MDM2 bind
to p53 with similar affinities (Kd¼ 0.5mM).6,30 Thus, in the
presence of Nutlin, MDMX is still able to bind to p53 and
repress its transcriptional activity.13,14 Consequently,
knockdown of MDMX was reported to potentiate Nutlin-
induced apoptosis.13–15 We confirmed these findings. When
Mdmx was downregulated by siRNA in U2OS and RKO cells
treated with Nutlin, PUMA (and p21) and apoptosis were
significantly higher compared to scrambled siRNA-treated
controls (Figure 5a). Likewise, the fact that 17AAG down-
regulated the MDMX protein in all the cancer lines tested
(Figures 1a and 4a, b and e), disrupted the MDMX–p53
complex (Figure 1e) and effectively converted Nutlin-
induced arrest into apoptosis, strongly suggested that the

17AAG-induced MDMX destruction is an important cause of
apoptotic synergism between Nutlin and 17AAG. Indeed, in
support of a causal relationship, stable overexpression of
MDMX strongly suppressed apoptosis upon combined
Nutlinþ 17AAG treatment, as indicated by inhibition of
PARP cleavage and caspase activity (Figures 5b and c).
Moreover, MDMX overexpression also reduced Nutlin-
induced PUMA and p21 levels (Figure 5b, compare lanes 2
and 9). Altogether, these results indicated that the 17AAG-
mediated destruction of MDMX is indeed one strong
determinant for promoting a Nutlin death response.

Many client proteins of Hsp90 are oncogenes that depend
on permanent chaperone support. Thus, the Hsp90 inhibitor
17AAG affects multiple oncogenic signaling pathways, many
of which participate in antagonizing p53 signaling.18 There-
fore, it is very likely that other events besides downregulation
of MDMX could contribute to the apoptotic synergism between
17AAG and Nutlin. PI3K and its downstream effector AKT
phosphorylate p53, MDM2 and MDMX, in sum negatively
modulating p53 activity.26 Importantly, 17AAG was reported
to impair AKT stability and activity,18,31 and we confirmed this
in all the cell lines tested (Figure 5d). Although transient
activation of AKT was observed, by 12 h phosphorylated AKT
was almost completely lost in all the cell lines. Of note,
inhibitors of the PI3K/AKT pathway can also potentiate Nutlin-
induced cell death.32,33 We confirmed enhanced PARP
cleavage and caspase activity when Nutlin was combined
with the PI3K inhibitor LY294002 (Figure 5e). Interestingly,
identical to 17AAG (Figure 4a), the PI3K inhibitor markedly
enhanced Nutlin-induced PUMA expression (Figure 5e, com-
pare lanes 2 with 3 and 4). Therefore, the induction of PUMA
by 17AAG might partly also be indirect through its effect on
AKT. Overall this suggested that Nutlin synergizes with
17AAG in part also by inhibiting AKT signaling.

Nutlin and 17AAG synergistically prevent tumor growth
in vivo by inducing apoptosis. To further support the
functional synergism between Nutlin and 17AAG in vivo, we
monitored its antitumor effects on tumor xenografts. We
chose RKO cells as they were completely resistant to
apoptosis mediated in vitro by Nutlin alone and are able to
recover from Nutlin-mediated arrest.9,10 Nude mice were
injected with 5� 106 RKO cells per flank and after 12 days
when tumors had reached a volume of 200–300 mm3 (called
day 0), mice were randomized into four treatment groups of
vehicle, Nutlin, 17AAG and Nutlinþ 17AAG (Figure 6a).

At day 11, tumors of mice continuously treated with Nutlin
alone or 17AAG alone had completely failed to respond and
increased about five-fold in volume, identical to that in the
vehicle controls. By contrast, tumors treated with combined
Nutlinþ 17AAG had increased only three-fold. Moreover, at
day 15 tumors of mice treated with Nutlinþ 17AAG had
reached a plateau and remained stable thereafter, whereas
tumors treated with Nutlin alone or 17AAG alone further
accelerated their growth. In fact, both Nutlin mice, one vehicle
mouse and one 17AAG mouse had to be killed at day 15
because they had reached the allowable limit of tumor burden
(2 cm3). By contrast, one Nutlinþ 17AAG mouse needed to be
killed not because of excessive tumor burden, but because of
treatment-induced necrosis of one of its tumors. Over the
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entire treatment period, the drug combination was well
tolerated. The reason for the observed tumor stabilization
was that combined Nutlinþ 17AAG treatment increased
tumor cell death in vivo compared with Nutlin or 17AAG
alone, which failed completely (Figure 6b).

In aggregate, our data showed that cooperative interactions
between Nutlin and 17AAG effectively steer solid cancers

away from a mere transient Nutlin-induced arrest program into
therapeutically relevant apoptosis in vivo.

Discussion

Small-molecule MDM2 inhibitors are an exciting new class of
drugs to resurrect targeted p53 signaling in wtp53-retaining
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tumors. Nutlin, the most developed prototype, is a highly
selective competitive inhibitor of the hydrophobic p53-binding
pocket of MDM2. By inhibiting MDM2–p53 interaction, it
shields p53 from MDM2 degradation, thereby non-genotoxi-
cally stabilizing and activating p53. Nutlin shows promise in
hematological malignancies that rarely harbor p53 mutations
and often show MDM2 overexpression.5

However, a fundamental problem of Nutlin is that the
majority of non-hematopoietic wtp53 tumors merely mount a
transient cytostatic response rather than the required cyto-
toxic antitumoral response.9–11 A major known determinant
mediating this cancer resistance in vitro and in vivo is MDMX,
even in tumors without MDMX upregulation (Figure 5a).15

MDMX is the MDM2 homolog that sequesters p53 and inhibits
p53 transcription, but owing to the precise structural fit of
Nutlin into the MDM2 pocket, is not efficiently inhibited by non-
toxic doses. Additional factors that might protect solid tumors
from undergoing Nutlin-induced apoptosis are oncogenic
survival signaling pathways that counteract apoptotic p53
signaling. Thus, major efforts now focus on identifying and
interfering with factors that contribute to apoptosis resistance
during Nutlin treatment. This knowledge will contribute to
developing Nutlin-based optimized combination therapies.
Unfortunately, small-molecule and peptide inhibitors of
MDMX are currently only in nascent developmental
stages.34–36 On the other hand, many studies already
reported that selective inhibition of specific oncogenic survival
pathways improves apoptotic resistance to Nutlin, mainly in
hematologic tumor types. For example, inhibition of PI3K/AKT
signaling enhanced apoptosis in ALL or CLL leukemia,32,33 or
inhibition of ERK signaling synergistically improves Nutlin-
induced apoptosis in AML.37

We find here that 17AAG modulates p53 signaling during
Nutlin treatment to overcome the apoptotic threshold, and
identify 17AAG as a promising synthetic lethal partner of
Nutlin. Our rationale for choosing 17AAG was based on the
following: (i) Inhibition of Hsp90 was previously shown to
cause wtp53 stabilization;24,25 (ii) in a genetic mouse model,
17AAG was shown to kill transplanted primary medullo-
blastoma cells in a p53-dependent manner;25 (iii) the Hsp90
chaperone complex is grossly overexpressed specifically in
cancer cells; and (iv) most cancers depend on Hsp90 for
survival, as numerous oncogenic client proteins, many of
which negatively affect the p53 pathway, require permanent
chaperone support. Among Hsp90 clients are many kinases
that directly or indirectly phosphorylate and modulate the
function of p53 and/or MDM2 and MDMX, for example,
AKT/PKB, Chk1, GSK3b, ErbB2, mutant EGFR, p38MAPK
and Raf/ERK.18,31

We show that in difficult-to-kill solid human cancer cells
17AAG modulates several components and pathways that
favorably cooperate in Nutlin-activated p53 signaling to
convert Nutlin’s mere cytostatic response into a cytotoxic
killing response. Although likely not a complete list, we could
identify several factors that contribute to that: (i) In the context
of Nutlin, 17AAG first and foremost destabilizes MDMX
protein, but also reduces MDM2 protein levels; (ii) 17AAG
induces proapoptotic p53 targets such as PUMA; (iii) 17AAG
reduces p21 protein that at high levels might, at least in
some cancers, favor a Nutlin-induced cell-cycle arrest; and
(iv) 17AAG inhibits oncogenic survival pathways such as
PI3K/AKT, which could normally counteract p53 signaling at
multiple levels.

17AAG induces the robust enhancement of Nutlin-activated
p53 transcription without changing p53 levels. Mechanisti-
cally, 17AAG interferes with the repressive Mdmx–p53 axis by
disrupting MDMX–p53 complexes and inducing robust
MDMX degradation.26 Although RNAi-mediated knockdown
was critical in demonstrating the central importance of MDMX
in Nutlin resistance in experimental settings, it is currently
not within clinical reach. Thus, to our knowledge the
Nutlinþ 17AAG combination represents the first effective
pharmacological knockdown of MDMX.
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Figure 6 Nutlin and 17AAG synergistically prevent tumor growth in vivo by
inducing apoptosis. (a) Antitumor activity of Nutlinþ 17AAG in human tumor
xenografts. Nude mice were injected with 5� 106 RKO cells per flank. Treatment
started after 12 days when tumors were 200–300 mm3 in volume (called day 0). The
mice were randomized into four groups: vehicle, Nutlin alone, 17AAG alone and
Nutlinþ 17AAG. The graph indicates relative change in tumor volume compared
with its corresponding initial tumor size prior to treatment. On day 15 (arrow), five
mice needed to be killed because they had reached the tumor burden endpoint of
2 cm3 (two Nutlin mice, one vehicle mouse and one 17AAG mouse). One
Nutlinþ 17AAG mouse needed to be killed owing to extensive necrosis despite
unchanged tumor volume. The remaining mice were killed on day 21. Over the
treatment period, mice receiving Nutlinþ 17AAG showed no discernable changes
in weight or behavior compared with the vehicle controls. The error bars indicate the
standard error; n¼ number of tumors analyzed. *denotes Po0.05; **denotes
Po0.005. (b) Caspase activity is increased in tumors treated with Nutlinþ 17AAG
versus Nutlin or 17AAG alone. Protein was isolated from three randomized tumors
per treatment. The highest level of caspase activity occurs in tumors treated with
Nutlinþ 17AAG compared with that in the vehicle control and in tumors treated with
single drug. PCNA is a loading control
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The mechanism by which 17AAG induces MDMX degrada-
tion remains to be determined in the future. MDMX is not a
known HSP90 client and therefore its 17AAG-mediated
destabilization is likely indirect, for example by affecting
posttranslational MDMX modifications. Concerning MDM2, it
is a known Hsp90 client and Hsp90 inhibition by the 17AAG
precursor geldanamycin stimulates MDM2 degradation.20

Moreover, our co-immunoprecipitations show that 17AAG
disrupts the MDM2–MDMX complex. This could contribute to
MDM2 destabilization as one function of MDMX is to stabilize
MDM2.26 This could also explain rapid p53 stabilization, as
MDM2–MDMX heterodimers are more a effective E3 ligase
for p53 compared with MDM2 homodimers.26 The latter could
also explain why p53 is stabilized upon 17AAG treatment
before MDMX degradation occurs in some of the cell lines.
Although we were able to identify some important determi-
nants, further elucidation of the synergistic mechanisms
is warranted. 17AAG might also modulate p53 transcrip-
tion through other mechanisms, for example, by affecting
co-activators and/or p53 modifications.

The molecular rationale for this drug combination is quite
compelling. 17AAG targets different tumor types by destabi-
lizing multiple oncogenic pathways.38 This suggests that the
Nutlinþ 17AAG combination might resurrect Nutlin as a
clinically viable uniform platform against a broad spectrum
of wtp53-harboring solid tumors. Moreover, 17AAG-type
inhibitors specifically target tumor cells31 for two reasons:
Hsp90 upregulation is tumor-specific and 17AAG shows a
100-fold higher activity toward tumor cell-derived Hsp90
complexes than against Hsp90 purified from normal cells.39

Thus, 17AAG may also help in better targeting of Nutlin
responses specifically to tumor cells and reduce the bone
marrow-based toxicity of Nutlin.

Materials and Methods
Cell culture and drugs. The wtp53-harboring human cancer cell lines U2OS,
RKO, HCT116 p53þ /þ (and its isogenic match HCT116 p53�/�), MCF7 and
SJSA were maintained in DMEM, or RPMI-1640 for AGS and RPMI-1788, with 10%
FBS at 37 1C in 5% CO2. Stable U2OS cells expressing doxycycline-inducible
MDMX were provided by Geoffrey Wahl and maintained in DMEM supplemented
with 10% FBS. The following drugs were used: racemic Nutlin-3a (Sigma, St. Louis,
MO, USA), 17-allylamino-17-demethoxygeldanamycin (LC Laboratories, Woburn,
MA, USA), cycloheximide (Sigma), Z-VAD-FMK (R&D Systems, Minneapolis, MN,
USA), ALLN (Calbiochem, San Diego, CA, USA) and LY294002 (Roche,
Indianapolis, IN, USA). The human MDMX siRNA and scrambled siRNA were
purchased from Qiagen (Valencia, CA, USA).

Co-immunoprecipitations and immunoblots. Cells were treated,
lysed with 0.5% Triton X-100 in PBS supplemented with protease inhibitor
cocktail (Roche) and sonicated. Whole-cell extracts (5–30mg) were resolved
on 10% SDS-PAGE gels and processed for ECL immunoblotting. For
immunoprecipitation cells were lysed in the same buffer. Total protein (1 mg) was
incubated overnight at 41C with 1 mg of primary antibody and protein-A/G agarose
beads (Roche). The beads were washed three times in buffer (0.5% Triton X-100 in
PBS) and proteins were solubilized by boiling in 50ml sample buffer prior to
SDS-PAGE. The following antibodies were used: monoclonal p53 (DO1; Santa
Cruz, Santa Cruz, CA, USA); monoclonal MDM2 (Ab-1; Calbiochem); rabbit Hdmx/
Mdm4 (Bethyl Labs, Montgomery, TX, USA); rabbit cleaved PARP (D214; Cell
Signaling, Danvers, MA, USA); monoclonal p21 (BD Biosciences, San Diego, CA,
USA); rabbit Puma, Akt and phospho-AKT S473 (all Cell Signaling); and rabbit
cleaved caspase-3 (Asp175; Cell Signaling). Monoclonal PCNA (PC10; Santa Cruz)
was used as loading control. All antibodies were diluted 1 : 1000 to 1 : 5000.

Real-time qRT-PCR. Total RNA was isolated using Trizol and 10 mg was
reverse-transcribed using random primers and SuperScript II Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA). Real-time qRT-PCR was
performed in triplicate using an MJ Research DNA Engine Opticon 2 using the
Qiagen QuantiTect SyBr Green Mix. The cycling conditions were as follows: 941C,
30 s; 551C 30 s; 721C 1 min and 681C 10 s for 35 cycles. The human primer
sequences used were as follows: MDMX – F: GCCTTGAGGAAGGATTGGTA, R: T
CGACAATCAGGGACATCAT; PUMA, (BBC3) – F: ACGACCTCAACGCACAGT
ACG, R: TCCCATGATGAGATTGTACAGGAC; P21(CDK1N1A) – F: CTGGAG
ACTCTCAGGGTCGAAA, R: GATTAGGGCTTCCTCTTGGAGAA; and MDM2 – F:
GGCGATTGGAGGGTAGACCT, R:CACATTTGCCTGGATCAGCA. The relative
expression of all target genes was normalized to actin expression as internal
efficiency control.

Cell death assays. Caspase assays were performed in triplicate using the
fluorimetric Homogeneous Caspases Assay (Roche). Briefly, 4� 104 cells plated
per well in a 96-well plate were treated with 100ml of media containing 2–10mM
17AAG and/or Nutlin for 8–48 h. The substrate working solution was added and the
plate was incubated at 371C for 2–8 h or at room temperature overnight in the dark.
The plates were read with a Spectramax M2 ROM using an excitation wavelength of
485 nm and emission wavelength of 520 nm. Annexin/PI assays were performed
using FITC Annexin V (BD Biosciences) and PI (Sigma) following the protocol from
BD Biosciences. After drug treatment, cells were trypsinized and diluted to 1� 106

cells/ml in 1X binding buffer (0.01 M Hepes (pH 7.4), 0.14 M NaCl, 2.5 mM CaCl2).
Annexin (7.5ml) and PI (10ml of 50mg/ml solution) were added to 150-ml cell
suspension. After 15 min of incubation in the dark at room temperature, the cell
suspensions were adjusted to 500ml with 1X binding buffer and counted using a
FacScan analyzer (argon laser; Becton Dickinson, Franklin Lane, NJ, USA).

To evaluate the combinatorial synergy between the two drugs, the percentage of
dead cells was determined by trypan blue exclusion assay. IC50 values were
determined and isobologram and combination index (CI) analyses were performed
using the CalcuSyn software as described by Chou.27

Xenograft assays. Six- to seven-week-old athymic male nude mice (nu/nu)
were purchased from Harlan Laboratories (Indianapolis, IN, USA). All animal
experiments were approved by the Stony Brook University Internal Review Board.
RKO cells (5� 106 per flank) suspended in 50% Matrigel (BD Biosciences) were
injected subcutaneously into the four flanks of mice. Tumors were measured by a
caliper and volume (V) was calculated using the formula V¼ length (L)�width
(W)2/2, where width was the smaller dimension of the tumor. When tumors had
reached a volume between 200 and 300 mm3, treatment was started. The change in
tumor volume was calculated by comparing the tumor size during treatment with the
original tumor size before treatment began (¼ day 0). The tumors were measured
3–4 times per week. Mice were randomized into four treatment groups: vehicle,
Nutlin, 17AAG and Nutlinþ 17AAG. Student’s two-tailed t-test with equal variance
was used to determine the statistical significance of the relative tumor size changes
between the vehicle-treated versus drug-treated tumors.

Racemic Nutlin-3 (Cayman Chemical, Ann Arbor, MI, USA; cat. no. 10004372)
was injected at 35 mg/kg per mouse in 10% DMSO. 17AAG (NSC 330507) and the
egg phospholipid diluent (EPL) vehicle (NSC 704057) were supplied by the
Pharmaceutical Management Branch, Cancer Therapy Evaluation Program of The
National Cancer Institute. 17AAG was injected at 80 mg/kg in 10% DMSO plus 90%
EPL. The mice in the vehicle group were injected with vehicles for both Nutlin and
17AAG.

On days 0–10 treatment was performed by intraperitoneal injection (IP). Nutlin
was injected by IP every other day. 17AAG was injected on days 0–2 and 4–8. IP
injection of vehicle followed the same schedule as Nutlin and 17AAG. On days
11–18, doses were split between IP and IT (intratumoral injection). Nutlin, 17AAG or
vehicle were injected on days 12–13, 15 and 17–18. The mice were killed on day 21.
Tumors were isolated and sonicated in 0.5% Triton X-100/PBS using the protease
inhibitor cocktail (Roche) and analyzed by immunoblotting.
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