Ribonuclease P RNA and protein subunits from bacteria

James W.Brown and Norman R.Pace*

Department of Biology and Institute for Molecular and Cellular Biology, Indiana University, Bloomington, IN 47405, USA

Received January 13, 1992; Revised and Accepted February 13, 1992

INTRODUCTION

Ribonuclease P (RNase P) is the site-specific endoribonuclease that cleaves leader sequences from pre-tRNAs (see 1, 2 for reviews). Cleavage by RNase P absolutely requires divalent cation, preferably Mg^{++} (3), and produces 3'-hydroxyl and 5'-phosphate ends (4). Although RNase P is thought to be present in all living cells, the enzyme is best understood in the bacteria *Escherichia coli* and *Bacillus subtilis*. In these organisms, RNase P is composed of two subunits, a large (ca. 400 nucleotides) RNA encoded by the *rnp*B gene (5,6) and a small protein (119 amino acids) encoded by the *rnp*A gene (7). Although bacterial RNase P functions as a ribonucleoprotein *in vivo*, the RNA alone is an accurate and efficient catalyst under the appropriate conditions *in vitro* (8). Bacterial RNase P RNA is the only naturally occurring RNA which is known to act catalytically in the sense that each RNA molecule cleaves many substrate molecules.

The purpose of this article is to present the aligned sequences of the currently available bacterial RNA and protein components of RNase P, and to provide an overview of RNase P structure in all organisms. For the purposes of this discussion, the nomenclature for the deepest phylogenetic branches proposed by Woese *et al.* (9) has been adopted: 'Bacteria' refers to organisms previously known as eubacteria, 'Archaea' to the archaebacteria, and 'Eucarya' to the eucaryotic nuclear lineage. We use the term 'homology' in it's strictest sense: homologous sequences are of common ancestry and function.

RNase P in Bacteria

The RNA component of bacterial RNase P varies in size among known examples from ca. 338 to ca. 444 nucleotides in length (the lengths are approximate because the mature 5' and 3' ends of most RNase P RNAs have not been precisely determined). The sequences of RNase P RNA-encoding genes currently are available from five of the eleven major phylogenetic branches (10) of Bacteria: purple bacteria and relatives (including *E. coli*) (11–16), Gram positive bacteria (including *B. subtilis*) (13,17), cyanobacteria (18), deinococci and relatives (including *Thermus*) (19–21), and *Thermotogales* (19,20). All of these RNAs have been shown to be catalytically active *in vitro* (12). A secondary structure for bacterial RNase P RNA has been proposed on the basis of comparative analyses of these sequences (Figure 1) (12,13,19). The RNase P RNA sequences from representatives of different bacterial groups are highly diverse in sequence (only 35-55% identical), yet the basic secondary structures of the RNAs are strikingly similar. Most of the structural variation, except in the case of the *Bacillus* RNA, is length-variation in helical regions of the molecule (22). The *Bacillus* structures are significantly altered with respect to the remaining RNase P RNAs; several large insertions and deletions have occurred in otherwise conservative regions of the molecule. It has been hypothesized that at least one of the novel insertions in the *Bacillus* sequences may compensate structurally for the loss of a long-range pairing elsewhere in the secondary structure (19). Nevertheless, the phylogenetically preserved regions of the molecule constitute a 'core' structure (Figure 1), a synthetic version of which is catalytically active *in vitro* (23).

The protein component of bacterial RNase P is less understood. RNase P protein gene sequences are available from only two species of purple bacteria and three species of Gram positive bacteria (7,24-27). Although important *in vivo*, the protein component can be supplanted *in vitro* by high salt concentrations (8,28). In the holoenzyme, the role of the protein may be as an electrostatic 'screen', allowing the highly negatively charged RNA enzyme-substrate complex to fold into the catalytic conformation under physiological (low salt) conditions (29). The abundance of charged residues in RNase P proteins is similar to that of many ribosomal proteins, to which RNase P protein, in a loose sense, may be analogous.

RNase P in Eucarya

The structure of RNase P from eucaryotic nuclei has been examined only in animals (*Xenopus* and human) (30,31) and fungi (budding and fission yeasts) (32-34). This is a relatively limited sampling of eucaryal diversity (35). These enzymes, like those of the bacteria, function as ribonucleoprotein complexes. Sensitivity of the enzymes to micrococcal nuclease indicates that the RNAs are essential components, yet none of the isolated RNAs has been shown to be catalytically active. No convincing similarity between the bacterial and eucaryal RNase P RNAs has been identified (but see reference 36). The variability of the RNA sequences within the few eucarya so far examined is sufficiently great that the secondary structures of these RNAs have yet to be determined; it is not yet clear that these RNAs in fact are homologous with each other, or to the RNAse P RNAs of bacteria.

^{*} To whom correspondence should be addressed

RNase P in organelles

It might be expected that the RNase P of mitochondria and chloroplasts would resemble that of their bacterial ancestors, as do the components of the translational machinery. The expected similarity is not yet apparent, however. Several mitochondrial RNase Ps have been shown to contain essential RNA and protein components, but the yeast RNA is best-characterized (37,38). That RNA is a product of the mitochondrial genome, whereas the protein component is derived from the nucleus (38). The RNA is not catalytically active in the absence of protein (37,38). The RNA components vary widely in size (from 140nt to at least 490nt) and they are very low in G+C content (ca. 23% G+C), as is the mitochondrial genome (39,40). The extremely high A+U content of these RNAs complicates the analysis of their structure because homologous sequences cannot be clearly identified. Consequently, the use of comparative analysis for identifying secondary structure has been limited. Because of the low sequence complexity, it seems unlikely that the RNA alone contains all the information required for its correct folding. Nonetheless, the few blocks of G+C-containing sequences in the mitochondrial RNase P RNA resemble the most highly conserved sequences in the bacterial RNAs (40). Although the mitochondrial RNase Ps are inactivated by treatment with micrococcal nuclease (37,38), the enzyme from S. cerevisiae mitochondria does not require intact RNase P RNA for activity. The RNA is fragmented during purification and some fragments appear to be entirely absent from purified, active enzyme (41).

The RNase P of chloroplasts may be unique in the lack of an RNA component. An RNA has not been found in the chloroplast RNase P, nor is the enzyme activity sensitive to treatment with micrococcal nuclease (42). The lack of an RNA component also is suggested by the low density of the enzyme, about that of protein-alone, in Cs₂SO₄ bouyant-density gradients. Moreover, computer (see below) and Southern hybridization (18) searches have failed to identify sequences resembling the bacterial RNase P RNA in the chloroplast genome. If confirmed, the apparent lack of an RNA component in chloroplast RNase P would be surprising; the RNase P of Anacystis nidulans, a cyanobacterium (to which chloroplasts are specifically related), contains a conventional bacterial-type, catalytic RNA (18). Moreover, the RNase P of Sulfolobus (see below) also has the qualities of resistance to nuclease-digestion and low density, suggesting the absence of RNA, yet it nonetheless contains an RNA element (43,44).

RNase P in Archaea

The RNase P holoenzymes of the thermophile *Sulfolobus* and of the extremely halophilic Archaea differ significantly in biochemical properties. The enzyme from *Sulfolobus* is resistant to micrococcal nuclease treatment and of low density (43,44), whereas the RNase P from *Haloferax volcanii* is sensitive to nuclease and dense in Cs_2SO_4 gradients (45,46). Nonetheless, both enzymes contain RNA components with striking sequence and secondary structure similarities to the bacterial RNase P

Figure 1. Secondary structure of RNase P RNA. Secondary structures of the RNase P RNAs of *E. coli* and *B. subtilis*, and a consensus core structure, are based on phylogenetic comparisons (12,13,19). The helices formed from nucleotides 66-74/353-360 and 82-85/276-279 (*E. coli* numbering) complete two pseudoknots in the secondary structures. Absolutely conserved nucleotides in bacterial RNase P RNAs are shown in the consensus structure in upper case; nucleotides which are not invariant, but are conserved in at least 90% of the available sequences, are shown in lower case. Nucleotides which are less than 90% conserved are shown with filled circles (\bigcirc). Nucleotides which are not present in all sequences, but are absent in less than 10% of the available sequences, are indicated with hollow circles (\bigcirc); those which are absent in greater than 10% of the sequences are not shown. Base-pairings for which phylogenetic evidence exists are indicated by heavy black bars.

	10	20	30	40	50	60	70	80	90	100	
				1		1				1	-
BSU	GUUCUUAACGUU-	-CGGGUAAUC-	GCUGCAG-	AU	CUUGA-			UGUAGAGGA	AGUCCAUGCU	CGCACGG	Bsu
BSt	GUUAAUCAUGCU-		6006066	((()	GUUU		(6-6(-			CGCACGG	BSt
ume Dha			GCUGCAU-		AUUU						ume Dha
BOr	AUGLAGGAAAUG			LAAULGU		6				CGCCLAA	BDr
Chi							GU-UAUG-	CCCCCAGGA			Chi
The								CCCCGAGGA		UCU	Tno
Tma	GGAGAGGAG	-CAGGCGGUC-	-2200000	CGCA				ICCCGAGGA			Tma
Too	CAGGALIAGG	-GGUGCGGUC-		6666				GGGLIGAGGA			Taa
Tth	CGGGACGAG	-GGCGCGGUC-	GCGCCGA-	GGG	CCGAAC-			GGGUGAGGA	AGUCCGGG-C	ACCAU	Tth
Dra	GCGGGGGAAA	-CUCCUGGUC-	GCGCCUGA	GCCGCU			GGUG-G-AC-	AGGUGAGGA	AGUCCGGG-C	ACCGC	Dra
Rru	CCAGUCGGC	-CGGAUGGCC-	GCUCUCC-	GUCAUCG-UCC	CCGGG-CCACCC	CCGAUGGAC	C-GU-CG-	GGGGGAGGA	AGUCCGGG-C	UCCAC	Rru
Dde	GGAGUCGGA	-CGGAUCGUC-	GCCGCGG-	GG	GCAA		C-UC-	CGGGGGAGGA	AGUCCGGG-C	UCCAA	Dde
Tfe	GGAGUGGGC	-CAGGCGACC-	GCCGCGG-	A	GCAA		UC-	CGGGGGAGGA	AGUCCGGG-C	UCCAU	Tfe
Cvi	GGAGUCGGC	-CAGACAGUC-	GCUUCCG-	UC	CUGGU-		G-AC-	GGGGGGAGGA	AGUCCGGG-C	UCCAU	Cvi
Aeu	AAAGCAGGC	-CAGGCAACC-	GCUGCCU-	GCACC	GCAA		-GG-UG-CA-	GGGGGGAGGA	AGUCCGGA-C	UCCAC	Aeu
Atu	CCAGUUGGC	-CGGGCAGCC-	GCGCCUU-	ACCAAUG-UC-	GAAA	GAC	:GG-UA-	AGGUGAGGA	AGUCCGGG-C	UCCAC	Atu
Pfl	AGAGUCGAU	-UGGACAGUC-	GCUGCCC-	UCUAU	GAAA		-AUUAG-GG-	GGGGGGAGGA	AGUCCGGG-C	UCCAU	Pfl
Sma	GGAGUUGAC	-CAGACAGUC-	GCCGCUU-	CAUUGCCGUCC	UCUUCG	GGGGAG	ACAGAU-GG-	AGGGGAGGA	VAGUCCGGG-C	UCCAU	Sma
Eag	GAAGCUGAC	-CAGACAGUC-	GCCGCUU-	CENCENCENCE	UCCUUCG	GGGGGAG	ACGGGC-GG-	AGGGGAGGA	AGUCCGGG-C	UCCAU	Eag
Kpn	GAAGCUGAC	-CAGACAGUC-	GCCGCUU-	COUCOUCOUCO	UCCUUCG	GGGGGAG	ACGGGC-GG-	AGGGGAGGA	AGUCCGGG-C	UCCAU	Kpn
Sty	GAAGCUGAC	-CAGACAGUC-	GCCGCUU-	CENCENCENCE	UUUCG	GGGAG	ACGGGC-GG-	AGGGGAGGA	AGUCCGGG-C	UCCAU	Sty
Есо	GAAGCUGAC	-CAGACAGUC-	GCCGCUU-	CONCONCO	UCUUCG	GGGGA	ACGGGC-GG-	AGGGGAGGA	AGUCCGGG-C	UCCAU	Есо
		^	~	20	<u>^</u>		~ ~		70	<u>^</u>	
	•	10	20	30	40		50	60	70	80	
	110	120	130	140	150	160	170	180	190	200	
_	1	1		1	1	I	I		I		-
Bsu	UGCUGAGAUGCCO		-UGCCUAG	CGAAGUCAUAA	GCUAGGGCA-GL					A	Bsu
BSt			-UGCCUAG		GCUAGGGCA-GC					GCUG	BSt
ome			-UGUUAG					UAUA			Bine
BOr	-GCUGAGAUGCU					UGAGGC		GCAA			BDr
Chi	,	AGACC-AGAC									Chi
Tno		-AGAGC-AGGG						GUGA			The
Tma		-0000-0000		GUAACG	CCC-00040-00						Tma
Too		-466666-46666			601-66606-60			GC &A			Too
T+h		-AGGGC-AGGG		GUAACG				GUAA			T+h
Dra		-AGGGCAAGGA	-UGCC-AG	CUAACG	GCU-GGUCG-GC	GAGUCGAGO	GCCCGCCUGA	GCGČČGAGG	GCAGGCGGAAA	GCGGCGA	Dra
Rru		GGGAAC-ACGG	-UGCC-GG	GUAACG	CCC-GGCGG-GG			GCGA			Rru
Dde		-AGGGC-AGAA	-CGCU-GG	AUAACA	UCC-AGGGA-GO			GCAA			Dde
Tfe		-AGGGC-AAGG	-CGCC-GG	UUAACG	GCC-GGGGG-GG			GUGA			Tfe
Cvi		-AGGGC-AGGG	-UGCC-AG	GUAACG	CCU-GGGGG-GG			GAGA			Cvi
Aeu		-AGGGC-AGGG	-UGUU-GG	CUAACA	GCC-AUCCA-CO	j		GCAA			Aeu
Atu		GGAAAU-ACGG	-UGCC-GG	AUAACG	UCC-GGCGG-GG	j		GCGA			Atu
Pfl		-AGGGC-GAAG	-UGCC-AG	GUAAUG	CCU-GGGGG-GG			GUGA			Pfl
Sma		-AGGGC-AGGG	-UGCC-AG	GUAACG	CCU-GGGAG-GG			GCAA			Sma
Eag		-AGGGC-AAGG	-UGCC-AG	GUAACG	CCU-GGGGGG-GL	J		GUCACA-			Eag
Kpn					CCII-CCCCC-CI	J		GUCACA-			Knn
Sty		-AGGGC-AAGG	i-UGCC-AG	iGUAACG				GOCAGA			τφπ.
		-AGGGC-AAGG -AGGGC-AGGG	-UGCC-AG	GUAACG GUAACG	CCU-GGGGG-G-			GAAA			Sty
Eco		-AGGGC-AAGG -AGGGC-AGGG -AGGGC-AGGG	i-UGCC-AG i-UGCC-AG i-UGCC-AG	iGUAACG iGUAACG iGUAACG	CCU-GGGGG-G- CCU-GGGGGG-G-			GAAA			Sty Eco
Eco		-AGGGC-AAGG -AGGGC-AGGG -AGGGC-AGGG	-UGCC-AG -UGCC-AG -UGCC-AG ^ 00	iGUAACG iGUAACG iGUAACG ^ 120	CCU-GGGGG-G- CCU-GGGGG-G-			GAAA			Sty Eco
Eco		-AGGGC-AAGG -AGGGC-AGGG -AGGGC-AGGG	-UGCC-AG -UGCC-AG -UGCC-AG ^ 90	GUAACG GUAACG GUAACG ^ 100	CCU-GGGGGG-G- CCU-GGGGGG-G- ^ 110)		GAAA			Sty Eco
Eco		-AGGGC-AAGG -AGGGC-AGGG -AGGGC-AGGG	i-UGCC-AG i-UGCC-AG i-UGCC-AG A 90	GUAACG GUAACG GUAACG 100	CCU-GGGGG-G- CCU-GGGGG-G- CCU-GGGGG-G- ^ 110)		GAAA			Sty Eco

	1	1	1	1	1	1	1	1	1	Ĩ
Bsu	GGCUGACGGCAGG	AAAAAGCC	UACGUCU	UCGGAUAUGGC	U-GAGUAUC	CUUGAAAGUG	CACAGUGAC	GA-AG-UCU-	CACUA	- Bsu
Bst	GGCUGACGGC-GGG	GAAA-GAACC	UACGUCCGGC	UGGGAUAUGGU	UCGAUUACO	C-UGAAAGUG	CACAGUGAC	GG-AG-CUC-	UAAGG	- Bst
Bme	AGCUGACGGC-GGG	SAAAAACCACC	UAAGUCU	UUGGAUAUGGU	C-GAGUAUC	C-UGAAAGUG	CACAGUGAC	GA-AG-CUU-	UGCUG	- Bme
Bbr	CGCUGACGGC-GU	GAAA-GGGCU	CUCU	CUGAGGC	CCGAGUACG	C-UGAAAGUG	CCACAGAAAC	GU-AG-CUU-	UUCUG	- Bbr
Ani	-CCGUGAGGA					GAGUG	CCACAGAAA-0	CA-UA-CCG-	CCGAUGG-CCUG	- Ani
Sbi	-CCCGCGGGGA					CAGUG	CACAGAAAA	CA-GA-CCG-	CCGGGGAC	- Sbi
Tne	-CCCU-CGGA					CAGGGG	CAUAGAGAA	GAAGA-CCG-	cc	- Tne
Tma	-CCCU-CGGA					CAGGGG	CCAUAGAGAA	GAAGA-CCG-	CCC	– Tma
Taq	-CCCGACGGA					AAGUG	CCACAGAGAA	GA-GA-CCG-	CCAGCG-GCCGGGG-	- Taq
Tth	-CCCGACGGA					AAGUG	CCACAGAGAA	GA-GA-CCG-	CCAGCG-GCCGGGG-	- Tth
Dra	AGCCGAAGGA					CAGUG	CCACAGAAAC	CA-GA-CCG-	CCACCCCAC-ACA	G Dra
Rru	-CCCUAGGGA					AAGUG	CCACAGAGAG	CA-AA-CCG-	CCGGCC	- Rru
Dde	-CCUC-CGGA					CAGCG	CCACAGAAAG	CA-AA-CCG-	CCCGGC	- Dde
Tfe	-GCCUACGGA					AAGUG	CCACAGAAAA	UA-UA-CCG-	CCAAGCGC	- Tfe
Cvi	-GUCCACGGA					AAGUG	CCGCAGAAAA	GA-UA-CCG-	CCGAC-CCCGUC	- Cvi
Aeu	-CGUGCGGAA					UAGGG	CCACAGAGAC	GA-GU-CUUG	CCGCCGGG	- Aeu
Atu	-CCCCAGGGA					AAGUG	CCACAGAGAG	CA-AA-CCG-	CCAUGC	- Atu
Pfl	-GCCUACGGA					AAGUG		UAA-CCG-	CCUAAGCAC	- PTI
Sma	-GCCUACGAC					UAGUG		CA-AA-CCG-	CCGAUGGCCCGC	- Sma
Eag	-GCCCACGAC					CAGUG		CA-AA-CCG-	CCGAUGGCCCGC	- Eag
Kpn	-GCCCACGAC					CAGUG		CA-AA-CCG-	CCGAUGGCCCGCAC	- Kpri
Sty	CCCACGAC					CAGUG		CA-AA-CCG-	CCGAUGGCCCAC	- <i>Sty</i>
Eco	CCCACGAC					CAGUG		CA-AA-CCG-	CCGAUGGCCCGC	- 200
	^						130	140	150	
	120						150	140	130	

	310	320	330	340	350	360	370	380	390	400	
Beu		 liGA	.CVCIICCVV	 		۱ 	۱ 	(606		GAGCG	Rsu
Rst	GAAACCU-	UAG	AGGUGGAA-					CGCG	GUAAACCCCAC	GAGCG	Bst
Bme	GAAACAG-	CAA	AGGUGGAA-					CGCG	GUAAACCCCAC	GAGCG I	Brne
Bbr	GCGACAG-		AGAUGGAA-					CGCG	GUAAACCCUGC	GAGCG I	Bbr
Ani	CUUGCAG-	-GCA-CAGGUAA	GGGUGCAAG	GGUGCGGUAA	GAGEGEACE		GAGA-GG-UG			UUGGG /	anı Shi
SD1 Tne	(U(GGUC-		GGGUGAAAC	GGUGGGGGUAA	GAGACCACC	AGCGUCGGG-	GCAA-CC-CG		GCAACCCCCAC	CUGGA	Tne
Tma	-GUUGAG	GGCA4	GGGUGGAAC	GGUGGGGUAA	GAGCCCACC	AGCGUCGGG-	GCAA-CC-CG	G-CGGCUUG	GCAACCCCCAC	CUGGA	Tma
Taq	CUUCCCCG-	-GUGCG-GGCAA	GGGUGAAAC	GGUGGGGGUAA	GAGCCCACC	GCCUGGCCUG	GCAACAG-GCI	JGGGGGCACG	GCAAACCCCAC	CCGGU	Taq
Tth	CUUCCCCCG-	-GUGCG-GGCAA	GGGUGAAAC	GGCGGGGGUAA	GAGCCCACC	GCCUGGCCUG	GCAACAG-GCO		GCAAACCCCAC		Tth
Dra	GCCCCGGCGCGGGGGGG		GGGUGAAAC	GGUGCGGUAA	GAGEGEACE		GAGACCG-GG	4-GCGUCUG			ura Rru
Rru Dde		-GGGUAA	GGGUGAAAG	GGUGGUGUAA	GAGACCACC		GUGACAC-GG	C-AUGCUCG	GCAUACCCCGL	JUCGGA	Dde
Tfe	GUAAGCG-	-CGGUA/	GGGUGAAAA	GGUGCGGUAA	GAGCGCACC	-GCAUUUCCG	GUAACGG-AA	-UGGCAGG	GAAAACCCCGC	CUGGA	Tfe
Cvi	CUCGGAC	-GGGAGGUAA	GGGUGAAAU	GGUGCGGUAA	GAGCGCACC	-GCGCUGGUG	GCAACAU-CA	G-UGGCAGG	GUAAACCCCAC	CCGGA	Cvi
Aeu	UUCGCCC-	-GGCGGGAA	GGGUGAAA-						GUAACCUCCAC		Aeu
Atu D£1		-0GGUAA		GGUGGGGGGAA	GAGCGCACC		GOGACAG-UG	G-HGGCHAG	GIAAACCCCAC		Pfl
Sma	GCAAGCG	-GGAUCAGGUAA	GGGUGAAAG	GGUGCGGUAA	GAGCGCACC	-GCGCGGCUG	GCAACAGUUC	G-UGGCACG	GUAAACUCCAC	CCGGA	Sma
Eag	GCAAGCG	-GGAUCAGGUA	GGGUGAAAG	GGUGC GGUAA	GAGCGCACC	-GCGCGGCUG	GUAACAGUCC	G-CGGCACG	GUAAACUCCAC	CCGGA	Eag
Kpn	GCAAGCG	-GGAUCAGGUA/	GGGUGAAAG	GGUGCGGUAA	GAGCGCACC	-GCGCGGCUG	GUAACAGUCC	G-CGGCACG	GUAAACUCCAC	CCCGGA	Kpn
Sty	GUAAGUG	-GGAUCAGGUA	GGGUGAAAG	GGUGCGGUAA	GAGEGEACE		GUAACAGUCC				Sty
ECO	UCAAUCU-			AUDDJDDDD A		-acacaacoa		J-UGGCACG	A /		200
	160	170	180	190	200	210	220	2	30 24	ю	
	410	420	430	440	450	460	470	480	490	500	
-		I	1	I	1	I	I	I	I	1	Devi
BSU Rc+											BSU RSU
Brne	A-GAAACCCAAAC		AA-							;	Bme
Bbr	A-GAAACCCAAAU									,	Bbr
Ani	AGCAAGGUGG		AG-	GGACA	AC		GGUI	UGGUCUUUU	ACC	-UGUU	Ani
Sbi	G-CAAGGUCAAGAGG	GGACACCCCGG	JGUCCGUGC-	GCGGAUGUUG	GA				CLCGA		SDI
Tmo	G-CAAGGCCAAGC		A	66666			UGGGU		CUAUU		Tma
Taq	G-CAAGGCCCGAU		ÂG-	GCAGG	·AĂ		GGGCU	UGCCCGG	CCCGUUAGAA-	-CCUG	Taq
Tth	G-CAAGGCCCGGU		AG-	GCAGG	-GA		GGGCU	UGCCCGG	CCCGAGAGAA-	CCUG	Tth
Dra	G-CAAGACCCGAC		CGU					GGCCCG	CCC-GUUUGA-		Dra Pru
Rru Dde	G-CAAGAOCGAAU		AG-	GGALGGCA			CGGCC	6600000	CCGAA		Dde
Tfe	G-CAAGACCAAAU		ÂG-	GCGUGC(GAU		ACCGU	GGCCCGC	GGU	GCACG	Tfe
Cvi	G-CAAGACCAAAU		AG-	GGGAAC	-UCGCGC	CUUCGACCGC	AGCGCGC	GGCCCGC	GCGU	GUUCC	Cvi
Aeu	G-CAAUCCCAAAU		AG-	GCAGGC(GAU		GAAGC	GGCCCGC	UGA		Aeu
ATU DEI	G-CAAGACCGAAU		AG-	GGUUCC				-0000-000	GCU		Pfl
Sma	G-CAAGGCCAAAU		ÂG-	GGGUUCA	AU		GGUAC	GGCCCGU	ACU	-GAACC	Sma
Eag	G-CAAGGCCAAAU		AG-	GGGUUCAl	JAA		GGUAC	GGCCCGU	ACU	-GAACC	Eag
Kpn	G-CAAGGCCAAAU		AG-	GGGUUCAL	JAA		GGUAC	GGCCCGU	ACU	-GAACC	Kpn
Sty	G-CAAGGCCAAAU		AG- AG-		AA			GGCCCGU	ACU	-GAACC	FCO
100	A		~~	A .			A	^		artice	200
	250		2	60			270	280			
	510	520	530	540	550	560	570	580	590	600	
Reu	-1166114-6-6664		GAAUUCAAC	GGA-GAGAA	GACAGAA	UGCU			ດດດດດີ່ ແລະ	GUACGA	Bsu
Bst	-UGGUA-G-GGGC	ACCUUCCCGAA	GGAAAUGAAC	GGA-GGGAA	GGACAGGC-(GC-GCAU-GC	AGCCUGUAGA	UAGAUGAUU	ACCGCCG-GA	GUACGA	Bst
Bme	-UGGUA-G-GGGA	ACUGUCUCAAA	GGAAUCUAAC	GGA-GAGAC	GGACGGUU-A	CAUGCG	UAAUCGUAGA	UAGAUGAUU	ACCGCCU-GA	GUACGA	Bme
Bbr	-UGGUA-G-GGGA		GGAAUCAAAC	GGAAGGGAC	GGAUGGUA-L		AUGCCAUAGA	UAGAUGGCU		GUGCGA	Bbr
Shi		C0			-AGAGGUG-G	GCGGCAACAG	COULCAGA		GUCGCCCCGA	COACC-	Shi
Tne	CGGGUU-G-GCCG	CU			-UGAGGUG-L	GCGGUAACGC	ACACCCCAGA	UUGAUGACC	ACCCA		Tne
Tma	CGGGUU-G-GCCG	CU			-UGAGGUG-l	IGCGGUAACGC	ACACCCCAGA	UUGAUGACC	GCCCA		Tma
Taq	CGGGAUGG-GCCG	CU			-UGAGGCC-C	GUGGCGACAC	CGGUCCCAGA	GAGAUGACC	GCGUA		Taq
Ith		CU			-UGAGGCC-O	GUGGCGACAC	CGGUCCCAGA	GAGAUGACC	GCGGA		Tth
Rru	CGGGUA-GUAUCG	CG			-CGAGGCG-I		GCGUCCCAGA				Rru
Dde	CGGGUA-G-GUUG	CU			-UGAGGGU-G	UGGGCAACCO	CACUCCUAGA	GGAAUGACG	GUCACACGCG	G	Dde
Tfe	CGGGUA-G-GUUG	CU			-GGAGCCU-	UGCGUAAGUG	CAGGCCUAGA	GGAAUGGUC	GUCCA		Tfe
CVI	CGGGUA-G-GUCG	(U			-AGAGGCG-L			UGAAUGACU	GUCCA		Cvi
Atu	CGGGUG-G-GUUG	CG			-0040000-0	COUGUAACAU	CCGUCCCAGA	GGAAUGGUU	GULALGUALL	5000GC .	Aeu A+u
Pfl	CGGGUA-G-GUUG	CU			-AAAGAUG-L	ICCAGUGAUGO	CCAUCGUAGA	CGAAUGACU	GUUCA		Pfl
Sma	CGGGUA-G-GCUG	CU			-UGAGCCA-C	UGAGCGAUUG	CUGGCCUAGA	GGAAUGACU	GUCCA		Sma
Eag	CGGGUA-G-GCUG				-UGAGCCA-(UGAGCGAUUG	CUGGCCUAGA	UGAAUGACU	GUCCA		Eag
Stv	CGGGUA-G-GCUG	CU			-UGAGCCA-C	UGAGCGALLIC	CUGGCCIMGA	UGAAUGACU	GUCCA		KPN S+v
Eco	CGGGUA-G-GCUG	CU			-UGAGCCA-C	UGAGCGAUUG	CUGGCCUAGA	UGAAUGACU	GUCCA		Eco
	^ ^ 200 - 201	a			/	۸ ۸ רב ۵	۸ ۸ دد م	a -	۸ ۸0		
		~			31	32	.v 33	ະ 3	-70		

	610	620	630	640	650	660	
	l l	1	1	1	1	1	
Bsu	GGUGAU-GAGC	CGUUUGCAGUAC	GAUGG-AACA	AAACAUGGCL	UACAGAACGI	JUAGACCACUU	Bsu
Bst	GGCGCA-AAGC	CGCUUGCAGUAC	GAAGG-UACA	GAACAUGGCL	JUAUAGAGCAI	JGAUUAACGUG	Bst
Bme	GAUUAAAAU	CGUUUGCAGUAC	AAAGG-UACA	AAACAUGGCL	IUUACGAACGI	JUGUUGAAACA	Bme
Bbr	GGGAUACGUCC	CGCUUGCAGCAC	GGGAGAGACA	GAACCUGGCL	JUAUAGCAUU	JCCUGCUGGAU	Bbr
Ani	UUC	GA	CAGAG-AACA	GAACCCGGCL	JUAUGUCCUG		Ani
Sbi	GCGA	GGUC	CCGGG-GACA	GAACCCGGCC	UACAGCCCG	CUCGUCUG	Sbi
Tne			C-GACA	GAAUCCGGCL	JUA-UACCCCI	JCUCCCGUG	Tne
Tma			C-GACA	GAAUCCGGCL	JUA-UGCUCCI	JCUCCCGUG	Tma
Таа				GAACCCGGCL	JUACGCCCUAI	JCCUGGGGA	Taq
Tth				GAACCCGGCL	JUACGCCUCG	JCCCGGAGG	Tth
Dra	GAGA	CCCCG	GAGCA-GACA	GAACCCGGCL	JUACCGUUUC	CCCGUGCCA	Dra
Rru	CCCUUGC	-GGGAUACGGCC	GGCGUGGACA	GAACCCGGCL	IUACAGGCCG	JCUGGCGGU	Rru
Dde	GCAA	CC	GUGUG-GACA	GAACCCGGCL	IUACAGUCCG/	CUCCCGCA	Dde
Tfe			C-GACA	GAACCCGGCL	JUAUCGGCCC	CUCCAAUU	Tfe
Cvi			C-GACA	GAACCCGGCL	UAUCGGCCG	CUCCCUUC	Cvi
Aeu	CGCAA	GGCGGGCG	GGGCG-CACA	GAAUCCGGCL	JUAUCGGCCU	SCUUUGCUU	Aeu
Atu	GUCAAA	CCG	GGGCCAUACA	GAACCCGGCL	JUACAGGCCA	CUGGCGAA	Atu
Pf1			A-GACA	GAACCCGGCL	JUAUA GAUCG	CUCUCCAC	Pfl
Sma			C-GACA	GAACCCGGCL	JUACCGGUCA	CUCCCUC	Sma
Faa			C-GACA	GAACCCGGCL	UAUCGGUCA	GUUUCACCU	Faa
Kon			C-GACA	GAACCCGGCL	JUAUCGGUCA	GUUUCACCU	Kon
Stv			C-GACA	GAACCCGGCL	JUAUCGGUCA	GUUUCACCU	Stv
Eco			C-GACA	GAACCCGGCL	JUAUCGGUCA	GUUUCACCU	Eco
				٨	٨	٨	
			3	50 3	60	370	
			-				

Figure 2. Bacterial RNase P RNA nucleotide sequence alignment. RNase P RNA sequences are from Bacillus subtilis (Bsu) (17), Bacillus stearothermophilus (Bst) (13), Bacillus brevis (Bbr) (13), Anacystis nidulans (Ani) (18), Streptomyces bikiniensis (Sbi) (19), Thermotoga neapolitana (Tne) (20), Thermotoga maritima (Tma) (19), Thermus aquaticus (Taq) (20), Thermus thermophilus (Tth) (21), Deinococcus radiodurans (Dra) (19), Rhodospirillum rubrum (Rru) (12), Desulfovibrio desulfuricans (Dde) (12), Thiobacillus ferrooxidans (Tfe) (16), Chromatium vinosum (Cvi) (12), Alcaligenes eutrophus (Aeu) (12), Agrobacterium tumefaciens (Atu) (12), Pseudomonas fluorescens (Pfl) (13), Serratia marcescens (Sma) (14), Erwinia agglomerulans (Eag) (14), Klebsiella pneumoniae (Kpn) (14), Salmonella typhimurium (Sty) (11), and Escherichia coli (Eco) (15). The alignment is numbered at the top; numbers based on the E. coli RNA are indicated with carets (^) below the Eco sequence.

Eco Pmi Sbi Mlu Bsu	10 I MVKLAFPRELPLLTPS MVKLAFPRELRLLTPS MLPTENRLRR MLPRDRRVRTPA MSHLKKRNRLKKNE	20 9 Q F T F V F Q Q P 10 F N F V F Q Q P 10 F A T A V R R G 10 F R R I L G R T G 10 F Q X V F K H G	30 Q R A G T P Q I T I Q R A S S P E V T I R A G R P L L V V T R A G R R T V V V T S V A N R Q F V L	40 ILGRLNSLG ILGRQNELG IRLSGATDPH SVATDPDQTR YTLDQP	50 I I I I I I I I I I I I I I I I I I I	60 I G L T V A K K N V I G L T I A K K N V A G F V V S - K A V A G F V V S - K A V V G L S V S K K - I	70 I KRAHE Eco KRAHE Pmi GGAVV Sbi GNAVT Mlu GNAVM Bsu
Eco Pmi Sbi Mlu Bsu	80 I R N R I K R L T R E S F R L R N R I K R L A R E Y F R L R N Q V K R R L R H L V C D R N R V K R R L R A V V A E Q N R N R I K R L I R Q A F L E -	90 I HQHELPAMD - RQHEQLPAMD - RLSALPPGS 4 RLPPLRDLP - KER - LKEKD	100 FVVVAKKC FVVLVRKC LVV-VRALPC VLVQVRALPA YIIIARKF	110 I D N R A L S I V A E L D N H Q L T I A G D A D H A Q L A A A E A D Y A L L R A S Q L T Y E E T K	120 E A L E K L W R R H E V L G K L W R R H R D L D A A L Q R - R E T V G A L G K A K S L Q H L F R K S	130 I I A R G S - C R L A Q S S L L G G G T R L K P L P A A S E S L Y K K S S S	Eco Pmi Sbi HA Mlu K- Bsu

Figure 3. Bacterial RNase P protein amino acid sequence alignment. RNase P protein sequences, deduced from gene sequences, are from *Escherichia coli (Eco)* (7), *Proteus mirabilis (Pmi)* (27), *Streptomyces bikiniensis (Sbi)* (25), *Micrococcus luteus (Mlu)* (24), and *Bacillus subtilis (Bsu)* (26). Alignment gaps added to maximize sequence similarity are shown as dashes (-). Basic amino acid residues (histidine, lysine, and arginine) are enclosed by black squares; acidic residues (aspartic acid and glutamic acid) are enclosed by white squares. The alignment is numbered at the top.

RNAs. In contrast to the bacterial RNA, however, the archaeal RNase P RNAs apparently are not catalytically active when isolated from the holoenzyme. The resistance of the *Sulfolobus* RNase P to nuclease digestion apparently results from inaccessibility of the RNA in the holoenzyme (44); such masking of the RNA also could be in part responsible for the low density of the enzyme in Cs_2SO_4 gradients, if cesium cations were somehow excluded from binding to the RNA.

SEQUENCE ALIGNMENTS

The RNA components of the available bacterial RNase P RNA sequences are aligned on the basis of their secondary structures, which are in turn based on phylogenetic comparisons (Figure 2). Parsimonious reconstruction of the evolutionary path of the RNA

sequence and structure has been used to align portions of the molecule that cannot be aligned solely on the basis of structure. The alignment of nucleotides within regions 21-60, 260-290, and 343-344 (except in the case of the purple bacteria and relatives) is ambiguous because of the extreme variability in length (even presence) and sequence. These regions have therefore been aligned, somewhat arbitrarily, from the proximal to distal end, along the lengths of their continuous helices. Base-paired nucleotides are assigned homologous positions in the alignment in every case.

Because homologies of nucleotides in the bacterial, mitochondrial and eucaryal RNAs cannot yet be assigned, the latter sequences are not included in the alignment. Portions of the archaeal RNase P RNAs are strikingly similar to those of the bacteria; however, large regions of the *Haloferax* and *Sulfolobus* RNAs cannot be aligned with each other, or to the bacterial RNAs. These RNAs, therefore, also are not included in the alignment.

The structure of the bacterial RNase P protein has not been investigated beyond determination of gene sequences. The alignment of the presumptive amino acid sequences is, therefore, based only on maximized sequence similarity. The UWGCG BESTFIT and GAP programs (47) were used to generate the multiple alignments, by iterative pair-wise alignments, which then were compressed manually into a more contiguous alignment (Figure 3).

A fundamental difference between the alignments of the RNA and protein subunit sequences that we present must be emphasized; the RNA alignment is based on homology (common ancestry) of sequences, whereas the protein alignment is based on similarity.

SEARCH FOR RNASE P SEQUENCES IN CHLORO-PLAST GENOMES

We have searched the complete chloroplast genome sequences of rice (48), tobacco (49), liverwort (50), and Epiphagus (51), in an attempt to identify bacterial-like RNase P RNA- or proteinencoding sequences. Short, redundant, consensus sequence 'probes' were identified from alignments of the bacterial sequences. In the case of the RNA alignment, the sequences from the enterobacteria were represented only by E. coli and those of the thermotogales only by T. maritima, so that closely related sequences would not monopolize the consensus. Because the dramatic structural changes of the Bacillus RNase P RNAs appear unique to this group (22), these sequences were likewise omitted from the alignment used in the construction of consensus RNA probes. The UWGCG WORDSEARCH, FASTA, and TFASTA programs (47) were used to search the chloroplast genomes for similarity to the probe sequences. Regions of similarity to the probes were compiled with respect to their relative orientation and sequential order (relative to the bacterial sequence consensus) and by dot-matrix ('dot plot') analysis. No sequences within the chloroplast genome with the potential to encode bacterial-like RNase P RNA or protein subunits were identified. This does not, of course, discount the possibility that bacterial-like RNase P exists in the chloroplast. It is possible that bacterial-like RNase P RNA and protein subunits could be encoded by the nuclear genome and imported into the organelle, or could be so divergent from their bacterial counterparts that they could not be identified on the basis of sequence similarity. Nevertheless, these results strengthen the suggestion (42) that the chloroplast RNase P does not seem to contain a bacterial-like RNA component.

ACKNOWLEDGMENTS

The authors thank John Donello for assistance in the computer search of the chloroplast genomes for RNase P-like sequences, and Drs. Elizabeth Haas and Sylvia Darr for helpful discussion and comments during the preparation of this manuscript. This work was supported by grant GM34527 from the National Institutes of Health to NRP.

REFERENCES

- 1. Altman, S. (1990) J. Biol. Chem., 265, 20053-20056.
- 2. Pace, N. R. and Smith, D. (1990) J. Biol. Chem., 265, 3587-3590.
- Guerrier-Takada, C., Haydock, K., Allen, L. and Altman, S. (1986) Biochemistry, 25, 1509-1515.
- 4. Altman, S. and Smith, J. D. (1971) Nature (London) New Biol., 233, 35-39.

- Stark, B. C., Kole, R., Bowman, E. J. and Altman, S. (1977) Proc. Natl. Acad. Sci. U. S. A., 75, 3719-3721.
- 6. Gardiner, K. and Pace, N. R. (1980) J. Biol. Chem., 255, 7507-7509.
- 7. Hansen, F. G. and Hansen, E. B. and Atlung, T. (1985) Gene, 38, 85-93.
- Guerrier-Takada, C., Gardiner, K., Marsh, T. L., Pace, N. R. and Altman, S. (1983) Cell, 35, 849-857.
- Woese, C. R., Kandler, O. and Wheelis, M. L. (1990) Proc. Natl. Acad. Sci. U. S. A., 87, 4576–4579.
- 10. Woese, C. R. (1987) Microbiol. Rev., 51, 221-271.
- 11. Baer, R. E. and Altman, S. (1985) Science, 228, 999-1002.
- Brown, J. W., Haas, E. S., James, B. D., Hunt, D. A, Liu, J. and Pace, N. R. (1991) J. Bacteriol. 173, 3855-3963.
- James, B. D., Olsen, G. J., Liu, J. and Pace, N. R. (1988) Cell, 52, 19-26.
 Lawrence, N. P., Richman, A., Amini, R. and Altman, S. (1987) Proc. Natl. Acad. Sci. U. S. A., 84, 6825-6829.
- Reed, R. E., Baer, M. F., Guerrier-Takada, C., Donis-Keller, H. and Altman, S. (1982) Cell, 30, 627-636.
- Takeshima, T., Inoue, C., Kitagawa, Y. and Kusano, T. (1989) Nucl. Acids Res., 17, 9482.
- Reich, C., Gardiner, K. J., Olsen, G. J., Pace, B., Marsh, T. L. and Pace, N. R. (1986) J. Biol. Chem., 261, 7888-7893.
- Banta, A. B., Haas, E. S., Brown, J. W. and Pace, N. R. (unpublished data). X63566
- Haas, E. S., Morse, D. P., Brown, J. W., Schmidt, F. J. and Pace, N. R. (1991) Science, 254, 853-856.
- Brown, J. W., Haas, E. S. and Pace, N. R. (unpublished data). X63821 X63822
- 21. Hartmann, R. K. and Erdmann, V. A. (1991) Nucl. Acids Res., 19, 5957-5964.
- 22. Brown, J. W. and Pace, N. R. (1991) Biochimie, 73, 689-697.
- Waugh, D. S., Green, C. J. and Pace, N. R. (1989) Science, 244, 1569-1571.
- 24. Fujita, M. Q., Yoshikawa, H. and Ogasawara, N. (1990) Gene, 93, 73-78.
- 25. Morse, D. P. and Schmidt, F. J. (personal communication). M83112
- Ogasawara, N., Moriya, S., von Meyenburg, K., Hansen, F. G. and Yoshikawa, H. (1985) *EMBO J.*, 4, 3345-3350.
- 27. Skovgaard, O. (1990) Gene, 93, 27-34.
- Gardiner, K. J., Marsh, T. L. and Pace, N. R. (1985) J. Biol. Chem., 260, 5415-5419.
- Reich, C., Olsen, G. J., Pace, B. and Pace, N. R. (1988) Science, 239, 178-181.
- Carrara, G., Calandra, P., Fruscoloni, P., Doria, M. and Tocchini-Valentini, G. P. (1989) *Cell*, 58, 37–45.
- 31. Gold, H. A. and Altman, S. (1986) Cell, 44, 243-249.
- Cherayil, B., Krupp, G., Schuchert, P., Char, S. and Söll, D. (1987) Gene, 60, 157-161.
- Krupp, G., Cherayil, B., Frendewey, D., Nishikawa, S. and Söll, D. (1986) EMBO J., 5, 1697-1703.
- Lee, J., Rohlman, C. E., Molony, L. A., and Engelke, D. R. (1991) Mol. Cell. Biol., 11, 721-730.
- Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A. and Peattie, D. A. (1989) Science, 243, 75-77.
- 36. Forster, A. C. and Altman, S. 1990 Cell, 62, 407-409.
- Doerson, C., Guerrier-Takada, C., Altman, S. and Attardi, G. (1985) J. Biol. Chem., 260, 5942-5949.
- Hollingsworth, M. J. and Martin, N. C. (1986) Mol. Cell Biol., 6, 1058-1064.
- 39. Miller, D. L. and Martin, N. C. (1983) Cell, 34, 911-917.
- 40. Wise, C. A. and Martin, N. C. (1991) J. Biol. Chem., 266, 19154-19157.
- Morales, M. J., Wise, C. A., Hollingsworth, M. J. and Martin, N. C. (1989) Nucl. Acids. Res., 17, 6865-6881.
- 42. Wang, M. J., Davis, N. W. and Gegenheimer, P. (1988) EMBO J., 7, 1567-1574.
- 43. Darr, S. C., Pace, B. and Pace, N. R. (1990) J. Biol. Chem., 265, 12927-12932.
- 44. LaGrandeur, T., Darr, S. and Pace, N. R. (unpublished data).
- Lawrence, N., Wesolowski, H., Gold, H., Bartkiewicz, M., Guerrier-Takada, C., McClain, W. H. and Altman, S. (1987) Cold Spring Harbor Symp. Quant. Biol., volume LII. Cold Spring Harbor Press. Cold Spring Harbor.
- Nieulandt, D. T., Haas, E. S. and Daniels, C. J. (1991) J. Biol. Chem., 266, 5689-5695.
- 47. Devereux, J., Haeberli, P. and Smithies O. (1984) Nucl. Acids Res. 12, 387-395.
- 48. Sugiura, M. (unpuplished). X15901.
- 49. Sugiura, M. (unpublished). Z00044.
- 50. Ohyama, K. (unpublished). X04465. X01647.
- 51. Wolfe, K. H., Morden, C. W. and Palmer, J. D. (personal communication).