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ABSTRACT
Recent work with Saccharomyces cerevisiae shows a linear relationship between the evolutionary rate of sites

and the relative solvent accessibility (RSA) of the corresponding residues in the folded protein. Here, we
aim to develop a mathematical model that can reproduce this linear relationship. We first demonstrate that
two models that both seem reasonable choices (a simple model in which selection strength correlates with
RSA and a more complex model based on RSA-dependent amino acid distributions) fail to reproduce the
observed relationship. We then develop a model on the basis of observed site-specific amino acid distribu-
tions and show that this model behaves appropriately. We conclude that evolutionary rates are directly
linked to the distribution of amino acids at individual sites. Because of this link, any future insight into the
biophysical mechanisms that determine amino acid distributions will improve our understanding of evo-
lutionary rates.

THE requirement for successful and efficient protein
folding imposes significant biophysical constraints

on coding sequences. These constraints shape how se-
quences evolve. Mutations that interfere with correct
folding will generally be removed by purifying selection.
Likewise, mutations that do not interfere with folding
are often neutral, or nearly so, and accumulate over
time. As a consequence of this interaction between pro-
tein biophysics and molecular evolution, signatures of
protein structure can be found in the divergence pat-
terns of coding sequences (Franzosa and Xia 2008;
Lobkovsky et al. 2009; Wilke and Drummond 2010).

Mutagenesis experiments have shown that different
positions in proteins have widely differing tolerances to
amino acid substitutions (Reidhaar-Olson and Sauer
1988; Bowie et al. 1990; Lau and Dill 1990; Guo et al.
2004; Campbell-Valois et al. 2005; Smith and Raines
2006). On average, however, mutations introduced at
solvent-exposed sites are less likely to disrupt protein
structure and function than mutations introduced at
buried sites. The latter tend to destabilize proteins,
through steric hindrance and introduction of strained
conformations (Chothia and Finkelstein 1990).

The higher tolerance of solvent-exposed sites to amino
acid substitutions results in a correlation between the
rate at which individual sites in coding sequences

accumulate mutations over evolutionary time and the
solvent exposure that these sites have in the expressed
protein. Studies that have linked evolutionary rate with
solvent exposure have consistently found that buried
sites are more conserved and evolve slower than exposed
sites (Overington et al. 1992; Goldman et al. 1998;
Mirny and Shakhnovich 1999; Bustamante et al.
2000; Bloom et al. 2006; Conant and Stadler 2009;
Franzosa and Xia 2009). At the same time, however,
proteins with a larger core (more buried residues) evolve
faster than proteins with a smaller core (Bloom et al.
2006; Ferrada and Wagner 2008; Zhou et al. 2008;
Franzosa and Xia 2009). This apparent paradox can
be resolved by observing that a larger core allows surface
residues to vary more (Shakhnovich et al. 2005; Bloom
et al. 2006; Franzosa and Xia 2009).
Recently, Franzosa and Xia (2009) developed

a novel approach to analyze the relationship between
evolutionary rate and solvent accessibility. They first
mapped a large fraction of the genome of the yeast
Saccharomyces cerevisiae onto homologous crystal struc-
tures from the Protein Data Bank (PDB). On the basis
of this mapping, Franzosa and Xia (2009) determined
relative solvent accessibility (RSA) for �300,000 sites in
the yeast genome. They then grouped these sites into
bins of similar RSA value and calculated for each bin
the average evolutionary rate dN/dS in a phylogeny of
four yeast species. They found a strikingly linear rela-
tionship between evolutionary rate and RSA. Every
1% increase in RSA was associated with an increase
in dN/dS of 0.001 (Franzosa and Xia 2009). Why the
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relationship between evolutionary rate and RSA is lin-
ear remains unknown.

Here, we employ mathematical modeling and bio-
informatics analysis to explore what mechanism could
be responsible for the linear relationship. We first show
that a two-allele model in which selection strength
correlates with RSA fails to reproduce this relationship.
We then develop a more sophisticated model on the
basis of amino acid frequencies and show that this
model fails as well. The second model fails because
amino acid frequencies averaged over many sites with
comparable RSA differ dramatically from the distribu-
tions of allowed amino acids at individual sites. By
building a model on the basis of the latter distributions,
we can reproduce an approximately linear relationship
between evolutionary rate and RSA.

METHODS

Evolutionary rate as a function of RSA: To verify the
linear relationship between evolutionary rate and RSA at
the amino acid level, we reproduced Franzosa and Xia’s
(2009) results using amino acid distance instead of dN/dS.
First, we obtained orthologs between S. bayanus and S.
cerevisiae from the Saccharomyces Genome Database as
in Zhou et al. (2008) and aligned sequences with
MUSCLE (Edgar 2004). We mapped the S. cerevisiae
sequences to structures using three iterations of PSI-BLAST
against the PDB, requiring a minimum of 80% sequence
identity for a match. We ended up with 525 matching
structures. For these matched structures we used the
program DSSP (Kabsch and Sander 1983) to calculate
solvent accessibility at each site. To obtain RSA, we normal-
ized the solvent accessibilities calculated by DSSP with re-
spect to an extended Gly-X-Gly peptide (Creighton
1992). We binned sites by RSA and then calculated evolu-
tionary rate K with the PAML package codeml (Yang
2007), using the Whelan and Goldman (WAG) model
for amino acid distance (Whelan and Goldman 2001).

Amino acid distribution over many yeast proteins: To
calculate amino acid distributions, we used the same
set of S. cerevisiae ORFs mapped to protein structures.
We binned all sites by RSA as above. (A few residues
had RSA . 1 and we treated them as if they had RSA ¼
1.) We then calculated the relative frequency of
each amino acid in each RSA bin. For visualization,
we ordered amino acids by hydrophobicity using the
Fauchere–Pliska octanol scale (Fauchere and Pliska
1983).

Coordination number and RSA correlation: We
computed the correlation between normalized coordi-
nation number and RSA using the same set of S. cerevi-
siae proteins as above. The coordination number of
a site is the number of sites it is in contact with, and
we considered two sites to be in contact if any two heavy
atoms are within 4.5 Å of each other (excluding se-
quence neighbors). We used the BioPython module

Bio.PDB (Hamelryck and Manderick 2003) to com-
pute coordination numbers, which for each site we nor-
malized by the average over the entire protein.

Variation at individual sites over structural homologs:
To compute distributions at individual sites across
structurally similar proteins, we employed a PSI-BLAST
search of the NCBI nonredundant database (NR) to
construct alignments from various seed proteins. As
seed proteins, we used the proteins obtained by
mapping the yeast genome to the PDB (as described
above). We then filtered the alignment given by PSI-
BLAST such that the remaining sequences all had
between 40% and 80% pairwise sequence similarity
with all other sequences in the alignment. This filtering
procedure excluded redundant sequences while still
ensuring structural similarity (Chothia and Lesk 1986;
Holm et al. 1992). We retained only filtered alignments
that contained at least 50 sequences. Our final data set
consisted of 162 distinct alignments. In the filtered
alignments, we classified each site by RSA of the seed
protein at this site and placed sites into bins of similar
RSA. We then calculated the alignment-wide amino
acid distribution for every site. At each site, we ranked
residues by declining frequency at that site. We then
averaged the frequency-sorted amino acid distributions
over all sites within each bin.

To characterize these averaged distributions with a
single parameter, we fitted the one-parameter expo-
nential function e2lk to the average amino acid fre-
quency as a function of the amino acid rank k.

Analysis scripts and data to reproduce this analysis are
provided in supporting information, File S1.

Parameter choices: To study numerically the behav-
ior of our mathematical models of protein evolution, we
had to choose suitable values for the parameters Ne

(effective population size) and m (mutation rate). We
chose values that are approximately correct for yeast,
namely Ne ¼ 5 · 106 individuals and m ¼ 3.3 · 10210

mutations per site per generation (Lynch et al. 2008;
Lancaster et al. 2010).

RESULTS

Franzosa and Xia (2009) found a strong linear re-
lationship between dN/dS and RSA. While their result
was likely driven by selection on the amino acid level,
their use of dN/dS does not allow us to draw this conclu-
sion a priori. Their result could be confounded by vary-
ing levels of selection on synonymous sites; synonymous
codon usage is not uniform across genes and covaries
with protein structure (Akashi 1994; Drummond and
Wilke 2008; Zhou et al. 2009; Lee et al. 2010).

Therefore, to verify that Franzosa and Xia (2009)
had indeed identified an effect occurring at the amino
acid level, we repeated their analysis with amino acid
sequences. We aligned orthologous genes from the two
yeasts S. cerevisiae and S. bayanus and classified sites into
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bins of similar RSA values. We then concatenated all
sites within each bin and calculated the amino acid
distance K between the S. cerevisiae and the S. bayanus
sequence in each bin. Amino acid distance is a measure
of evolutionary rate on the amino acid level (Whelan

and Goldman 2001).
We found a near-perfect linear relationship between

evolutionary rate K and RSA (Figure 1). We interpret
this result as a signal of purifying selection acting on the
amino acid sequence. On average, buried sites experi-
ence stronger purifying selection than exposed sites
and thus evolve slower. The increased selective con-
straints on buried amino acids presumably reflect the
requirement for proteins to fold and function properly.

That buried sites are more constrained than exposed
sites is well known. Much existing theory, experiments,
and sequence data support the notion that substitu-
tions in the core of a protein are more likely to be dis-
ruptive than substitutions in solvent-exposed regions.
Yet the perfectly linear relationship between evolution-
ary rate and RSA is surprising and deserves an expla-
nation. We thus proceeded to explore what kind of
evolutionary models could potentially reproduce this
observation.

A simple two-allele model: The simplest model we
can consider is a multiplicative multisite, two-allele
model; in this model, an organism’s genome consists
of a finite number of sites, each of which can exist in
two alleles. All sites contribute multiplicatively to the
overall fitness of the organism. At each site i, one of
the two alleles is preferred, and we assume it has fitness
1. The second allele is selected against and has fitness
12 si. We assume that all sites mutate with the same
rate m. In such a model, in equilibrium, sites with larger
si will evolve slower than sites with smaller si. For suffi-
ciently small si, sites will evolve neutrally at rate m.

Here and throughout, we consider haploid, asexual
organisms and assume that the product of mutation
rate and effective population size Ne is small, mNe ≪ 1. In
this case, and because we consider a multiplicative
model, the evolutionary rate of a genome of length L
is the average of the evolutionary rates of L single-site
models with identical selection coefficients. Therefore,
in what follows, we consider only the evolutionary rate
at a single site and ask how it changes with selection
coefficient s. For simplicity, we drop the site index i.
We refer to the two alleles at a site as A and a. Allele A

has fitness 1 and allele a has fitness 1 – s. The probabil-
ity that allele a goes to fixation in a background of allele
A is given by Kimura (1962):

pA/a 5
12 e2s

12 e2Nes
: (1)

Likewise, the probability that allele A goes to fixation in
a background of allele a is given by

pa/A 5
12 e 2 2s

12 e 2 2Nes
: (2)

In equilibrium, and averaged over long periods of
time, both alleles will be present at the site some
fraction of time. We denote these fractions as F(A)
and F(a), with F(A) 1 F(a) ¼ 1. We have

F ðAÞ5 pa/A

pa/A 1pA/a
; F ðaÞ5 pA/a

pa/A 1pA/a
: (3)

Evolutionary rate K is the rate with which mutations
originate and go to fixation. Thus, K is given by

K 5mNe½F ðAÞpA/a 1 F ðaÞpa/A�: (4)

The evolutionary rate K is of course a function of s.
Thus, we can now ask how K changes as s changes.
Assuming s ≪ Ne and using standard approximations
for the fixation probabilities, we obtain

K ðsÞ � 4smNe

e2Nes 2 e22Nes
: (5)

For s &1/Ne, evolution is neutral, and K(s) � m. For
larger s, the evolutionary rate declines exponentially
in s, K ðsÞ � 4smNee22Nes .
We now assume that the selection coefficient s is

a function of RSA. We denote RSA by r in mathematical
expressions. An increase in K as r increases corresponds
to a greater tolerance to mutation; hence, the selection
coefficient s(r) should be a decreasing function of r.
We assume that r can take on any value in the interval
[0, 1]. The function s(r) maps this interval into some

Figure 1.—Evolutionary rate K as a function of RSA, for
yeast. The dashed line represents the fit of a linear function to
the data.
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interval of s values. Thus, we have to ask: Is there a rea-
sonable mapping from r to s(r) such that K(s(r)) is
approximately a linear, increasing function in r ? We
found that generally, such a mapping does not exist.
Because K decreases exponentially with s, any function
s(r) that might result in approximately linear behavior
of K will necessarily have an exponentially small range
of possible s values. To illustrate this result, we defined
three functions with parameters that give similar ranges
in [0, 1]: a linearly decaying function whose image is [0,
1.5 · 1025], an exponential function with image [7.3 ·
1026, 2 · 1025], and a logarithmic function spanning
�[0, 1.8 · 1025]. For all three definitions of s(r), Equa-
tion 4 still produces exponentially fast growth of K as
a function of r (Figure 2). More generally, we can show
that even if the difference in s corresponding to fully
buried (r ¼ 0) and fully exposed (r ¼ 1) sites is only on
the order of 1/Ne, the deviation from linearity is larger
than the magnitude of the evolutionary rate K itself (see
APPENDIX). We conclude that the two-allele model
does not seem to be an appropriate model to describe
the effect of relative solvent accessibility on evolutionary
rate.

A model based on amino acid frequencies: We
believe that the main reason why the two-allele model
gives unsatisfactory results is that it replaces 20 different
amino acids by only two different states, preferred and
unpreferred. In real proteins, it may well be that at one
site 3 amino acids are preferred and 17 unpreferred,
while at a different site 5 are preferred and 15
unpreferred. All else being equal, the second site will

evolve faster than the first. This reasoning suggested to
us that we should aim to develop a model on the basis of
amino acid frequencies. The sites with the broadest
distributions of amino acids should evolve the fastest,
and the sites with the narrowest distributions the
slowest.

Amino acid distributions in proteins have been studied
extensively. The general consensus is that amino acid
frequencies follow a Boltzmann distribution. The in-
dividual frequencies at sites can be calculated either
from stability effects [DDG values (Dokholyan and
Shakhnovich 2001; Dokholyan et al. 2002; Godoy-
Ruiz et al. 2004; Bloom and Glassman 2009; Schmidt
am Busch et al. 2010] or from the protein’s connec-
tivity matrix (Porto et al. 2004; Bastolla et al. 2005;
Pokarowski et al. 2005; Wolff et al. 2008; Bastolla
et al. 2008). In particular, Porto et al. (2004) showed that
the frequency of amino acid a is proportional to e2bh(a),
where b measures properties of the site under consider-
ation and h(a) measures properties of the amino acid.
The quantity b can be derived from the protein struc-
ture’s contact matrix. It varies almost linearly with the
site’s coordination number normalized by the protein’s
average. The quantity h(a) is the interactivity of amino
acid a, a quantity highly correlated with hydrophobicity
(Bastolla et al. 2005).

Because solvent occlusion happens through interre-
sidue contacts, we hypothesized that the normalized
coordination number should correlate strongly with
RSA and that the theory of Porto et al. (2004) should
provide at least a qualitatively correct description of
the amino acid distribution in different RSA bins.
We found both to be the case in yeast. The normal-
ized coordination number correlated well with RSA
(Pearson’s r ¼ 0.66, P , 2.2 · 10216). Amino acid
distributions were strongly skewed toward hydropho-
bic residues at low RSA and toward hydrophilic residues
at high RSA. For intermediate RSA, corresponding to
b ¼ 0, both hydrophobic and hydrophilic residues had
comparable frequencies (Figure S1). Having found
this correspondence, we proceeded to obtain the evo-
lutionary rates predicted by the theory of Porto et al.
(2004).

The amino acid distribution at a site, combined with
effective population size Ne and mutation rate m, fully
specifies the evolutionary rate at the site, under the
assumption that sites evolve independently. The link
between amino acid distribution and evolutionary rate
is established by Sella–Hirsh theory (Sella and Hirsh

2005). This theory demonstrates that equilibrium fre-
quencies of alleles follow a Boltzmann distribution just
like the one found by Porto et al. (2004). Thus, from
the equilibrium frequencies of alleles we can infer the
relative fitness of alleles and their fixation probabilities
in various backgrounds.

According to Porto et al. (2004), the distribution of
amino acids is given by

Figure 2.—Evolutionary rates K vs. RSA in a two-allele
model. We mapped RSA r to the selection coefficient s via
three functions: a linear one, s(r) ¼ [2r/5 1 0.15] · 1024;
a logarithmic one, s(r) ¼ log(2 2 r) · [50,000 · log(2)]21;
and an exponential one, s(r) ¼ exp[2r 1 log(5 · 1024)]. We
assumed Ne ¼ 5 · 106 and m ¼ 3.3 · 10210. Evolutionary rate K
is highly nonlinear in all cases. Note that the y-axis uses a log-
arithmic scale.
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F ðaÞ5 exp½2bhðaÞ�P
bexp½2bhðbÞ�; (6)

where a is a specific amino acid as before and the sum
in the denominator runs over all 20 amino acids. Fixa-
tion probabilities follow as

pa/b 5
12 ½F ðaÞ=F ðbÞ�1=ðNe21Þ

12 ½F ðaÞ=F ðbÞ�Ne=ðNe21Þ (7)

(Sella and Hirsh 2005). (These fixation probabilities
are equivalent to the Kimura probabilities used in the
previous subsection; see Sella and Hirsh 2005 for
details.) We can now express evolutionary rate in
terms of amino acid distribution and fixation probabil-
ities as

K 5mNe

X
a

h
F ðaÞ

X
b 6¼a

pa/b

i
: (8)

Remember that K is a function of b, and b is an ap-
proximate measure of solvent accessibility. Highly
buried sites will have a large negative b, highly ex-
posed sites will have a large positive b, and interme-
diate sites will have a b close to zero. Thus, to be
consistent with data (e.g., Figure 1), Equation 8 should
be an increasing function of b. Instead, however, we
found that Equation 8 predicts K to be maximal at b ¼
0 (Figure 3A) and to decline in both directions as the
absolute value of b increases. This result makes intu-
itive sense, as the distribution defined by Equation 6 is
the broadest for b ¼ 0. However, we have to conclude
that the theory of Porto et al. (2004) cannot be used to
explain the linear relationship between evolutionary
rate and RSA.

We emphasize that the failure of Equation 8 does
not imply that the amino acid distributions calculated
by Porto et al. (2004) and given by Equation 6 are
incorrect. In fact, we used Equations 7 and 8 to pre-
dict evolutionary rates from the observed amino acid
frequencies in yeast and found similarly that the pre-
dicted evolutionary rate peaked at intermediate RSA
(Figure 3B).

An alternative model based on amino acid frequen-
cies: The failure of the previous model implies that the
model missed some important aspect of protein
evolution. We hypothesized that the model failed
because Equation 6 was valid only for the entire class
of sites with similar b, but not for any individual site in
this class. It is entirely possible that the distribution of
amino acids at a specific site, when observed over evo-
lutionarily long periods of time, does not agree with
Equation 6, even though the average distribution of all
sites with similar b or RSA does. Both previously pub-

lished tests of Equation 6 (Porto et al. 2004) and our
amino acid distributions as a function of RSA (Figure
S1) were obtained by averaging over many sites and
thus would not reveal any deviation from Equation 6
at individual sites.
To determine the distribution of amino acids at

individual sites, we built large alignments of structurally
similar proteins (see methods). We found that the dis-
tributions at individual sites were highly variable and
looked nothing like Equation 6. In general, at any given
site, only a small number of different amino acids were
actually present, and there was often no obvious rela-
tionship between which amino acids were present and
what their hydrophobicity was. However, when averag-
ing over many sites with similar RSA, we could recover
distributions comparable to Equation 6.
Even though the specific amino acids preferred at

individual sites were highly variable, we found that the
frequency distributions at different sites were similar.
When we ordered amino acids by their relative fre-
quency at each site, we found that the frequencies were
proportional to an exponential, exp(2lk), where k
counts amino acids in descending order of frequency,
k ¼ 0, 1, . . . , 19. We averaged the reordered amino acid
distributions over all sites within bins of similar RSA
(Figure 4A) and fitted exp(2lk) to these averaged dis-
tributions. We thus obtained l as a function of RSA and
found that l decayed approximately linearly with RSA
(Figure 4B and Figure S2).
We carried out this analysis on 162 yeast proteins

and found that generally (i) l was approximately a lin-
ear function of RSA and (ii) l decayed with increasing
RSA (Figure 5). For each protein, we fitted a linear
function l(r) ¼ c1 1 c2r to the data and generally
found a negative slope c2 and a good model fit. The
few cases with an apparent positive slope c2 could be
traced back to a single outlying l-value at the highest
RSA bin (see Figure S3 for an example). This bin gen-
erally encompassed the fewest number of sites (see
also discussion) and thus its l-value was not always
reliable.
On the basis of these findings, we can model the

evolutionary process at individual sites such that it
produces steady-state amino acid frequencies

F ðaÞ5 exp½2la�P
bexp½2lb�; (9)

where a and b index amino acids, in the appropriate
order, and run from 0 to 19. The parameter l declines
with RSA.
As in the previous subsection, we can use the Sella

and Hirsh (2005) method to map these steady-state
frequencies onto a unique evolutionary process. The
fitness values for individual amino acids are given by
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wðaÞ5 exp
�
2l

a
2ðNe2 1Þ

�
� 12

la
2Ne

: (10)

It might seem disconcerting that we measure fitness
here in units of the effective population size Ne. After
all, the fitness contribution of a particular amino acid in
a particular protein of an organism should not depend
on the size of the population of that organism. How-
ever, this scaling by population size is merely a mathe-
matical convenience to keep the actually observable
quantities (amino acid distributions, evolutionary rates)
free of any explicit dependency on Ne. For real organ-
isms, we expect that w(a) is independent of Ne but that
l, F(a), and evolutionary rate K all depend on Ne.

Fixation probabilities follow from Equation 7. Making
the approximation Ne 2 1 � Ne, we find

pa/b 5
12 exp½2lða2 bÞ=Ne�
12 exp½2lða2 bÞ� : (11)

We obtain the average evolutionary rate for this model
by substituting Equations 9 and 11 into Equation 8. We
find

K 5mNe

X
a

"
e 2la

Z

X
b 6¼a

12 e2lða2bÞ=Ne

12 e2lða2bÞ

#
; (12)

where Z 5
P

b e
2lb is the partition function.

Figure 3.—Evolutionary rates predicted from amino acid distributions. (A) The amino acid distribution used is the one given by
Porto et al. (2004). The parameter b correlates strongly with RSA. (B) The amino acid distribution used is the observed
distribution in yeast; see Figure S1.

Figure 4.—Variation from primary residue increases with RSA for sequences homologous to thioredoxin peroxidase (PDB
identifier 1QMV, chain A). (A) Normalized frequencies of most common residues averaged over all sites in four different RSA bins.
(B) The exponential parameter l approximating these normalized distributions decreases linearly as RSA increases. The dashed
line represents the fit of a linear function to the data.

484 D. C. Ramsey et al.

http://www.genetics.org/cgi/data/genetics.111.128025/DC1/2


For large Ne, we can approximate e2lða2bÞ=Ne �
12lða2bÞ=Ne; so that

K � m
X
a

�
e2la

Z

X
b 6¼a

lða2 bÞ
12 e2lða2bÞ

�
: (13)

The absence of Ne from this equation shows that if we
scale w(a) with Ne, as in (10), then K is approximately
independent of Ne.

To obtain evolutionary rate as a function of RSA, we
substitute l ¼ c1 1 c2r into Equation 13. Figure 6 shows
resulting evolutionary rates for three representative
proteins. The curves K(r) are roughly linear and K is
approximately of the correct order of magnitude. How-
ever, K(r) is not perfectly linear; there is some clear
upward curvature. The curvature tends to increase with
the absolute magnitude of c2. We comment on this issue
in the discussion. Also, note that the units for K are
not the same in Figure 1 as they are in the other figures.
In Figure 1, K is estimated as the number of substitu-
tions per site per unit time. The time unit is the total
divergence time between the species that are being
compared. By contrast, our mathematical models pre-
dict K in units of substitutions per site per generation.
We estimate that �1011 generations separate S. cerevisiae
and S. bayanus, 40 million yr · 4000 generations/yr.

DISCUSSION

We have shown that the linear relationship between
evolutionary rate and RSA reflects a selection pressure
on the amino acid level. Further, we have demonstrated

that a simple two-allele model and a more elaborate
model based on observed mean amino acid frequencies
for sites with similar RSA cannot reproduce this linear
relationship. The first model fails because it is too
simplistic; individual sites in proteins can, at least in
principle, assume 1 of 20 different states. The second
model fails because amino acid frequencies averaged
over many sites are not representative of amino acid
frequencies at individual sites. We have found that the
latter frequencies follow a Boltzmann distribution that
becomes increasingly broad as RSA increases. Finally, we
have shown that a mathematical model based on this
observation can reproduce the linear relationship be-
tween evolutionary rate and relative solvent accessibility.
Our analysis highlights how important it is to distin-

guish between amino acid frequencies averaged over
a large class of sites with similar property (such as RSA)
and amino acid frequencies at individual sites. In both
cases, frequencies are Boltzmann distributed, and thus
it is easy to mistake one for the other. However, the
properties of these two distributions are very different.
For example, in yeast, at sites with RSA close to 0.2
nearly all amino acids occur at comparable frequencies.
Yet at any given site, only a small number of amino acids
are actually permissible. Evolutionary rate, which meas-
ures the rate at which mutations at individual sites arise
and go to fixation, is governed by the amino acid
distribution of individual sites, not the average distribu-
tion over a broad class of sites.
However, averaging distributions of similarly exposed

sites from many proteins seems to agree qualitatively
with distributions predicted by Porto et al. (2004). This
agreement suggests that any future theory attempting
to predict site-specific distributions should also be able
to predict average distributions of sites with similar
b (or RSA). These average distributions should reduce

Figure 5.—Intercept c1 and slope c2 of l as a function
of RSA r, l(r) ¼ c1 1 c2r, when fitted to 162 yeast proteins.
The highlighted proteins are used as examples in Figures 4
and 6 and Figure S2 and Figure S3.

Figure 6.—Evolutionary rates predicted from Equation 13
for three different protein structures. Rates were calculated
on the basis of fits of l(r) ¼ c1 1 c2r to amino acid distribu-
tions, as in Figure 4. The fitted constants are given in Table S1.
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to something similar to the theory of Porto et al. (2004)
and the data shown in Figure S1.

Our model describes the variation in steady-state
distribution at sites using the exponential parameter l,
which we defined above as a linear function of RSA:
l(r) ¼ c1 1 c2r. In this way l(r) describes the level of
variation in the distribution function (Equation 9) for
a given RSA. The intercept of l(r), the largest value it
takes, corresponds to the strongest selective pressure
and the minimal level of variation for the most buried
sites, at r ¼ 0. This maximal selective pressure in turn
determines the value of the minimal evolutionary rate.
Likewise, the slope of l(r) determines the rate of in-
crease of K(r): a steeper slope (more negative c2) signi-
fies a greater tolerance of alternative residues as r
increases compared to a shallower slope (less negative
c2), and greater tolerance of alternative residues implies
a greater increase in K as r grows.

We emphasize that different RSA bins contain diffe-
rent numbers of sites (see also Figure 2 from Franzosa
and Xia 2009). Bins below RSA values of 0.1 tend to
contain more than twice as many sites as bins for RSA
values between 0.1 and 0.6. Bins for higher RSA values
are even less occupied. In our data set of all yeast genes,
we have 69,521 sites in the lowest-RSA bin but only 1452
sites in the highest-RSA bin. Because of the comparative
scarcity of high-RSA sites, our estimates for amino acid
distributions at these sites are not always reliable, as
exemplified in Figure S3. In our experience, the amino
acid distributions at high RSA are reliable when a linear
model produces a negative slope for l(r) and they are
unreliable otherwise.

In our analysis of amino acid distributions at indi-
vidual sites in individual proteins, we generally observed
only a few (on the order of 5) different amino acids at
each site. This outcome was expected for Boltzmann-
distributed amino acid frequencies. For the proteins we
investigated, we found that l typically fell somewhere
between 0.3 and 1.2. Even for the smallest l in this
range, l ¼ 0.3, the expected frequency of the 10th
most abundant amino acid under a Boltzmann distri-
bution is only �0.02, and the expected frequency of
the 20th most abundant amino acid is �0.001. For
larger l, the expected frequencies are much smaller.
In our alignments, which mostly ranged from 50
sequences to �200 sequences, with a few cases going
up to 360 sequences, we could not properly sample
amino acids that have such low expected abundances.
In fact, in our distributions, the least abundant amino
acid generally has absolute frequencies in low single
digits, and thus we cannot expect to see any other
amino acids that should, according to theory and the
overall pattern we see, arise at less than single-digit
frequencies.

By measuring fitness in units of Ne for ease of anal-
ysis, we have implicitly made lðr Þ 5 Nel̂ðr Þ; where
l̂ðr Þ 5 ĉ11ĉ2r : What we have then is a relation linking

the original l(r) to Ne and the parameters ĉ1 and ĉ2.
Note that the original l(r) is a statistically measurable
function describing variation at sites by RSA. If we could
obtain estimates of ĉ1 and ĉ2 independently of K, say
from an ab initio model of protein folding, and then
the relationships were formally attached to biophysical
quantities that proved reliably measurable, this relation-
ship lðr Þ 5 Nel̂ðr Þ could provide a novel method by
which to estimate effective population size.

While our final model produces an approximately
linear relationship between evolutionary rate and RSA,
the model predictions are not perfectly linear. In
particular for proteins with larger absolute c2 values,
we see a clear upward curvature in evolutionary rate
as a function of RSA (Figure 6). In our modeling ap-
proach, we made several approximating assumptions,
and each of them could potentially be the source of
the curvature. First, we assumed that amino acid distri-
butions are Boltzmann distributed. This assumption
may not be entirely correct. In fact, if amino acid dis-
tributions were perfectly Boltzmann distributed, then
the data in Figure 4A should be perfectly linear. In-
stead, they seem to display a moderate amount of cur-
vature. Second, l may not be a linear function of RSA.
We did see a fair amount of noise in l for some proteins
(e.g., Figure S2D), but we did not see any systematic
deviation from the linear trend. Third, when modeling
how amino acid distributions relate to evolutionary rate,
we completely neglected any interactions among sites.
While models without interactions have been successful
in related studies, e.g., in predicting the effect of multi-
ple mutations on protein stability (Bloom et al. 2005)
and in linking mutation frequencies to stability effects
(DDG values) (Godoy-Ruiz et al. 2004; Zeldovich et al.
2007; Bloom and Glassman 2009), epistatic interac-
tions among sites in proteins are well documented
and may be important for precise prediction of evolu-
tionary rates.

We thank Markus Porto and Eugene Shakhnovich for helpful
comments on this work. This work was supported by National
Institutes of Health grant R01 GM088344 and by the National Science
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APPENDIX

In the main body of this article, we have shown that in the two-allele model the evolutionary rate declines
exponentially in s for s. 1/Ne. We may ask whether it is possible for s(r) to map r to a sufficiently small range [s1, s2] �
[0, 1] so that K(r) is approximately linear over that range. To this end, take s1, s2 with 1/Ne , s1 , s2.

We judge linearity in the range [s1, x] by the magnitude of the function

DðxÞ5LðxÞ2K ðxÞ; (A1)

where L(x)¼K9(s1)(x2 s1)1 K(s1) is the line tangent to K at s1. We examine the behavior of D(s2) for a fixed distance
e ¼ s2 2 s1. Substituting K ðsÞ � 4smNee22Nes ; K 9ðsÞ � 4mNeð122NesÞe22Nes ; and s2 ¼ s1 1 e, we find for Equation A1,

Dðs2Þ5K 9ðs1Þe1K ðs1Þ2K ðs2Þ (A2)

� 4mNee22Nes1
�
s1
�
11 2Nee2 e22Nee

�
2 e

�
11 e22Nee

��
: (A3)

This function decreases with both e and s1. Setting s2 ¼ s1 1 1/Ne gives us

Dðs2Þ5 4mNee22Nes1

�
s1
�
32 e22

	
1

1
Neð11 e22Þ

�
(A4)

.4mNes1e22Nes1 5K ðs1Þ: (A5)

Wherever the approximations based on s1 . 1/Ne are valid, a value of e on the order of 1/Ne gives a difference
between K(s2) and L(s2) larger than the magnitude of K(s1) itself. Thus, in the two-allele model, the relationship
between K and RSA remains highly nonlinear even if the difference in selection pressure at fully exposed and fully
buried sites becomes minute.
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FIGURE S1.—Relative frequencies of amino acids across 525 yeast proteins, binned by RSA and ordered by decreasing 

hydrophobicity. Cysteine and methionine are omitted. Due to their specialized function, their average frequencies across all bins 

were 1.5% and 0.6%, respectively. 
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FIGURE S2.—The exponential parameter  as a function of RSA, for four different protein structures. 
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FIGURE S3.—The protein manganese superoxide dismutase (PDF identifier 1GV3, chain A) shows a clear linear decrease of  

with RSA, except for the highest RSA bin. Even though a non-parametric correlation analysis shows a strong negative 

correlation, a linear model (dashed line) infers a positive slope because of the one outlying data point.  
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TABLE S1 

Fitted constants c1 and c2 for protein structures highlighted in Figure 5. 

PDB id c1 c2 

1GV3A 0.53 0.68 

1JG8A 0.90 -0.55 

1QMVA 1.16 -0.62 

1S4OA 0.90 -0.57 

1W85B 0.90 -0.39 

2C78A 1.10 -0.16 

2GLFA 0.87 -0.37 
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