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Repeated Measures Semiparametric
Regression Using Targeted Maximum

Likelihood Methodology with Application to
Transcription Factor Activity Discovery

Catherine Tuglus and Mark J. van der Laan

Abstract

In longitudinal and repeated measures data analysis, often the goal is to determine the effect
of a treatment or aspect on a particular outcome (e.g., disease progression). We consider a
semiparametric repeated measures regression model, where the parametric component models
effect of the variable of interest and any modification by other covariates. The expectation of this
parametric component over the other covariates is a measure of variable importance. Here, we
present a targeted maximum likelihood estimator of the finite dimensional regression parameter,
which is easily estimated using standard software for generalized estimating equations.

The targeted maximum likelihood method provides double robust and locally efficient
estimates of the variable importance parameters and inference based on the influence curve. We
demonstrate these properties through simulation under correct and incorrect model specification,
and apply our method in practice to estimating the activity of transcription factor (TF) over cell
cycle in yeast. We specifically target the importance of SWI4, SWI6, MBP1, MCM1, ACE2,
FKH2, NDD1, and SWI5.

The semiparametric model allows us to determine the importance of a TF at specific time
points by specifying time indicators as potential effect modifiers of the TF. Our results are
promising, showing significant importance trends during the expected time periods. This
methodology can also be used as a variable importance analysis tool to assess the effect of a large
number of variables such as gene expressions or single nucleotide polymorphisms.

KEYWORDS: targeted maximum likelihood, semiparametric, repeated measures, longitudinal,
transcription factors

Author Notes: This work was done under the grant for Targeted Empirical Super Learning in
HIV Research, funding through NIH National Institute of Allergy and Infectious Diseases; award
number R01 A1074345-01.



1 Introduction
Longitudinal data analysis, or more generally repeated measures analysis, has be-
come increasingly popular in epidemiological and medical studies. Often the main
goal of these studies is to determine the effect, or importance, of a particular vari-
able on the outcome over time, for instance the effect of a drug on disease prog-
nosis over the course of a clinical trial. In most cases the repeated measures are
observations on subjects at multiple time points or under multiple conditions. More
recently, repeated measures analysis has been applied in computational biology,
where the experimental unit is now a gene or protein that is observed over time
(Gao, Foat, and Bussemaker, 2004, Wang, Chen, and Li, 2007), condition (Conlon,
Liu, Lieb, and Liu, 2003, Gao et al., 2004), or even species (Siewert and Kechris,
2009). Similarly, in these analyses the goal is to determine the importance of bio-
logical features (i.e. variables) with respect to the observed repeated measures out-
come. Here, we present a new tool to estimate variable importance for a repeated
measures outcome based on targeted maximum likelihood methodology (van der
Laan and Rubin, October 2006) under a flexible semiparametric model. We refer to
as this method as tVIM-RM.

In this paper, we propose a semiparametric repeated measures regression
model in which the parametric component models the effect of a specific vari-
able of interest and any effect modification by other covariates. We develop the
targeted maximum likelihood estimator for the effect parameters of this model us-
ing targeted maximum likelihood methodology as presented in van der Laan and
Rubin (October 2006). Targeted maximum likelihood estimation (tMLE) focuses
estimation on the target parameter of interest, in this case a measure of variable
importance. The tMLE method first constructs an initial estimator of the distribu-
tion of the data in the semiparametric repeated measures regression model. It then
subsequently uses the maximum likelihood estimation (MLE) framework to reduce
the bias for the targeted parameter by maximizing the likelihood in a direction that
corresponds to fitting the target parameter, while treating the initial estimator as a
fixed off-set. Prior applications of tMLE methods have shown great promise and
applicability in the epidemiological and medical fields, in particular, for biomarker
discovery (Tuglus and van der Laan, 2008). The tVIM-RM method presented here
builds upon previous variable importance methodology (Robins, Mark, and Newey,
1992, Robins and Rotnitzky, 2001, Yu and van der Laan, September 2003, van der
Laan, 2005), adapting it for repeated measures data and incorporating updates on
the methodology to increase efficiency and computational speed.

As indicated above, in repeated measures experimental designs multiple ob-
servations are recorded for each subject over a set of conditions and/or time (e.g.
longitudinal). Though this experimental design is attractive in that it reduces the
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variance among observations and can increase the power of the analysis, statistical
methods, such as regression, must account for the correlation among the observa-
tions on a single subject. Ignoring this dependence can lead to biased standard
error estimates for regression parameters ( Wang (2003) among others). A popular
method to account for the correlation among the observations in parametric regres-
sion models is generalized estimating equations (GEE). GEE methods were intro-
duced in 1986 by Zeger and Liang (Liang and Zeger, 1986) and are an extension of
generalized linear regression using a quasi-likelihood approach, which weights the
residuals according to the correlation structure of the observations on each subject.
More flexible semiparametric extensions of the GEE method, such as generalized
partially linear models (Zeger and Diggle, 1994, Severini and Staniswalis, 1994,
Fan, Huang, and Li, 2007) model covariate effects non-parametrically, but require
complicated estimation methods to fit both the parametric and non-parameteric por-
tions of the model. These methods can produce inconsistent and/or inefficient esti-
mates of the model parameters (Lin and Carroll, 2001, Li, Xia, Palta, and Shankar,
2009).

The tVIM-RM semiparametric regression model is a more non-parametric
analogue of the standard GEE repeated measures regression model, and the tar-
geted maximum likelihood update is easily implemented using standard GEE soft-
ware. The tMLE method provides targeted estimation for the parameter of interest
and the resulting tVIM-RM estimates are locally efficient in the semiparametric re-
peated measures regression model: that is, the estimator of the effect of interest is
consistent and asymptotically linear if either the mean of the variable of interest
as a function of the confounders is correctly modeled (i.e. confounding/treatment
mechanism), or if the mean of the outcome as a function of the variables (includ-
ing variable of interest) is correctly modeled. The tMLE method integrates data-
adaptive prediction algorithms such as DSA (Sinisi and van der Laan, March 2004)
and super learner (van der Laan, Polley, and Hubbard, July 2007) by using these
methods to obtain the initial estimator and the confounding/treatment mechanism
used in the targeted update. Details on the method are discussed further in section
2.3.

We present the method with respect to a repeated measures experiment taken
over times t = 1, . . . ,T , with observed data O = {W ∗,Y} ∼ P0, where P0 is the true
data generating distribution. Here, W ∗ is a vector of p variables, and Y is the out-
come vector of T repeated measures taken over time on a subject, where Yt repre-
sents outcome Y at a specific time point t for a subject. We define the semiparamet-
ric regression model for a particular variable A = W ∗j and time, t, controlling for
confounders W = W ∗− j such that

E[Yt |A = a,W ]−E[Yt |A = 0,W ] = mt(a,W |βt)
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We refer to the model mt(A,W |βt) as a semiparametric regression model for
the effect of A on Yt . Given estimates of an initial Qt(A,W ) = E[Yt |A,W ] respecting
mt(0,W |βt) = 0, and “treatment mechanism” G(W ) = E[A|W ], the effect is mod-
eled according to the specified mt(A,W |βt) and coefficients βt are estimated using
tMLE. From tMLE theory, it can be shown that this estimate is asymptotically con-
sistent and linear given that either Qt(A,W ) or G(W ) is correctly specified, making
our estimate doubly robust (van der Laan and Rubin, October 2006). The tVIM-
RM estimate is also efficient when both Qt(A,W ) and G(W ) are correctly specified
(van der Laan and Rubin, October 2006), while it can easily be super-efficient if
Qt(A,W ) is correctly specified, and G(W ) is misspecified by not incorporating all
W (Gruber and van der Laan, 2010). The double robust nature of the tVIM-RM es-
timate makes the methodology ideal for use in randomized trials when the treatment
mechanism (E[A|W ]) is known.

The tVIM-RM method is particularly suitable for variable importance anal-
ysis. The semiparametric construction not only provides a flexible model, but nicely
handles the effect of continuous variables and also allows the incorporation of effect
modification of the variable of interest in a straight forward and interpretable man-
ner. This allows the estimation of not only the variable importance averaged over
time, but the importance at a particular time (e.g. effect modified by time). Also,
the estimation procedure under the semiparametric model does not require inverse
weighing by the probability of treatment (i.e. P(A = a|W )), which is required for
non-parametric tMLE based variable importance estimation and can be problem-
atic when the probability of treatment approaches one or zero (Bembom, Petersen,
Rhee, Fessel, Sinisi, Shafer, and van der Laan, 2009).

This paper is organized as follows. In section 2, we present the tVIM-RM
method in detail and outline the basic steps of tMLE based procedures. In sec-
tion 3, we demonstrate the properties of the tVIM-RM estimator in simulation by
comparing it to a standard GEE estimator. We show the tVIM-RM estimator is ro-
bust to model mis-specification and provides accurate inference for the parameter
of interest. In both simulation and in application, tVIM-RM is implemented using
standard software for GEE provided by geepack R library (Yan, Højsgaard, and
Halekoh, 2008).

In section 4 we present an application of tVIM to yeast cell cycle expres-
sion data. In line with the original analysis done by Bussemaker, Li, and Siggia
(2001) and subsequent analysis by Gao et al. (2004), Keles, van der Laan, Du-
doit, and Eisen (2002), and others (Liu, Taylor, and Edenberg, 2006, Conlon et al.,
2003, Siewert and Kechris, 2009) we apply tVIM-RM to measure the activity of
transcription factors with respect to a gene expression profile. In this application,
the repeated measures outcome is a time series of yeast gene expression over two
cell cycles (Cho, Campbell, Winzeler, Steinmetz, Conway, Wodicka, Wolfsberg,
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Gabrielian, Landsman, Lockhart, and Davis, 1998). Through this simple applica-
tion, we demostrate the utility of the tVIM-RM method for this type of analysis and
discuss how it may be applied to more sophisticated studies. We end with an overall
discussion in section 5.

2 Methods

2.1 Variable Importance

We present the following multivariate extension of the model-based semiparametric
variable importance methodology (van der Laan, 2005) for repeated measures data.
The variable importance of a specific A =W ∗j controlling for confounders W =W ∗− j
can be defined generally as follows for a particular time t.

µt(a) = EW [mt(a,W |βt)]

or this can be represented in vector form for all t

µ(a) = EW [m(a,W | β )]

for a user supplied model m, which models the effect

m(A = a,W |β ) = E[Y |A = a,W ]−E[Y |A = 0,W ])

under the constraint m(A = 0,W |β ) = 0 for all β and W . Analogous to the pre-
viously presented tVIM for univariate outcome (Tuglus and van der Laan, 2008),
variable A can be binary or continuous. We can also represent this measure in tra-
ditional semi-parametric model form

E[Y |A = a,W ] = m(A = a,W |β )+g(W )

such that m(A = 0,W |β ) = 0 for all β and W , and g(W ) is unspecified.

2.2 Generalized Estimating Equations

One of the most common approaches for modeling repeated measures data is gen-
eralized estimating equation methodology. Introduced by Liang and Zeger in 1986
(Liang and Zeger, 1986), generalized estimating equations uses a quasi-likelihood
approach, which weights the residuals in a generalized regression score function
according to a working correlation matrix. Specifically, GEE estimates of the pa-
rameter β for a Gaussian model are the solution to
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n

∑
i=1

(D(i))T (V (i))−1(Y (i)−Q(W ∗(i)|β )) = 0

where, for subject i in i = 1 . . .n, Y (i) is a vector of observations over time
t = 1, . . . ,T , with T by T covariance matrix, V (i). Here Q(W ∗(i)|β )= E[Y (i)|W ∗(i)] =
β TW ∗(i) is the vector of fitted values for subject i, and D(i) =

[
dQ(W ∗(i)|β )

dβ

]
.

The parameter estimates are obtained using iteratively reweighted least squares
estimation. More robust estimates are obtained by iterating this with the re-estimation
of the covariance parameters in V (i) as a function of β . This robust method is ap-
plied in R library geepack (Yan et al., 2008). Standard GEE regression parame-
ter estimates remain consistent given an incorrect correlation structure (Liang and
Zeger, 1986).

The GEE approach does not require the specification of the joint distribution
of the observations over time for a given subject, only the marginal distribution
for each time point and a working correlation matrix. Assuming independence
among the subjects and a correctly specified model β TW , parameter estimates βn
are consistent and given true parameter β0,

n1/2(βn−β0)∼MV N(0,Σgee)

such that given U (i) = (D(i))T (V (i))−1D(i) and R(i) = Y (i)−Q(W ∗(i)|β ),

Σgee = lim
n→∞

1
n

n

∑
i=1

(U (i))−1
(
(D(i))T (V (i))−1R(i)(R(i))T (V (i))−1D(i)

)−1
(U (i))−1

This is referred to as the sandwich estimator (Hardin, 2003).
In this paper we use the R implementation of GEE in library geepack, func-

tion geeglm() (Yan et al., 2008). In simulation we allow GEE to update the correla-
tion parameters. However for computation ease in our application in section 4, we
provide a fixed correlation matrix estimate based on the residuals of an initial GEE
estimate under independent correlation structure (Hardin, 2003).

2.3 Targeted MLE

The tVIM-RM estimates of parameter vector β are obtained using tMLE methodol-
ogy (van der Laan and Rubin, October 2006). The tMLE method updates an initial
density estimate p0(Y |A,W ) in the direction which targets the parameter of interest
using standard MLE and a “clever covariate” defined such that the tMLE solves
the efficient score equation. In the case of repeated measures we define the initial
density as the normal density ( f N) such that
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p0(Y |A,W ) = f N
Q0,Σ(Y |A,W )

where Y is an 1 by T vector and Q0(A,W ) = E[Y |A,W ]. Here Σ(A,W ) is defined as
a T by T covariance matrix corresponding to the conditional covariance among the
t = 1 . . .T observations for a single subject.

We can decompose Q0(A,W )= m(A,W |β 0)+Q0(A = 0,W ) where the model
m(A,W |β 0) is defined given the constraint m(A = 0,W |β 0) = 0 for all β 0 and W .
We define the update to the initial density as its hardest submodel in terms of update
parameter vector ε as follows

p(ε)(Y |A,W ) = f N
Q(ε),Σ(Y |A,W )

where Q(ε)(A,W ) = m(A,W |β (ε))+Q(ε)(0,W ) in which β (ε) = β 0 + ε , and
Q(ε)(0,W ) = Q0(0,W )+ εr(W ).

We define r(W ) such that the score of p(ε)(Y |A,W ) at ε = 0 is equivalent
to the efficient score equation for the parameter β in µ(a) = EW [m(a,W |β )]. The
efficient score equation is presented below. To conserve space, the conditional vari-
ance, Σ(A,W ), is sometimes simply represented as Σ.

Dhopt ,Q,G = hopt(A,W )(Y −m(A,W |β )−Q(0,W ))

with

hopt = Σ
−1
(

d
dβ

m(A,W |β )−E
[
Σ
−1|W

]−1 E
[

Σ
−1 d

dβ0
m(A,W |β )|W

])
This is the multivariate extension of the semiparametric tVIM efficient score

equation presented in van der Laan (2005) and Tuglus and van der Laan (2008).
Further details on the efficient score equation can be found in appendix A.

It follows that the correct form of r(W ) is

r(W ) = E
[

Σ(A,W )−1∣∣W]E[Σ(A,W )−1 d
dβ

m(A,W |β )
∣∣∣∣W]

The expectations can be approximated by discretizing A and calculating

E
[

Σ(A,W )−1∣∣W]= ∑
a∈A

Σ(a,W )−1 p(A = a|W )

and

E
[

Σ(A,W )−1 d
dβ

m(A,W |β )
∣∣∣∣W]= ∑

a∈A
Σ(a,W )−1 d

dβ
m(A = a,W |β )p(A = a|W )
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Using standard MLE, we solve for ε , and calculate the updated regression
estimate Q1(A,W ) = m(A,W |β (ε))+Q0(0,W )+εr(W ). The procedure is iterated,
and at convergence (i.e. ε = 0), the final regression estimate is the solution to the ro-
bust estimating equation corresponding to the efficient score equation for observed
data O = {O(i) : i = 1 . . .n}, for n subjects

1
n

n

∑
i=1

[Dhopt ,Qn,Gn(O
(i)|βn)] = 0

such that Qn, Gn, and βn are the converged estimates of Q, G, and β for the observed
data. The tMLE solution therefore inherits the double robust properties of the solu-
tion to the efficient score equation and allows us to use the efficient score equation
to estimate the correct covariance and inference for our parameter of interest (see
section 2.3.1). The double robust property is such that given either a correctly spec-
ified form of Q(A,W ) = E[Y |A,W ] or G(W ) = E(A|W ), the converged estimate for
parameter vector, βn, remains consistent, solving the efficient score equation. Given
both are correct, the estimates are also efficient.

2.3.1 Linear case

Given a linear model for m(A,W |β ), the update can be written as Q1(A,W ) =
Q0(A,W )+ εr∗(A,W ) where

r∗(A,W ) =
(

d
dβ

m(A,W |β )−E
[
Σ
−1|W

]−1 E
[

Σ
−1 d

dβ0
m(A,W |β )

∣∣∣∣W])
In the linear case, this update can be achieved using standard software by regress-
ing Y onto the covariate r∗(A,W ), setting Q0(A,W ) as an offset. The covariate,
r∗(A,W ) is sometimes referred to as the “clever covariate.”

If we define fN such that Σ(A,W ) = Σ(W ), we can simplify hopt to

h∗opt = Σ(W )−1
(

d
dβ

m(A,W |β )−E
[

d
dβ

m(A,W |β )
∣∣∣∣W])

and the “clever covariate” simplifies to

r∗(A,W ) =
(

d
dβ

m(A,W |β )−E
[

d
dβ

m(A,W |β )
∣∣∣∣W])
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Note that if the true covariance is a function of A, estimation using the sim-
plified covariate form will lose efficiency but will still remain double robust. Given
the simplified form of the “clever covariate” with linear model for m(A,W |β ), the
tVIM-RM estimate is a closed form solution and can be calculated without iteration.

The linear semiparametric form allows us to introduce time and/or any ad-
ditional covariate as effect modifiers of the importance of A in a straight forward
interpretable fashion. Consider the following possible model, where we allow effect
modification of time indicator variable t∗t = I{t∗ = t}.

m(A,W |β ) = A(β T t∗1)+ . . .+A(β T t∗T )

When m(.) becomes large it is beneficial to update the coefficient terms
sequentially until convergence (i.e. targeting one at a time) instead of completing an
update of the full coefficient vector in one step. Updating the model sequentially in
this fashion has been shown to improve the overall stability of the updated estimates
(see appendix C for details).

2.3.2 Inference

Since the tMLE solution solves the double robust estimating function implied by
the efficient score equation (van der Laan and Rubin, October 2006), one can use
the influence curve corresponding with this double robust estimating function to
provide an estimate of the covariance for tMLE estimated βn. For this, we use a
scaled version of the efficient influence curve which we define for a single subject
as

IC(O) = c−1Dhopt ,Q,G(O|β0)

given scale factor

c =−E
[

d
dβ

D(O|β0,Q0)
]

where IC(O) is a T by p matrix for a parameter vector β of length p and β0 and Q0
are β and Q under the true data generating distribution.

Given correctly specified estimates for Q(A,W ) and G(W ), the covariance
for parameter vector estimate βn is asymptotically equivalent to the covariance of
IC(O) regardless of the form of Σ(A,W ). If Q(A,W ) is misspecified, but G(W ) is
correctly estimated, the above influence curve is known to be conservative (van der
Laan, 2005). The empirical estimate of the covariance of βn is

Σn =
1
n ∑

i
ÎC(O(i))ÎC(O(i))T
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so that we can use the normal approximation
√

n(βn−β0)∼ N(0,Σn)

for the purpose of statistical inference. This is analogous to the robust sandwich
estimator of GEE.

The covariance can also be estimated by bootstrap estimates of β , but this
would require extra computational time and any sampling would need to respect the
repeated measures design. If E[A |W ] is estimated consistently, then the variance
estimates based on the influence curve are consistent or asymptotically conserva-
tive.

Using the estimated p by p covariance matrix, Σn, we can test the hypothesis
for a single parameter βn( j), where j = 1, . . . , p, under the null hypothesis H0 :
βn( j) = 0 using a standard test statistic to obtain p-values, with estimated variance
Σn( j, j).

Tn( j) =
√

nβn( j)√
Σn( j, j)

∼
n→∞

Normal(0,1)

Likewise we can also test the hypothesis H0 : cT βn = 0 using a standard
Wald test, where the covariance of cT βn is cT Σnc. This allows us to obtain inference
for µ(a) directly, when m is linear. In practice the parameter of interest may be
redefined as the effect at a specific value of effect modifier W , or time t, instead of
the mean effect as implied by the definition in section 2.1.

2.3.3 tVIM-RM mplementation

Below we outline the basic procedure for implementing tVIM for repeated mea-
sures given a fixed correlation matrix and highlight recent improvements in the
implementation, which improve efficiency and computational speed of the semi-
parametric tVIM method presented previously (Tuglus and van der Laan, 2008).

There are three initial components necessary for applying targeted maxi-
mum likelihood methodology to estimate tVIM for repeated measures.

1. Model m(A,W |β ) satisfying m(A = 0,W |β ) = 0 for any β and W
2. An estimate for G(W )= E[A|W ]: We recommend estimating this data-adaptively.
3. An initial estimate for Q(A,W ) = E[Y | A,W ], Q0

n(A,W ), containing valid
model m(A,W |β ): This provides an initial estimate for the parameter β , β 0

n ,
and must be defined such that Y |A,W ∼ Normal(Q(A,W ),Σ(W )), with an
empirically estimated correlation.

i
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The initial regression estimate of proper form may be obtained from semi-
parametric methods such as those of Zeger and Diggle (1994), Fan et al. (2007),
Wang, Carroll, and Lin (2005) among others, or by using methods such as DSA
(Sinisi and van der Laan, March 2004) which allow the user to fix a portion of
the model. However, we adopt a more flexible approach which allows us to use a
wider range of data-adaptive software, providing that any internal cross-validation
respects the repeated measures nature of the data. We obtain an initial regression es-
timate with proper semiparametric form by updating a data-adaptively estimate for
Q(A,W ) of general model form using data-adaptive machine learning algorithms
such as super learner (van der Laan et al., July 2007) or DSA (Sinisi and van der
Laan, March 2004). Given the general model estimate, Q(A,W ), for any A, we
solve for Q(A = 0,W ). Then using standard GEE regression, solve for the initial
estimate, Q0(A,W ) = m(A,W |β 0)+ αQ(A = 0,W ) by specifying model m(.) and
treating Q(A = 0,W ) as a covariate, which provides us with initial estimates for
parameter β . This is an update from the original method outlined in Tuglus and
van der Laan (2008). This update improves computational efficiency by only re-
quiring a single data-adaptive estimate for Q(A,W ) of general model form for all
A.

Using data-adaptive algorithms such as SuperLearner (van der Laan et al.,
July 2007) and DSA (Sinisi and van der Laan, March 2004) will provide a better
estimate for our initial Q(A,W ), which improves the performance of the tVIM-
RM estimator. We recognize that these methods do not account for the correlation
among the repeated measures and only require that any cross-validation within the
algorithm respects the repeated measure structure of the data. The asymptotic co-
variance matrix for the tVIM-RM estimate of β is based on the update of a GEE
quasi-likelihood, which allows for the specification of a more accurate covariance
structure (i.e., Σ(A,W ) in the definition of the efficient score equation). In this
manner the targeted MLE can still fully utilize the covariance structure of the re-
peated measures and potentially be asymptotically linear with efficient influence
curve identified by the true Σ(A,W ) without a risk of being inconsistent. The over-
all consistency of the estimator relies on correct specification of either the estimate
of G(W ) = E[A|W ] or of E(Y | A,W ). This is addressed further in section 2.4.

Additional efficiency in our estimator can also be gained by weighting the
initial estimate for Q(A,W ) by

( d
dBm(A,W |β )−E

[ d
dBm(A,W |β )|W

])2
, which ef-

fectively reduces the variance of the influence curve (see appendix B). This is also
an update from the original method outlined in Tuglus and van der Laan (2008).
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Given the three components, tMLE is applied using the following steps.
Sample Rcode for a simple example is provided in appendix D.

1. Estimate the “clever covariate” which will allow us to update the initial re-
gression in a direction which targets the parameter of interest. For a linear
model the clever covariate is:

r∗(A,W ) =
d

dB
m(A,W |β )−E

[
d

dB
m(A,W |β )|W

]
2. Compute the fitted values for your initial estimate, Q0

n(A,W )
3. Project Y onto r∗(A,W ) with o f f set = Q0

n(A,W ), define the resulting coeffi-
cient as ε . This is done using generalized estimating equations with fixed cor-
relation (geeglm() in R (Yan et al., 2008)) by fitting the model Y ∼ r(A,W )+
o f f set. Note there is no intercept in the model, only the offset value.

4. Update initial estimate βn = β 0
n +ε and overall density Qn(A,W )= Q0

n(A,W )+
εr∗(A,W ). These are now your single-step targeted estimates. Since this is a
simple linear model, the single step solution is the final solution

5. Obtain standard error and inference for βn using the influence curve as out-
lined in section 2.3.1.

Given that the number of possible covariates for both Q0(A,W ) and G(W )
can be quite large and include main effects, interactions among the covariate set W,
and interactions with time, we recommend reducing the set of possible covariates
using basic univariate linear regression. As in the previous implementation (Tuglus
and van der Laan, 2008, Bembom et al., 2009), we can also reduce the instability
in our estimate from ETA (Experimental Treatment Assumption) violations, by re-
stricting the covariate set using a δ cut-off based on some measure of dependence
between A and W . This removes variables in W which may be highly correlated
with A (Bembom, Fessel, Shafer, and van der Laan, March 2008).

2.4 Repeated Measures Estimation of Initial Density Estimate

In the procedure outlined above, the initial density estimate for tVIM-RM is a GEE
model with covariate Q(0,W ), which is obtained from a data-adaptive fit of Q(A,W )
using a data-adaptive prediction algorithm such as DSA (Sinisi and van der Laan,

11

Tuglus and van der Laan: Semiparametric tMLE Method for Repeated Measures Outcome

Published by Berkeley Electronic Press, 2011



independent, there might be a finite sample loss in efficiency by using this structure.
However, by using GEE model with a correlation matrix closer to the truth to carry
out the targeted MLE update, this loss is asymptotically negligible. Nevertheless,
we wish to propose an alternative initial estimate that potentially already takes into
account correlation structure between the repeated measures. Given an outcome of
repeated measures, one can transform the observations prior to implementing DSA
or Superlearner, and then transform back the predicted values using an estimate of
their covariance matrix. This is outlined here.

For a fixed working covariance matrix Σ(A,W ), the quasi-likelihood has the
equivalent loss function

L(O) = (Y −Q(A,W ))Σ(A,W )−1(Y −Q(A,W ))T

This can be rewritten as the euclidean norm∣∣∣∣∣∣Σ(A,W )−
1
2 (Y −Q(A,W ))

∣∣∣∣∣∣
which can be restructured in the equivalent form∣∣∣∣∣∣Σ(A,W )−

1
2Y −Σ(A,W )−

1
2 Q(A,W )

∣∣∣∣∣∣
Therefore if Y is transformed into Yr = Σ(A,W )−

1
2Y , then E[Yr | A,W ] = Qr(A,W )

and the non-transformed predicted values can be regained as follows.

Q(A,W ) = Σ(A,W )
1
2 Qr(A,W )

This method can be applied to any machine learning algorithm as long as any sam-
pling or cross-validation respects the repeated measures structure.

March 2004) or super learner (van der Laan et al., July 2007). Both of these meth-
ods respect the repeated measures nature of the data by allowing the user to specify
a subject ID to use in sampling and cross-validation, but apply an independent cor-
relation structure for the sake of estimation. If the true correlation structure is not
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3.1 Data

Simulated data is drawn for n=50, n=100, and n=500 subjects with 4 replicates (e.g.
time points) from a linear model Y ∼ 1−2A+0.5W +γ , where Y is a vector {Yt : t =
1, . . .4} and the error, γ , is normal with AR(1) covariance structure within replicates
for each subject given a true lag-1 correlation of 0.667 and standard deviation σY =
1,10. Variable A is simulated both independent of W, and as a function of W
(e.g. under confounding), where A∼ N(2,1) or A∼ N(W +2,1) respectively, with
W ∼ N(3,1).

For each case, the importance parameter for A is measured using both basic
GEE methods and tVIM-RM as described in section 2.3, under both correct and
incorrect model specification, Y ∼ A +W and Y ∼ A respectively. Note that in all
cases the treatment mechanism (E[A|W ]) is correctly modeled.

3.2 Results

We show that tVIM-RM estimator remains consistent and efficient under all condi-
tions, with simulations showing that in over 95% of the 500 iterations, tVIM-RM
finds that the true parameter value lies inside the 95% confidence interval calcu-
lated using the influence curve derived standard error. Simulation results show that
in this simple example, GEE estimates are also consistent and efficient, robust to
model miss-specification and confounding provided that both are not present at the
same time.

3 Simulation Study
In simulation, we demonstrate the robust features of the tVIM-RM method under a
known data generating distribution with model mis-specification, confounding, and
varying levels of overall noise. We compare our results with those of standard GEE
applied using geeglm() R function from library geepack (Yan et al., 2008). The
geeglm() function is allowed to update the correlation structure which is simulated
and modeled correctly as AR(1). The variable of interest is univariate so sequential
updating is not used for the tVIM-RM estimate, but we do apply the pre-weighting
of the initial density estimate to improve overall efficiency (See appendix B).
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Table 1: Simulation results comparing GEE and tVIM-RM with n=50, 100, 500 and σy =
1,10: provided are the mean value (µβ ) and standard error (SEβ ) for β estimates over the
500 iterations, the mean standard error estimate (µSE) for the influence curve based standard
error estimate from 500 iterations, and the percent of time the true β value is included in
the 95% confidence interval (CI95%) based on the standard error estimate over the 500
iterations.

n=50, σy = 1 tVIM-RM GEE
Q Confounding µβ SEβ µSE CI95% β µβ SEβ µSE CI95%

true N -1.997 0.080 0.075 0.944 -1.997 0.080 0.075 0.942
true Y -1.997 0.080 0.076 0.942 -1.997 0.080 0.075 0.942

wrong N -2.005 0.079 0.083 0.962 -2.005 0.079 0.083 0.956
wrong Y -2.000 0.080 0.078 0.950 -1.735 0.055 0.057 0.002
n=50, σy = 10 tVIM-RM GEE
true N -1.990 0.251 0.238 0.944 -1.990 0.251 0.238 0.942
true Y -1.990 0.251 0.241 0.942 -1.990 0.251 0.238 0.942

wrong N -1.999 0.250 0.241 0.944 -1.999 0.250 0.241 0.940
wrong Y -1.993 0.253 0.242 0.944 -1.734 0.173 0.169 0.622
n=100, σy = 1 tVIM-RM GEE
true N -1.998 0.048 0.051 0.956 -1.998 0.048 0.047 0.936
true Y -1.998 0.048 0.052 0.956 -1.998 0.048 0.047 0.936

wrong N -2.003 0.049 0.057 0.970 -2.003 0.049 0.052 0.952
wrong Y -1.999 0.048 0.053 0.960 -1.760 0.034 0.036 0.000
n=100, σy = 10 tVIM-RM GEE
true N -1.993 0.153 0.162 0.956 -1.993 0.153 0.148 0.936
true Y -1.993 0.153 0.164 0.956 -1.993 0.153 0.148 0.936

wrong N -1.997 0.154 0.164 0.960 -1.997 0.154 0.150 0.938
wrong Y -1.994 0.153 0.164 0.960 -1.756 0.109 0.109 0.364
n=500, σy = 1 tVIM-RM GEE
true N -2.000 0.023 0.023 0.936 -2.000 0.023 0.023 0.934
true Y -2.000 0.023 0.023 0.930 -2.000 0.023 0.023 0.934

wrong N -1.990 0.024 0.026 0.962 -1.990 0.024 0.025 0.960
wrong Y -1.995 0.023 0.023 0.946 -1.746 0.016 0.017 0.000
n=500, σy = 10 tVIM-RM GEE
true N -2.001 0.074 0.074 0.936 -2.001 0.074 0.072 0.934
true Y -2.001 0.074 0.072 0.930 -2.001 0.074 0.072 0.934

wrong N -1.990 0.074 0.074 0.944 -1.990 0.074 0.073 0.942
wrong Y -1.996 0.073 0.072 0.936 -1.747 0.050 0.050 0.000
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4 Application
The biological pathways and mechanisms of an organism are regulated by a network
of transcription factors, which control a gene’s expression by binding to specific
regulatory motifs upstream of the gene’s coding sequence. Activity of a transcrip-
tion factor (TF) is reflected in the gene expression profile, and given a TF to gene
mapping, this information can be used to determine which transcription factors are
active under various stimuli or gene conditions.

The simple approach introduced by Bussemaker et al. (2001) sets the ex-
pression profile as an outcome and regresses it onto a set of covariates, represent-
ing motif or TF to gene association measures. The association measures are gen-
erally determined from the presence of regulatory motifs upstream of the gene’s
coding sequence. Often, the association measure is an affinity or matching score
that is determined experimentally and/or using algorithms to detect motifs and as-
sign probabilities to each gene-TF pairing (Gao et al., 2004, Wang et al., 2007,
Conlon et al., 2003). For this analysis we chose to use a simple binary TF-gene
mapping obtained from MacIsaac, Wang, Gordon, Gifford, Stromo, and Fraenkel
(2006), which is based on a combination of experimental ChIP-Chip data and al-
gorithm findings. In our covariate matrix a value of one indicates that the TF has
been shown to regulate that particular gene according to the strictest conservation
and binding thresholds provided by MacIsaac et al. (2006). In the original analysis
Bussemaker et al. (2001), the association measure is the number of known binding
motif occurrences upstream of the gene. An alternative analysis using similar re-
gression methods focuses on the regulatory motif importance, using the motif-gene
mapping as a covariate set to score potential motifs and then relate them back to
the transcription network (Keles et al., 2002, Keles, van der Laan, and Vulpe, 2004,
Conlon et al., 2003, Liu et al., 2006).

Using this regression approach, tVIM-RM can be used to determine the im-
portance of a specific transcription factor in relation to a set of gene expression
profiles. In this case, the repeated measures gene expression outcome is a time
series of yeast gene expression over two cell cycles (Cho et al., 1998). The model-
based semiparametric nature of tVIM-RM allows us to determine the importance of
a TF at specific time points by specifying time indicators as potential effect mod-
ifiers of the TF. The goal is to identify the active phases of a given transcription
factor during the cell cycle based on the estimated tVIM-RM importance values.

For simplicity in our application, we are using the binary TF-gene mapping
provided by MacIsaac et al. (2006). Here, variable A is the binary mapping for a
particular TF. This analysis is completed for each TF separately. We use the simple
linear model mt(A,W |βt) = βtAt∗t for t = 0,10, . . . ,160, where t∗t = I{t∗t = t}. Note
that the complimentary full model is then m(A,W |β ) = β0At∗0 + β10At∗1 0 + . . . +
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β160At∗1 60. For this model, the parameter of interest is µt(A = 1) = βtP(Att∗t = 1).
Note that for each time point, P(Att∗t = 1) is equivalent. Therefore, the importance
of A at time t∗t is represented by the coefficient βt , and we will only report these
coefficients and their inference. Estimates for the initial Q(A,W ) and G(W ) are
obtained using DSA (Sinisi and van der Laan, March 2004).

4.1 Data

In this analysis the outcome is the cell cycle gene expression profile for yeast from
Cho et al. (1998). It consists of 17 time points, which is approximately two cell
cycles. Data was obtained from the Yeast Cell Cycle Analysis Project website (SGD
project). The cell cycle consists of four phases G1, S, G2, M. A brief description of
each phase along with its corresponding time points is presented in table 2.

Table 2: Description of stages of cell cycle. Note there are three major checkpoints at
which cell cycle may arrest (Cooper and Hausman, 2007)

Cell Cycle Phase Description
G1 Growth phase, decision to proceed through division made,

checkpoint: Enough nutrients present and cell health
S DNA synthesis occurs
G2 Checkpoint: Cell is critical size and DNA synthesis and repair

are complete
M Mitosis occurs, checkpoint on chromosome alignment before

cell division

Our covariate set consists of 117 binary transcription factor-gene mappings
provided by MacIsaac et al. 2006 (MacIsaac et al., 2006). Though the tran-
scription regulatory network for yeast is not completely known, it is widely ac-
cepted that the cell cycle involves the following transcription factors: SWI4, SWI6,
MBP1, MCM1, ACE2, FKH2, NDD1, and SWI5 (Harbison, Gordon, Lee, Ri-
naldi, Macisaac, Danford, Hannett, Tagne, Reynolds, Yoo, Jennings, Zeitlinger,
Pokholok, Kellis, Rolfe, Takusagawa, Lander, Gifford, Fraenkel, and Young, 2004).
Therefore our analysis will focus on these 8 transcription factors. Their known
phase associations and reported active time points in Cho et al. (1998) cell cycle
data are shown in table 3.
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Table 3: Association of transcription factor with cell cycle phase (Cho et al., 1998)

Transcription Factor Cell Cycle Phase Approx. Time Points
SWI4-SWI6, MBP1-SWI6 G1 phase, 0-30, 80-110

G1 to S transition
MCM1, (MCM1-ACE2) FKH2,
NDD1

G2 phase, 40-70, 130-150

G2 to M transition
MCM1, SWI5, (SWI5-MCM1-
FKH2-NDD1) ACE2

M phase, 70-90, 150-160,0

M to G1 transition

also be applied to continuous variables and can be extended to using a score-based
mapping of binding motifs such as presented in Keles et al. (2002)

In order to improve computation speed, we have chosen to reduce the yeast
gene set by removing genes with variance across time less than 0.10. This reduces
the data set to 3135 genes for 17 time points. We also constrain the transcription
factor dataset to TFs with at least 10 related genes. TFs with less than 10 related
genes are problematic for cross-validation splits used in data-adaptive algorithms.
This reduces the number of potential TF confounders to 112. For this applica-
tion, the initial density estimates are not weighted as discussed in section 2.3.2 and
appendix B, however in practice it is possible to apply weighting to improve the
overall efficiency.

4.2 Prescreening

Confounders of variable of interest, A, must be significantly related to the out-
come, Y , therefore we screen our initial TF data matrix using simple regression
which should improve the performance of model selection methods (Bembom et al.,
March 2008). To determine the set of possible covariates, W , we consider all indi-
vidual TF effects and all TF:time interactions interactions using univariate regres-
sion, where interactions are treated as a single main effect. Our standard cut-off is
p-value of less than or equal to 0.05 based on standard t-test. Prescreening in this
fashion reduces the potential covariate set to 92 TF main effects and 481 TF:time
interactions.

For each TF, separate subsequent individual screening on the covariate set
was completed based on the correlation between the covariates and the TF of in-
terest. Any covariates with correlation greater than 0.5 were removed. Such a

The tVIM-RM method is applied to the 8 TFs listed above, and importance
estimates are provided along with standard error derived from the influence curve.
It’s important to note that though the current covariate set is binary, this method can
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cut-off aims to reduce bias in our final estimate by excluding variables highly cor-
related with the variable of interest from the possible covariate set, avoiding ETA
(experimental treatment assumption) violations (Bembom et al., March 2008). This
cut-off is user supplied. Currently the appropriate cut-off is chosen a priori to the
application of tVIM, and in practice results are reported over a range of delta val-
ues allowing the researcher to see the full compendium of results (Bembom et al.,
March 2008). In previous studies it has been shown that tVIM methods remain
stable up to correlations of 0.8 (Tuglus and van der Laan, 2008). Here we have
chosen a delta of 0.5 based on knowledge from previous studies and computational
constraints (Tuglus and van der Laan, 2008, Bembom et al., March 2008).

4.3 Results and Discussion

The resulting importance measures (βt) for the 8 transcription factors are presented
in figure 1 for each time point (0 min - 160 min) calculated according to the equation
in Section 2.1. Error bars are included, representing the 95% confidence interval for
each estimate using the standard error derived from the influence curve as outlined
in Section 2.2.1.

Many of the trends in figure 1 coincide well with the expected temporal
trends outlined in table 4. MBP1 and SWI6 correspond especially well with a
clear periodic trend peaking at 20 and 100 minute within the two G1 phase pe-
riods. MCM1 peaks around 70 minutes, then decreases before increasing again
around 150 minutes. This approximately corresponds to decreasing during G1
phase, which is the only phase MCM1 is not active. FKH2 and NDD1 peak at
70 and 150 minutes, which corresponds well to G2 phase and G2-M transition,
their more active phases.

ACE2, SWI5, and SWI4 do not correspond as well with their expected be-
havior. ACE2 and SWI5 have similar trends, which remain fairly constant during
the first cell cycle (0-80 minutes) and then increase around 90-100 minutes, at the
G1 to S transition of the second cycle. They then slightly decrease only to increase
again at 150 minutes before decreasing at the end of the cycle. SWI4 only shows a
slight periodic trend with no significant time points.

Inconsistencies in the behavior could be due to modeling the effects of the
single TF and not the full complex. To explore this briefly we estimate the impor-
tance of the SWI4-SWI6 complex using tVIM-RM, allowing for effect modification
by time. For this follow-up analysis, we are simply creating a new binary mapping
variable where a value of one indicates that both SWI4 and SWI6 are mapped to
that gene and zero indicates otherwise. Note that in this model, we still only adjust
for single TFs and TF:time interactions and do not include any TF:TF complexes.
Results are shown in Figure 2.
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Figure 1: The tVIM-RM importance measures over time with 95 % confidence intervals
for (top to bottom) MBP1, SWI4, SWI6, MCM1, FKH2, NDD1, ACE2, and SWI5
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Figure 2: The tVIM-RM importance measures over time with 95 % confidence intervals
for SWI4-SWI6 transcription factor composite

In Figure 2, the expected periodic trend is present, with peaks during G1
phases. We also observe that the confidence intervals are smaller than when we
measured the importance of SWI6 individually. Additional improvements may be
obtained by allowing TF complexes as covariates.

Inconsistencies in our findings may come from a number of sources in-
cluding the use and accuracy of the binary TF-gene mapping for our covariate set,
incomplete knowledge of the yeast cell phases, as well as not providing model se-
lection for our working model, which includes all time interactions. The current ap-
plication is also fairly simplistic, and though it does show our method has promise
for these types of applications, a more extensive and comprehensive study is neces-
sary to obtain more conclusive biological findings. In particular, a thorough study
of complexes is of interest, where we allow model selection on the model m(.) in
order to choose among possible complexes as well as complex:time interactions.
We leave these studies for future papers.

5 Discussion
The tVIM-RM method is a robust and targeted method for variable importance
in repeated measures analysis. This semiparametric method requires only model
specification for the parameter of interest, making fewer assumptions than a full
parametric model while avoiding the need for complicated algorithms to accurately
fit non-parametric components of the model. The linear working model form for
the parameter of interest is flexible and accommodates both binary and continuous
variables of interest while providing a straight-forward and interpretable way to
incorporate effect modification of the variable of interest.

The targeted maximum likelihood step in the tVIM-RM method is easily
carried out with standard GEE, which allows the user to implement it with standard
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readily available software. The nature of the update provides a locally efficient and
double robust estimate, which remains consistent given that either the initial den-
sity estimate (E[Y |A,W ]), or treatment mechanism (E[A|W ]) is specified correctly.
We demonstrated this in simulation, showing the consistency and efficiency of the
tVIM-RM method under incorrect model specification and confounding. In general,
tVIM-RM performs as well or better than the standard GEE approach assuming a
parametric regression model.

The targeted nature of the method makes it ideal for biological studies where
the researcher is interested in determining the importance of each variable on a par-
ticular outcome. It provides a framework to determine the effect of each individual
variable while still adjusting for confounding. It is a especially useful tool in high-
dimensional datasets in that each individual variable can be targeted separately and
receives its own importance value with accurate inference.

In this paper, we apply tVIM-RM to yeast cell cycle data, measuring the
importance of 8 transcription factors with respect to gene expression outcome over
two cell cycles. Our results are promising, showing significant importance trends
during the appropriate time periods. We follow up the analysis by demonstrating
its applicability for TF complexes. Future work will focus on the development of
targeted model selection methods which will allow us to select among TF and time
effect modifiers for the TF of interest. The analysis is a simple case using a binary
TF-gene mapping. However the targeted method can easily be extended for more
sophisticated analyses such as binding motif discovery (Keles et al., 2004) and phy-
logenetic associations (Siewert and Kechris, 2009), where the TF-gene association
may be a continuous measures. We also note that in this application we do not
account for any error in the TF-gene mapping, which may bias the results. Future
work in TMLE is focused on developing methods to address measurement error in
A and W .

Our application involved purely observational data in which we rely on the
accuracy of the initial fit for E[Y |A,W ] or the fit of the treatment/confounding mech-
anism, E[A|W ]. This double robust nature of the estimate makes tVIM-RM ideal for
application in randomized trials. For instance, a clinical trial for a new AIDS drug
would be interested in the average effect of the drug on CD4 counts over time. In
other words, E[E[CD4|DrugA, time]−E[CD4|placebo, time]] = E[βDrugA], where
β represents the effect of drug A over time. Given a randomized experimental
design, the tVIM-RM method guarantees a consistent estimate of β .

Targeted Variable importance for repeated measures data provides a pow-
erful new tool for biological studies interested in understanding the driving force
behind a mechanism over time and/or experimental condition. This method has
a wide range of applicability and will be useful in computational biology as de-
mostrated here, as well as epidemiology and randomized clinical trails, where the
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tMLE based methods have been shown to be especially powerful (Bembom et al.,
2009, Tuglus and van der Laan, 2008).

A Efficient Influence Curve Derivation Outlined
Given observed data for a single subject O ∼ (W ∗,Y = {Yt : t = 1, . . . ,T}) ∼ P0,
where W ∗ is the set of p covariates and Y is the set of repeated measures outcome
taken over time, we define the tVIM-RM importance effect for a particular A = W ∗j
and time, t, controlling for confounders W = W ∗− j as

E [E[Yt |A = a,W ]−E[Yt |A = 0,W ]] = E [mt(a,W |βt)]

We propose the following form for the efficient influence curve for the
model parameters β of the parameter of interest presented above.

Dhopt ,Q,G = hopt(A,W )Σ(A,W )−1(Y −m(A,W |β )−θ(W ))

with the optimal scaling factor

hopt =
(

d
dβ

m(A,W |β )− r(W )
)

where θ(W ) = Q(0,W ) and

r(W ) = E
[
Σ(A,W )−1|W

]−1
E
[

Σ(A,W )−1 d
dβ0

m(A,W |β )|W
]

We propose that the multivariate extension of the semiparametric tVIM in-
fluence curve (van der Laan, 2005, Tuglus and van der Laan, 2008). is indeed the
efficient influence curve for the semiparametric targeted variable importance for re-
peated measures. Given the following properties (i) it is a score (ii) it is orthogonal
to all nuisance scores

• Scores of the form s(W ) for tangent space of p(W ).
• Scores of the form s(A|W ) for tangent space of p(A|W )
• Scores of the form (Y−Q(A,W ))Σ(A,W )−1(Y−Q(A,W ))T for tangent space

of Σ(A,W )
• Nuisance scores of the form r(W )Σ−1(Y −Q(A,W )) for tangent space of θ =

Q(0,W ) given fixed β
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Given this, we conclude it is efficient influence curve.

1. It is straightforward to see that the influence curve above is indeed a score in
the multivariate normal model space, where the multivariate normal model is
defined here as

p(Y |A,W ) = f N
Q,Σ(Y |A,W )

where fN is the multivariate normal density with scores of the form

L(O) = hopt(A,W )Σ(A,W )−1(Y −Q(A,W ))

2. It must be shown that the above form is orthogonal to the above nuisance
scores
• It can be shown that Dhopt ,Q,G is orthogonal to scores of the form s(W )

in that

E[Dhopt ,Q,Gs(W )] = E[E[Dhopt ,Q,Gs(W )]|A,W ]] = 0

• It can be shown that Dhopt ,Q,G is orthogonal to scores of the form s(A|W )
in that

E[Dhopt ,Q,Gs(A|W )] = E[E[Dhopt ,Q,Gs(A|W )]|W ]] = 0

• It can be shown that Dhopt ,Q,G is orthogonal to scores of the form

s(Σ) = (Y −Q(A,W ))Σ(A,W )−1(Y −Q(A,W ))T

under the assumption of a multivariate normal density model, in that we
require E[(Y −Q(A,W ))3] = 0. Given this, it follows

E[Dhopt ,Q,Gs(Σ)] = E[E[Dhopt ,Q,Gs(Σ)|A,W ]] = 0

• It follows that Dhopt ,Q,G is orthogonal to scores of the form
s(θ) = r(W )Σ−1(Y −Q(A,W )) in that r(W ) is defined such that
E[hopt(A,W )Σ(A,W )−1(Y −Q(A,W ))r(W )Σ−1(Y −Q(A,W ))] = 0

B Weighting of the Influence Curve for Variance
Reduction

In addition to the standard targeting of tVIM, steps can be taken to further increase
the efficiency of the estimate. We can weigh the initial fit for Q(A,W ) = E[Y |A,W ]
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in such a way that reduces the variance of the influence curve. To determine the
correct weights we refer to the form of the variance of the influence curve shown
below for the linear model m(A,W |β ) = Aβ .

Var ((A−E[A|W ])(Y −Q(A,W ))) = (A−E[A|W ])2Var ((Y −Q(A,W ))

Therefore by specifying the weights of (A−E[A|W ])2 for our initial fit of
Q(A,W ) we should be able to effectively increase the efficiency. We show this
in practice through a small simulation under increasing levels of ETA violation
comparing the efficiency of VIM estimates from the following estimation methods
for Q(A,W ).

1. Weighted Q(A,W ) where weights=(A−E[A|W ])2

2. Unweighted Q(A,W )
3. Unadjusted (and unweighted) Q(A)

Percent of complete ETA violation (i.e. perfect prediction of A by W ) was
set at pw = {10,20,30,40,50,60,70,80,90}. For percent pw of the total number
of observations of A, A is perfectly predicted by W . For (1− pw) percent of the
observations A is not a function of W . Here we simulate A,W , and Y as continuous
variables. This was completed for 500 simulations with n=500 and 100 observations
using perfect confounding between A and W over a set fraction of the observations,
pw.

The data was simulated as follows:

W ∼ Normal(2,1)

A[W ≥ q1] = 2W

A[W < q1]∼ Norm(5,1)

where, q1 is the pth
w quantile of W . The true treatment mechanism model

is A ∼W + I(W < q1)−1, and is fitted using standard lm() function in R. We add
an additional covariate W2 ∼ Norm(2A,1), which is correlated with A, creating an
incorrect model specification for Q(A,W ). The true Y is simulated as follows where
β1 = 4, β2 = 2, β3 = 2:

Y = β1A+β2W +β3W2 + ε

ε ∼ Normal(0,1)
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B.1 Results

The following tables compare the standard error averaged over the 500 simulations.

Table 4: Average IC-based standard error, n=100

pw cor(A,W) with weights without weights percent decrease
.1 0.3042 0.3966 0.3967 0.0257
. 2 0.4736 0.2689 0.2730 1.5091
.3 0.4186 0.3075 0.3087 0.3851
.4 0.6005 0.2356 0.2398 1.7828
.5 0.5498 0.2721 0.2738 0.6346
.6 0.5548 0.3211 0.3324 3.3866
.7 0.5733 0.2196 0.2217 0.9594
.8 0.6686 0.1612 0.1634 1.2968
.9 0.8448 0.0534 0.0616 13.4010

Table 5: Average IC-based standard error, n=500

pw cor(A,W) with weights without weights percent decrease
.1 0.3310 0.1869 0.1872 0.1647
. 2 0.3941 0.1783 0.1812 1.5614
. 3 0.4593 0.1780 0.1796 0.8770
.4 0.5357 0.1527 0.1532 0.3380
.5 0.5546 0.1540 0.1551 0.6753
.6 0.5674 0.1259 0.1260 0.0878
.7 0.6381 0.1004 0.1007 0.3099
.8 0.6981 0.0776 0.0778 0.2872
.9 0.7886 0.0538 0.0551 2.1913

C Sequential Targeted Update
Targeted maximum likelihood methodology was initially developed around a low
dimensional update of an initial density estimate. For βn tVIM, which is model
based, the dimension of the update increases with the size of the model. This is
especially relevant for repeated measures tVIM which can easily have high dimen-
sional model for even a one dimensional A. In an effort to avoid any potential insta-
bility in the high dimensional update we propose using a sequential targeted update
which updates each component of ε sequentially iterating until convergence.
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C.1 Simulation

A set of 20 possible covariates, W , is simulated from a multivariate normal with
random mean between 0 and 50, a constant variance ρ , and zero correlation. The
variable of interest, A, is also simulated from a normal distribution. Three different
simulation set ups are used.

1. Uncorrelated: Variables in W and variable of interest, A, are uncorrelated
(ρ = 0)

2. Correlated W : Variables in W are correlated with ρ = 0.8 and A is still inde-
pendent of all variables in W

3. A dependent on W : Variables in W are correlated with ρ = 0.8 and A is still a
linear function of two variables from W with mean zero variance 0.1 error

We model the outcome, Y , as a linear function of A : W interactions using
12 different variables from W with normal mean zero variance one error. All inter-
action terms have coefficients equal to four. The average mean square error for the
three scenarios are compared based on 100 simulations and 500 observations.

Table 6: Comparing the average mean square error of scenarios: Uncorrelated, correlated,
and A dependent on W using 100 simulations. Percent decrease accounted to using the
iterative update over the standard update is also reported.

Scenario Standard Update Iterative Update Percent Decrease
Uncorrelated 0.10950 0.10766 1.7 %
Correlated W 0.01001 0.00917 8.4 %

A dependent on W 0.20454 0.20052 2.0 %

D Simple R Code Example
Below is code for implementing tVIM-RM using a simple main effect working
model m(A,W |β ) = Aβ .

The results of a small simulation show that the sequential update is as good
or better than the standard targeted update.
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nobs<-40 #number of subjects

nt<-4 #number of replicates/time points

visit <- rep(1:nt, nobs)

id <- gl(nobs, nt, nt*nobs)

W <- rnorm(nobs,3,1)

A <- runif(nobs, 0, 1)

#creating AR(1) structure

phi <- 1

rhomat <- 0.667 ^ outer(1:nt, 1:nt, function(x, y) abs(x - y))

chol.u <- chol(rhomat)

noise <- as.vector(sapply(1:nobs, function(x) chol.u %*%

rnorm(nt,0,1)))

e <- sqrt(phi) * noise

#True Model

y <- 1+3 * W - 2 * A + e

dat <- data.frame(y, id, visit, W, A)

A=dat[,5] #variable of interest

D.2 tVIM-RM method

D.2.1 Initialization

##Initial fit for Q(A,W) and G(W)

GW<-predict(lm(A~W,data=dat),newdata=dat)

wts1<-(A-GW)^2 #create weights

fW<-W #Though this can be Q*(0,W) from a data-adaptive fit

AW1<-matrix(A)

dat1 <- data.frame(y, id, visit, fW, AW1)

geeQf<-geeglm(y ~ AW1+fW, id = id, weights=wts1,data = dat1,

family=gaussian,corstr ="ar1")

# The above can also include interactions A:W

covY<-cov((matrix(residuals(geeQf),ncol=nt))) #covariance estimate

geeQ<-predict(geeQf,newdata=dat1)

bint<-coefficients(geeQf)[2] #initial parameter est.

D.1 Simple simulated data

library(geepack) #loads package geepack
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D.2.2 tMLE update

##apply tMLE update

Scov<-(A-GW) #solve for simple clever covariate

geeUpQ<-geeglm(y~Scov+offset(geeQ)-1,id = id, data = dat,

family=gaussian,corstr ="ar1")#,zcor=zcor1)

bn<-bint+coefficients(geeUpQ) #updated tMLE estimate

geeQn<-predict(geeUpQ)

D.2.3 Covariance estimation

#Calculate standard error est. and p-values using influence curve

Scov1<-array(Scov,dim=c(nt,nobs,1))

Vs<-solve(covY)

VScov1<-Scov1

for(vs in 1:nobs) VScov1[,vs,]<-Vs%*%Scov1[,vs,]

VScov11<-array(VScov1,dim=c(nt*nobs,dim(Scov)[2]))

dDh<-(1/(nt*nobs))*t(VScov11)%*%(AW1)

AY<-(matrix(y)-geeQn) #recently switched from t(bout)

Dh<-as.matrix(VScov11)*AY #apply((VAWmat1),2,function(x){x*AY})

IC<-apply(Dh,1,function(x){x%*%solve(dDh)})

spI<-split(1:(nt*nobs),1:(nt))

ICrep<-array(IC,dim=c(nt,(nobs),1))

for(ic in 1:nt) ICrep[ic,,]=IC[spI[[ic]]]

ICrep1<-apply(ICrep,c(2,3),mean)

SigmaAWn<-(1/nobs)*(1/nobs)*t(ICrep1)%*%(ICrep1)

D.2.4 Simple hypothesis est

###Complete simple hypthesis test

SE<-sqrt(diag(CVest))

tests<-bn/sqrt(diag(CVest))

Pval<-2*(1-pnorm(abs(tests)))

t
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