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Genome wide association analyses have revealed large numbers of common variants influencing predisposition to type 2 diabe-
tes and related phenotypes. These studies have predominantly featured European populations, but are now being extended to 
samples from a wider range of ethnic groups. The transethnic analysis of association data is already providing insights into the 
genetic, molecular and biological causes of diabetes, and the relevance of such studies will increase as human discovery genetics 
increasingly moves towards sequencing-based approaches and a focus on low frequency and rare variants.
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INTRODUCTION

The past few years have seen an explosion in our capacity to 
identify DNA sequence variants that influence individual pre-
disposition to type 2 diabetes and related traits such as fasting 
glucose, body mass index, and fat distribution. These discov-
eries have largely been powered by the ability of researchers to 
undertake genome wide surveys for genetic associations in very 
large numbers of well-characterised samples, making use of 
high-density genotyping arrays capable of capturing the majori-
ty of common variation segregating in human populations [1]. 
  There are now over 40 loci confidently associated with indi-
vidual risk of type 2 diabetes, and over 30 associated with body 
mass index and risk of obesity [2-4]. Each of these loci has the 
potential to reveal novel biological insights into disease patho-
genesis, though a great deal of detailed functional work remains 
to be done to link the association signals discovered to the 

specific local transcripts through which they mediate their ef-
fect on disease risk. 
  To date, most of these discoveries have been made in sam-
ples of European origin, whether collected in Europe or North 
America [2-4]. However, there are now growing numbers of 
genome wide association and resequencing studies for diabe-
tes and related traits being conducted in samples from other 
parts of the world, most particularly those from East and 
South Asia, and from minority populations in the United 
States (Hispanics and African Americans) [5-10]. For exam-
ple, recent studies of samples from East Asia were the first to 
describe type 2 diabetes risk variants near to the KCNQ1, 
UBE2E2, C2CD4A/B, SRR and PTPRD genes [5-8]. 
  This review will discuss the value of multiethnic studies of 
diabetes genetics, and describe how these are likely to add to 
our understanding of type 2 diabetes genetics and biology.
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EXPLORING THE OVERLAP IN 
ASSOCIATION SIGNALS BETWEEN MAJOR 
ETHNIC GROUPS

There have been a growing number of studies which have tak-
en the diabetes association signals first discovered by genome 
wide association analyses in one population (mostly Europe-
ans) and evaluated the evidence for their association with dia-
betes in others [11-16]. Moreover, as more and more genome 
wide association studies are completed in non-European pop-
ulations [5-10], it becomes increasingly possible to compare 
the genome wide patterns of association across a wide diversi-
ty of ethnic groups. 
  The consensus from these comparisons is that the majority 
of the signals identified so far show clear evidence of direc-
tionally-consistent association across major population groups 
[11-16]. This consistency is particularly obvious for samples 
from populations that are not of recent African origin: addi-
tional data from African-descent samples are awaited with in-
terest. Initial reports of failed replication (at FTO for example) 
were largely, it seems, the result of inadequate sample size, com-
bined with differences in allele frequency that made some sig-
nals far harder to detect in some non-European populations 
[17-21]. Given the small effect sizes of many of the common 
variant signals found so far, and the massive sample sizes re-
quired for their initial discovery, it is not surprising that most 
of these transethnic replication studies have been underpow-
ered to detect confirmatory signals at all known loci. However, 
if one builds up data over multiple studies, and/or uses mea-
sures that are better-powered for modest sample size (such as 
genetic risk scores, or the proportion of loci showing direction-
ally consistent odds ratios) the degree of overlap is striking 
[16]. Nor is this simply a case of loci that are discovered in Eu-
ropeans being identified in other populations, as the reverse 
example of KCNQ1 demonstrates [5,6].
  What can we learn from this? The genome wide association 
studies conducted to date have necessarily focussed on com-
mon variants, and it should come as no surprise to find that 
most such variants are present in populations across the globe 
(Fig. 1). In the absence of strong selective pressures, it takes 
many thousands of generations for a mutation to drift to high 
frequency, and we can expect that most of the common vari-
ants seen in non-African populations predate the most recent 
expansion out of Africa, around 70,000 years ago, and will be 
shared amongst populations from Stockholm to Seoul, and 

from Mexico City to Mumbai [22]. 
  One obvious corollary of this overlap is that differences in 
the prevalence and in the presentation of diabetes across the 
world [23,24] are rather unlikely to be attributable to common 
sequence variants. Does this overlap mean that we should 
abandon efforts to map common variants for diabetes in addi-
tional populations, given the large investments already made 
in the analysis of samples from Europe and East Asia? Abso-
lutely not, for the simple reason that the between-population 
differences in effect sizes and allele frequency that occur at 
some loci translate into very marked differences in the poten-
tial for their initial discovery (especially to the levels of statisti-
cal stringency required for genome wide studies). The loci 
emerging from genome wide association studies in East Asian 
samples demonstrate this extremely well: the signals at KCNQ1 
and C2CD4A/B for example are definitely also present in Eu-
ropean subjects but were missed by previous genome wide as-
sociation efforts in Europeans for reasons of power and chance 
[5,6,8,25]. 

Fig. 1. Common variants (A) will typically have arisen prior to 
the modern human exodus from Africa, and will be widely 
represented amongst non-African populations. In contrast, 
lower-frequency alleles (B) will usually be of more recent ori-
gin, and to have arisen during the diaspora: such alleles will 
not be widely-represented, and may be restricted to a particu-
lar population. 
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Low frequency variants

A

B



93

Transethnic studies of diabetes genetics

Diabetes Metab J 2011;35:91-100http://e-dmj.org

TRANSETHNIC FINE MAPPING FOR 
COMMON VARIANT SIGNALS

Genome wide association studies are reliant on linkage dis-
equilibrium for the initial identification of signals since it is 
unlikely that the causal variant (or variants) at any locus will 
actually be represented on any given genotyping array. How-
ever, once a signal has been found and shown, by replication, 
to be genuine, linkage disequilibrium becomes an obstacle, 
frustrating efforts to home in on the causal variant at the locus. 
For example, at the FTO locus, attempts at further refinement 
of the association signal (through resequencing, dense geno-
typing or imputation from HapMap or 1,000 Genomes refer-
ence panels) have been unsuccessful: as far as we can tell, from 
studies of European samples at least, the causal allele could be 
any one of dozens of highly-correlated alleles carried on a 50 
kb haplotype. 
  However, since local patterns of linkage disequilibrium of-
ten differ between major population groups [22], one would 
hope that fine-mapping studies conducted at the transethnic 
level might enable some refinement of location, and in some 
circumstances, provide strong statistical evidence in favour of 
a single causal variant. Naturally there are some assumptions 
behind such analyses, the first being that the same single caus-
al variant is shared between the populations concerned. The 
overlap in common variant signals reported above is clearly 
reassuring in this respect as it suggests that allelic heterogene-
ity is limited, at least amongst non-African populations. 
  The major limitation of this approach is likely to be the fact 
that patterns of linkage disequilibrium and haplotype struc-
ture are quite similar between non-African populations [22], 
and this has fostered growing interest in the interrogation of 
samples of recent African origin (for example African Ameri-
cans) [26]. The high genetic diversity of African populations, 
and the long period of divergence, means that the linkage dis-
equilibrium patterns in African populations are often mark-
edly different to those seen in Europeans and Asians. This has 
the potential therefore to offer considerable benefits in terms 
of fine-mapping, but only provided locus and allelic heteroge-
neity are not extreme. Put simply, there is a danger that at some 
loci, there will be no susceptibility alleles segregating in acces-
sible African populations, meaning that there is “nothing to 
fine-map.” The limited data for type 2 diabetes susceptibility in 
African Americans is reassuring in this respect [16,26], and it 
will be interesting to see the results of the genome wide associ-

ation studies that are currently being completed using samples 
from this population. 
  In the meantime, it seems sensible to pursue a broad strate-
gy that attempts fine mapping in both non-African and Afri-
can populations. Interestingly, several of the strongest diabetes 
susceptibility signals (TCF7L2, CDKAL1, and KCNQ1) do 
demonstrate rather unusually divergent haplotype structures 
between major ethnic groups [5,6,22], providing some en-
couragement that, as the data sets available become larger, ef-
fective fine-mapping will be possible. Fortunately such studies 
can be based around existing genome wide association data 
(complemented with imputation from ethnically-diverse ref-
erence panels, such as those forthcoming from the 1,000 Ge-
nomes Project [27]), so the costs are largely those of analysis. 

INFORMATION ON GENETIC 
ARCHITECTURE AND SELECTION

Transethnic studies are also capable of providing valuable in-
sights into the genetic architecture of type 2 diabetes. An ex-
cellent example of this relates to the important clues that trans-
ethnic studies have provided with respect to the so-called 
“synthetic” association hypothesis [28]. This hypothesis, which 
was derived predominantly from simulation studies rather 
than empirical data, proposed that many (perhaps most) of 
the common variant signals identified by genome wide associ-
ation studies are not the result of causal variants that are them-
selves also common. Rather, the common variant signals de-
tected are merely a consequence of the ways in which multiple 
rare causal alleles at each locus are scattered across the com-
mon haplotypes in the region. If true, this “synthetic” associa-
tion model has profound implications for the genetic architec-
ture of common disease, and for the strategies that should be 
adopted for identification of the causal variants. 
  Although widely promoted at the time of its publication, 
and seized upon by those antagonistic to the genome-wide as-
sociation approach, there is relatively little empirical evidence 
to support this model. The CARD15 association with inflam-
matory bowel disease [29] shows that “synthetic” associations 
can occur, but are they really responsible for the majority of 
common variant signals detected by genome wide association 
studies? 
  One clear prediction of the “synthetic” model is that com-
mon variant signals detected in one major ethnic group should 
not be expected to replicate in others. This is because rare al-
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leles have usually arisen quite recently (in the absence of selec-
tion, it takes many generations for a new mutation to drift to 
higher frequency), such that many of these rare alleles will 
have appeared during the course of the modern human dias-
pora and will be not be widely-represented across multiple 
major ethnic groups (Fig. 1). Under those circumstances, it 
would be highly unlikely that the different sets of rare causal 
alleles that might have arisen in Europeans and East Asians 
(for example) would have stacked up, by chance, on the same 
set of haplotypes, and thereby generated the same common 
variant signals. However, this is precisely what appears what 
we observe for type 2 diabetes. In other words, the directional 
consistency and high reproducibility across major ethnic 
groups of almost all common variant signals for type 2 diabe-
tes provides strong evidence that these signals are driven by 
causal alleles that are themselves common [16]. Presumably, 
these common, causal alleles predate the recent human expan-
sion out of Africa, and having been carried to the four corners 
of the world, show broadly similar effects on diabetes risk. 
  But can we go further? The thrifty genotype hypothesis, first 
promulgated by Neel, opined that the high prevalence of dia-
betes (and obesity) in modern populations, might be the result 
of many generations of selection for alleles that, in prehistoric 
times at least, conferred some kind of selective advantage [30]. 
The most obvious mechanism for this would involve individu-
al differences in the capacity for the efficient storage of energy 
as fat during times of plenty. Individuals with “thrifty geno-
types” would, according to this hypothesis, be in an advanta-
geous position during periods of erratic food supply. However, 
in today’s societies with access to constant (and excessive) food 
availability, individuals carrying these same alleles are now 
predisposed to develop obesity and diabetes. 
  Given the growing number of diabetes-susceptibility vari-
ants now established, do transethnic comparisons provide evi-
dence for selection that might support the thrifty genotype 
hypothesis? For the time being, the answer to this question re-
mains far from conclusive. Using a variety of approaches, in-
cluding comparing the frequencies of diabetes risk-alleles across 
populations, as well as looking for other genetic hallmarks of 
recent selection, studies to date have concluded that the evi-
dence for selection is modest when viewed across all risk loci 
[31,32]. However, it is notable that the loci with the strongest 
evidence for ethnic differences in allele frequency and haplo-
type structure (both of these possible markers of selection) are 
also those (TCF7L2, CDKAL1, and KCNQ1) with some of the 

largest effects on diabetes risk [31,32]. It may be that the evi-
dence for selection is most obvious when the phenotypic ef-
fects are also greatest and that these data are pointing towards 
subtle selection effects. Nonetheless, it is fair to say that the 
transethnic data to date fail to provide compelling support for 
the thrifty genotype hypothesis. 

EXPLAINING DIFFERENCES IN 
PREVALENCE AND PRESENTATION OF 
DISEASE

Although most cases of diabetes across the globe are consid-
ered to fit within the “umbrella” of type 2 diabetes, there is no 
doubt that prevalence and presentation of type 2 diabetes dif-
fers between major ethnic groups [23,24,33,34]. Of course, these 
differences may turn out to be largely attributable to differenc-
es in environmental factors [35], but migration studies (for ex-
ample the high prevalence of diabetes in migrant South Asian 
populations worldwide) may point to an important genetic 
contribution. 
  For reasons hinted at above (particularly the high degree of 
overlap between the signals observed in different ethnic groups), 
it seems rather unlikely that between-population variation in 
the pattern of common variant signals will explain major dif-
ferences in prevalence or presentation [16,33]. Having said 
that, there is emerging evidence that the effect sizes for most 
type 2 diabetes common variant loci are systematically larger 
in Japanese case-control comparisons than in equivalent anal-
yses from other populations [16,36]. It remains to be seen 
whether this observation, if confirmed, represents an intrinsic 
and ethnic-specific different in genetic risk. Such differences 
in effect size could reflect the ways in which the cases and con-
trols were selected (for example, selection for lean cases can 
boost some signals), the extent of environmental (dietary, eco-
nomic) homogeneity (possibly greater in the Japanese popula-
tion than in others), and the prevalence of obesity (if low, this 
may mean that cultural and lifestyle factors are having less of 
an impact on diabetes risk, thereby inflating the role of genetic 
variants). 
  If there are genetic explanations for interethnic differences 
in prevalence and presentation of diabetes, these are likely to 
come from variants that are (at the global level at least) of low-
er frequency. Not only are such variants likely to be of more 
recent origin, and therefore more population specific (Fig. 1), 
but a subset of them may well have larger effects than the com-
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mon variant signals discovered to date [37]. There are a grow-
ing number of examples of ethnic-specific variants that under-
lie substantial differences in disease prevalence – influencing 
rates of heart failure in South Asians, renal disease in Africans, 
and hepatosteatosis in Hispanics for example [38-40]. In some 
instances, these variants have been subject to marked selection 
and have risen to relatively high frequency in one or other ma-
jor ethnic group. Whilst the detection of such highly-selected 
variants therefore continues to justify the application of com-
mon variant genome-wide association scan methodologies to 
diverse ethnic groups, it seems probable that resequencing ap-
proaches, directed towards low frequency and rare variant dis-
covery, will prove the most powerful strategies for uncovering 
the genetic basis of interethnic differences in disease prevalence 
and presentation. 

ADVANCING BIOLOGICAL 
UNDERSTANDING OF DISEASE 
PREDISPOSITION

One of the major challenges thrown up by the success of the 
genome wide association approach lies in connecting the sig-
nals found to their downstream biology. Many of the genome 
wide association signals map to regulatory regions some dis-
tance from the nearest coding genes, and for only a minority 
of the forty or so known type 2 diabetes susceptibility loci has 
the transcript responsible for the causal effect been character-
ised [2]. This represents a serious impediment to the transla-
tion of the genetic discoveries into the improved understand-
ing of disease predisposition that can support clinical advances. 
  One of the most obvious strategies for linking signals to 
function lies in searching for “smoking gun” mutations in the 
genes mapping near to a genome wide association signal. The 
idea here is to expose the transcript responsible for the predis-
position by identifying which (if any) of the genes in the vicin-
ity contains variants predicted to have high functional impact 
(ideally rare, coding mutations of large effect that are clearly 
expected to abrogate gene function, such as frameshifts or pre-
mature stop mutations) and which can be shown to be respon-
sible for type 2 diabetes or a closely related phenotype (such as 
a more genetic monogenic or syndromic form of diabetes). 
The best example of this approach to date comes from type 1 
diabetes. Exon resequencing of the transcripts mapping to a 
genome wide association signal for type 1 diabetes on chro-
mosome 2, revealed a number of low frequency variants with 

high putative functional impact within the IFIH1 gene, each of 
which showed evidence of an association with type 1 diabetes 
[41]. Though these variants did not explain the original com-
mon variant signal, they did provide a very strong pointer to 
IFIH1 as the gene most likely to be responsible for mediating 
the association effect at this locus.
  In conducting such studies, there are obvious merits in ex-
amining more than one ethnic group. Given that clear-cut 
“smoking gun” mutations (from both a statistical and function-
al perspective) will not be seen at every locus (they are likely to 
represent random accidents of nature, often of recent origin 
and likely to disappear within a few generations), extending 
the survey to a wide range of different ethnic groups provides 
the chance to “buy multiple tickets to the lottery.” The hope is 
that an interesting “smoking gun” signal clearly visible in one 
ethnic group, can be rapidly followed up in others (where the 
signal exists but is not so obvious), and that it will be the accu-
mulation of a wide variety of different “smoking gun” muta-
tions, with clearly independent mutational histories, which 
provides the necessary pointers to identification of the tran-
script mediating the common variant association signal. The 
T2D-GENES consortium, for example, is testing this approach 
by resequencing over 500 genes from type 2 diabetes genome 
wide association signals in over 10,000 case-control samples 
ascertained from European, East Asian, South Asian, Hispan-
ic, and African-American populations. 

THE FUTURE

Human genetics is shifting from an era dominated by common 
variant discovery powered by genome-wide association stud-
ies, to one of low frequency and rare variant identification 
through sequencing. As the field moves in this direction, it 
will become ever more important, for a variety of reasons, to 
examine the genetic basis of disease in multiple ethnic groups. 
First, we can expect to see greater divergence of genetic predis-
position between populations (both locus and allele heteroge-
neity) as far as low frequency variants are concerned, simply 
because they are more likely to be of recent, and ethnic-specif-
ic origin. Second, such divergence means that studies conduct-
ed in multiple ethnic groups (provided, of course, that they 
take proper account of population structure) will offer greater 
opportunities for discovery, and more chances to find high-
impact alleles well-suited to subsequent functional and physi-
ological characterisation. Third, as we’ve seen, the genetic basis 
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of interethnic differences in prevalence and presentation of 
disease (including response to therapeutic and preventative 
interventions) is more likely to be explained by lower frequen-
cy variants. Fourth, as it becomes harder to obtain convincing 
statistical evidence within a single ethnic group that a given 
low frequency variant (or set of low frequency/rare variants) is 
associated with disease (simply because power for any given 
effect size is reduced for lower frequency variants), the dem-
onstration that the same gene harbours an excess of rare sus-
ceptibility (or protective) alleles in several distinct ethnic 
groups will provide an ever more important signal for estab-
lishing a causal link between that gene and disease. 
  For all these reasons, it is crucial, if we are to understand the 
basis of a global disease such as diabetes, that we pursue well-
powered genetic and genomic enquiry in as many diverse 
populations as possible. It is equally important that these ef-
forts are linked through strong scientific collaborations and 
mechanisms for data exchange, since it is increasingly true 
that, only by working together, will we be able to overcome the 
very considerable challenges that remain. 
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