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ABSTRACT

The determination of single nucleotide polymorphisms (SNPs) has become faster and more
cost effective since the advent of short read data from next generation sequencing platforms
such as Roche’s 454 Sequencer, Illumina’s Solexa platform, and Applied Biosystems SOLiD
sequencer. The SOLiD sequencing platform, which is capable of producing more than 6 GB
of sequence data in a single run, uses a unique encoding scheme where color reads represent
transitions between adjacent nucleotides. The determination of SNPs from color reads
usually involves the translation of color alignments to likely nucleotide strings to facilitate
the use of tools designed for nucleotide reads. This technique results in the loss of significant
information in the color read, producing many incorrect SNP calls, especially if regions exist
with dense or adjacent polymorphism. Additionally, color reads align ambiguously and
incorrectly more often than nucleotide reads making integrated SNP calling a difficult
challenge. We have developed ComB, a SNP calling tool which operates directly in color
space, using a Bayesian model to incorporate unique and ambiguous reads to iteratively
determine SNP identity. ComB is capable of accurately calling short consecutive nucleotide
polymorphisms and densely clustered SNPs; both of which other SNP calling tools fail to
identify. ComB, which is capable of using billions of short reads to accurately and efficiently
perform whole human genome SNP calling in parallel, is also capable of using sequence data
or even integrating sequence and color space data sets. We use real and simulated data to
demonstrate that ComB’s iterative strategy and recalibration of quality scores allow it to
discover more true SNPs while calling fewer false positives than tools which use only color
alignments as well as tools which translate color reads to nucleotide strings.
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1. INTRODUCTION

The completion of the human genome project in 2001 (Venter et al., 2001; Lander et al., 2001)

marked a watershed moment in biomedical research and bioinformatics. Since the first genome was

sequenced using traditional Sanger sequencing, there have been several attempts to duplicate the feat at a

fraction of the cost using massively parallel next generation sequencing technologies (Pushkarev et al., 2009).
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Single nucleotide polymorphisms (SNPs) and short block nucleotide polymorphisms (BNPs) are thought to

play a major role in human phenotypic variation, disease development, and drug response (Shastry, 2007;

Yue and Moult, 2006). The identification of such sites, a necessary step in human genome resequencing, may

be key for the realization of personal medicine (Mancinelli et al., 2000) and disease prevention (Manolio

et al., 2009). There exist many SNP calling algorithms dedicated to the next generation sequencing platforms

which produce nucleotide reads such as Illumina’s Solexa sequencer and Roche’s 454 sequencing platform

(Li et al., 2009b; Brockman et al., 2008; Quinlan et al., 2008). In contrast, Applied Biosystems’ high-

throughput (Ondov et al., 2008) ligation mediated SOLiD sequencer produces reads composed of colors that

represent nucleotide transitions (Fig. 1), a departure from other sequencing machines that provides both new

benefits and challenges to SNP calling. In color space, sequencing errors are rarely mistaken for SNPs, whose

color signatures exist only on a subset of consecutive color mismatches (Ondov et al., 2008). Many mapping

programs (Homer et al., 2009; Langmead et al., 2009; Li and Durbin, 2009) attempt to take advantage of this

by translating color reads to their most likely nucleotide string after alignment. SNPs can then be identified

through a ‘‘pileup’’ or count of converted nucleotides which cover each position (Li et al., 2009a). While this

strategy provides an output format identical to that produced from sequence data, the conversion required

cannot adequately maintain all of the information contained in the original color read and quality sequence. In

addition, sequencing errors will obscure otherwise obvious SNP signatures creating incomplete SNP in-

formation that cannot be maintained if reads are translated to nucleotide sequences (Fig. 2). ComB handles

dependencies associated with SNP loci in color space by considering the likelihood of all supported poly-

morphisms with the read data in aggregate, which produces significantly more accurate estimation of the

genome from which the reads were sequenced.

ComB’s SNP calling strategy involves two parts:

1. Maximize available information regarding each potential polymorphism loci by staying in color

space, including ambiguous reads, and iteratively updating the target genome.

2. Minimize error by recalibrating quality scores and applying a Bayesian model to calculate the posterior

probability of polymorphism conditioned on the observed read set and subsequent alignments.

ComB was designed to perform SNP calling on the SAM alignment (Li et al., 2009a) output produced by

many popular alignment programs, or the ‘‘mapping’’ output format produced by the alignment program

PerM (Chen et al., 2009). The Methods section below contains a detailed description of ComB’s statistical

model and its iterative design, which produces efficient and accurate identification of polymorphism.

2. METHODS

2.1. Motivation for a statistical model

The design of ComB was motivated in part by the need for a consistent statistical model to call genome

variants in color space. Working in color space allows more information about SNPs to be preserved, but

also requires the dependencies and mapping biases, which do not exist in nucleotide space, be addressed.

FIG. 1. Consider reads which

map to a location with genome se-

quence AAAAAAAAA, which in

color space is BBBBBBBB. The

reads may differ from the color

space genome sequence, because of

either SNPs or sequencing errors.

The goal of identifying likely sets

of sequencing errors and SNPs that

would produce the given read is

complicated by the dependence between adjacent colors. Valid color substitutions are restricted to those which change

the read sequence locally, while sequencing errors are not restricted. Above are a set of reads that map to the genome

location in color space, along with a set of possible interpretations of the read as results of sequencing errors and SNPs.

Determining the combination of SNPs and sequencing errors which affected any single read is difficult, ComBs

statistical model allows the likely interpretation to be made using the entire collection of reads.
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For this reason, ComB’s methods are described for reads in color space, although each feature of ComB

generalizes to perform the same task for sequence data.

Initially, the model is described for the simplest case: haploid SNP loci are isolated and spanned only by

uniquely mapping reads. Modifications to deal with additional complexities are discussed after the model

introduction.

2.1.1. Bayesian statistical model. To calculate the posterior probability for the identity of the target

base tj, ComB considers both the base on the reference genome gj as well as the set of reads R(tj), whose

mappings span tj. ComB assumes a unique alignment constitutes a correct alignment. The read set R(tj) is

composed of reads which map to unique regions spanning tj. The posterior probability of the true nucleotide

identity tj¼ l for k 2 fA, C, G, Tg, conditioned on the observed mapping data, can be written using Bayes

theorem as

P(tj¼ kjR(tj))¼
P(R(tj)jtj¼ k)P(tj¼ k)P

�2fA, C, G, Tg P(R(tj)jtj¼ �)P(tj¼ �)
: (1)

where P(tj¼ n) is the prior distribution of base being considered, and P(R(tj)jtj¼ l) is the conditional

distribution of the read set, which can be written in terms of the read alignment scores P(rjs, tj¼ l).

P(R(tj)jtj¼ k)¼
Y

r2R(tj)

P(rjs, tj¼ k): (2)

The read alignment scores and SNP priors are described in the next two sections.

2.1.2. Quality calibration and alignment scores. The error distribution resulting from the se-

quencing process has been shown to vary depending on the sequencing platform, sequence motifs, and read

position (Shendure and Ji, 2008). The SOLiD error rate, which increases on later cycles and at the tails of

reads, is estimated to be quite high. In many datasets fewer than half the reads map with fewer than three

mismatches (Ondov et al., 2008). The raw quality scores provided by sequencing machines reflect signal

intensity and fail to capture many sources of error [Li et al., 2004]. To recalibrate the quality scores to more

accurately reflect the true error rate, ComB calculates color call rates with consideration to color, reference

dinucleotides, quality scores, and read position. Letting jQj represent the number of bins spanning the space

of quality scores, ComB uses uniquely mapped reads to build a matrix with dimensions 4 · 4 · 4 · jQj for

each position in the sequence. Each entry in the matrix represents the probability of seeing a color (4·),

between a pair of bases (4 · 4), at a quality score (jQj).
Thus, the entry in the matrix describing the probability of observing color x with quality q between

reference dinucleotides b1 and b2 at the ith position in the read is

Ci(x, q, b1, b2)¼
P

r I(ri¼ x, qi¼ qjb1, b2)P
r I(ri, qijb1, b2)

, (3)

where ri and qi represent the color and quality for a given read at its ith position, and I() is the indicator

function, and the sum is over all uniquely mapped reads (r). This recalibration of the call rates serves

primarily to identify sequence specific errors and reduce the false positive rate.

The call rates matrix described by Eqn. (3) can also be used to measure the alignment between a read r and

it’s quality q and a genome substring s. This read alignment score, P(rjs), is calculated by multiplying the

observation probabilities from the call rates matrix for each color and quality score along the length of the read:

FIG. 2. SOLiD colors represent the transition be-

tween the nucleotides. This unique encoding scheme

results in each nucleotide being sequenced twice, de-

creasing the probability of sequencing errors being in-

terpreted as SNPs. However, color signals are not

independent, making necessary new methods to accu-

rately determine polymorphism.
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P(rjs)¼
Yjrj

i¼1

Ci(ri, qi, si, siþ 1): (4)

This is the probability that sequencing the genome jrj-mer represented by s would produce the read r.

2.1.3. Prior SNP probability. The prior SNP probability or global mutation rate P(tj¼ ljgj), de-

pends on the genetic distance between the reference and target genomes. For the human genome, if a global

GC rate of 43% (Karro et al., 2008) as well as homozygous and heterozygous SNP rates of 0.048% and

0.054% (Levy et al., 2007) are assumed, then the probability that a given reference nucleotide has mutated

into one of nine possible target SNPs can be estimated using the SNP frequencies from the approximately

20 million base mutations annotated in the dbSNP database build 131 (Database of Single Nucleotide

Polymorphisms [dbSNP]) (dbSNP, 2001). For example, the prior probability of the event that the reference

base gj has mutated from A to homozygous C is

P(tj¼Cjgj¼A)¼ P(gj¼Ajtj¼C)P(tj¼C)

P(gj¼A)
(5)

Here the marginal probability of nucleotide A is estimated from the genomic GC rate:

P(gj¼A)¼ 1�GCRATE

2
(6)

and the marginal probability of a mutation leading to nucleotide C (P(tj¼C)) and conditional probability of

reference A in the event of a mutation (P(gj¼Ajtj¼C)) are estimated from the frequencies in dbSNP. For

non-model organisms where SNP data is not available estimated priors can be provided, or the prior

parameters can be calculated iteratively.

2.1.4. Ambiguous reads. Reads which align to multiple loci in a reference genome within a certain

mismatch threshold are referred to as ambiguous. In such cases, the assumption is made that every alignment

but one is spurious and may cause us to incorrectly infer the probability of a genome variant. Error in the

selection of the correct alignment can lead to incorrect mapping and false determination of genome variants.

For this reason, ambiguous reads are often discarded. Unfortunately, for large genomes, large fractions of

mapped reads are often ambiguous. ComB preserves this data by weighting each ambiguous mapping by its

relative alignment score to each reference location. Formally, if a read r maps to a set of genomic subse-

quences S(r), then the conditional probability of observing r given the identity at locus tj is

P(rjS(r), tj¼ k)¼
X

s2S(r)

P(r, s! rjs, tj¼ k) (7)

¼
X

s2S(r)

P(rjtj¼ k, s! r)P(s! r)

where s? r represents the event that r is sequenced from s (correct alignment). The expression P(rjS(r),

tj¼ l) replaces the single alignment score used in the unique read case. Since
P

s2S(r) P(s! r)¼ 1, then for

each s� 2 S(r),

P(s� ! r)¼ P(rjs�)P
s2S(r) P(rjs)

(8)

where P(rjs) is the alignment score defined in Eqn. (4).

2.1.5. Consecutive nucleotide polymorphism dependency. In color space, the positions in con-

secutive nucleotide polymorphisms are not independent and result in different signatures than those of

isolated SNPs. Short block nucleotide polymorphism (BNPs) (defined as polymorphism between 2 and 8 bp

in length) are not uncommon in the human genome. Of the approximately 20.5 million positions annotated

as either single or multiple nucleotide polymorphism in dbSNP build 131, 11.07% are adjacent to another

nucleotide polymorphism (dbSNP, 2001). The majority (>60%) of these positions are members of blocks

of length two or three. Unlike isolated SNPs, which always change two consecutive colors, BNPs can result
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in a change to two or more color mismatches that are not necessarily consecutive (Fig. 1). Thus, con-

secutive SNP candidate blocks must be evaluated for all possible combinations of polymorphisms along

the length of the block. The read alignment score can be conditioned on multiple events, P(rjti¼
k1, tiþ 1¼ k2, . . . ) and Eqn. 1 remains applicable.

2.1.6. Diploid and multiploid organisms. If the target genome sequence comes from an organism

with multiple copies of chromosomes, the parameter l should represent the space of all possible nucleotide

groupings on the chromosomes. For simplicity, consider a diploid organism where l¼W, i.e., heterozygous

for nucleotides A and T. In this event, the observation score should consider the event that the read is

sequenced from either chromosome. Thus, the observation score for a read aligned to such a locus is

expressed as

P(rjtj¼W)¼P(rjtj¼A)P(tj¼A) (9)

þP(rjtj¼ T)P(tj¼ T)

where

P(tj¼A)¼P(tj¼ T)¼ 1

2
: (10)

When considering diploid space, k 2 fAA, AC, . . . , TG, TTg, accuracy is markedly improved through the

use of iterative SNP calling. The iterative method will first call homozygous nucleotide polymorphisms

(NPs), update the target genome, and then call potential diploid locations to reduce bias to the reference

genome. This bias otherwise causes homozygous SNPs to be interpreted as heterozygous.

2.1.7. Iterative mapping. Dense polymorphism often produces reads with too many mismatches to

map to their correct location. This is further exacerbated in color space where SNPs cause multiple color

mismatches. Unfortunately, allowing more mismatches may further bias the mapping results as many reads

map incorrectly to positions of relative similarity.

This bias is alleviated through ComB’s iterative mapping strategy which updates the target genome to

increase the number of reads that cover SNP loci.

Assuming a set of short reads R, sequenced from an unknown target genome T , being mapped to a

similar reference genome G, each iteration consists of the following four steps:

1. Initially R is mapped to G.

2. The machine quality scores are recalibrated and call rates are estimated (Eqn. (3)).

3. The genome is scanned and SNP candidate blocks are located and tested using Eqn. (1).

4. The target genome is updated at positions with high posterior SNP probability, and the mapping is

repeated.

2.1.8. Parallel implementation and default settings. For small single platform datasets, each it-

eration of ComB can be run through a single command. To increase speed and save disk space, inter-

mediate information such as the estimated call rates are compressed and stored internally; only the

consensus genome and called SNPs are written to disk. As a compromise to memory usage, by default,

ComB only considers sites as NP candidates if they are spanned by at least three reads and at least 20% of

such reads contain valid polymorphism signatures. BNP lengths are also limited to five positions per

iteration and only sites whose posterior SNP probability exceeds 95% are intended to be called as SNPs.

These parameters can be changed depending on the expected variation between the reference and target

genome. For large or multi-platform datasets, multiple instances of ComB can generate coverage and valid

SNP signature counts in parallel. This information is then merged to determine SNP candidate locations,

and the posterior probability at each location is updated in parallel and combined to produce ComB’s SNP

calling output. This implementation drastically reduces running time, cutting an iteration of mapping and

NP identification of 2.7 billion 50-bp reads to the unmasked human genome to just over 2 hours. Ad-

ditionally, this implementation allows information from different platforms and read lengths to be com-

bined. The intermediate files hold only information regarding candidate location and posterior probability

allowing information generated from sequence space and color space reads to be merged, which provides

greater accuracy for SNP calling and resequencing.
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3. RESULTS AND DISCUSSION

Tests were performed to compare ComB to Corona Lite (McKernan et al., 2009) ABIs native color space

aligner and SNP caller, as well as soapSNP (Li et al., 2009b) and MAQ-consensus (Li et al., 2008), the two

popular SNP calling algorithms which operate on SOLiD data after it is transformed to nucleotide based

SAM (Li et al., 2009a) format. The mapping program BWA (Li and Durbin, 2009) was used to perform the

color-to-nucleotide alignment and translation necessary for SOLiD data, while the alignment program

PerM was used for the alignment of sequence data. BWA was run with the parameters ‘‘�c �N �k 4 �n

6’’ which finds all alignments of fewer than four mismatches and many with six or fewer, as this best

mimics the sensitivity of PerM which is full sensitive to four mismatch alignments and partially sensitive to

alignments which have as many as six mismatches on short (�64 bp) reads. Corona Lite was also used to

identify alignments with fewer than six mismatches. In all cases, alignment files were trimmed such that

each SNP caller was evaluated on an equal number of mapped reads to control for small differences in

alignment sensitivity. When run with it’s default parameters, two iterations of ComB, run on a single CPU,

performed faster than all other SNP callers. For this reason, ComB was always run for only two iterations in

SNP calling comparisons.

FIG. 3. E. coli SNP separation bias. The inter-SNP

distances in the global alignment between the two

E. coli strains, DH10B and REL606, were most fre-

quently multiples of three due to codon degeneracy in

protein coding regions. The most common inter-SNP

distance of 3 bp is evidence that there were many re-

gions of dense polymorphism.

Table 1. SNP Calling Performance for 36-BP SOLiD or Illumina

Reads at 25· Coverage

E. coli DHB10 vs. Rel606 (31,902 Total SNPs)

SNP-Caller Valid SNPs Unsupported

ComB 28,374 3,430

soapSNP 25,305 6,500

MAQ-consensus 25,031 6,773

Corona lite 16,384 1,883

E. coli MG1665 vs. Rel606 (33,944 Total SNPs)

SNP-Caller Valid SNPs Unsupported

ComB 32,095 7,530

soapSNP 31,823 16,188

MAQ-consensus 31,823 16,191

PerM was used to produce all alignments for Illumina data while BWA was used for color-space alignment and

translation in preparation for MAQ-Consensus and soapSNP. Corona Lites results come Corona-Lite’s match pipeline.

Alignment files were trimmed so that equal coverage was provided for all SNP-callers. The results for each algorithm

were compared to the SNPs which exist in a global alignment between each reference and target genome. Unsupported

SNPs are not present in the global alignment of the reference sequences but may be present in the individuals

sequenced.
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To compare SNP discovery on real sequence and color space data, two similar E. coli datasets and

genomes were downloaded from the NCBI short read archive (Archive a, 2010; Archive b, 2010) and the

UCSC genome browser (Karolchik et al., 2003). The genome for a third strain (E. coli-REL606) which is

moderately diverged from the other two (�35K SNPs and little rearrangement) was also downloaded from

the UCSC genome browser (Karolchik et al., 2003), and the SNPs called between this strain and each of the

others were compared to the results of a global alignment generated from the program MuMMER (Kurtz

et al., 2004).

To determine the experimental precision of the different algorithms and determine the specific SNP

distributions that most affected performance, four simulations were performed using the Drosophila

melanogaster genome.

To demonstrate ComB’s ability to perform massively parallel human genome SNP calling, 2.705 billion

reads from an anonymous individual of African origin were downloaded (Archive c, 2010) and used to call

over 2 million NPs. These results were compared to the annotation in the most recent dbSNP database.

3.1. E. coli SNP calling experiments

3.1.1. E. coli SNP-calling in color space. Over 25 million 36-bp SOLiD reads (Archive a; 2010)

from a sequencing run of the fragment library of E. coli k12-DH10B to determine SNP calling accuracy

between the 4.75-Mbp genome and a similar strain of E. coli, REL606 (Karolchik et al., 2003). A global

alignment between the two strains which was performed using the software MuMMER (Kurtz et al., 2004),

yielded 31,902 SNPs and little genomic rearrangement. Of the NP sites, 2,314 were members of block

polymorphism. Though the global SNP rate was relatively low (0.67%), the SNPs were not uniformly

distributed and showed alternating areas of low and high density. The greatest distance between SNPs was

118,088 bp, while there were 19 non-overlapping regions of length 100 with at least 25 SNPs. The most

SNP-dense 100-bp stretch included 33 SNPs. Of the SNPs, 20,827 were preceded by a snp than 50 bp away.

Additionally, we observed a bias in inter-SNP distance due to codon degeneracy (Fig. 3).

FIG. 4. E. coli experiment: Shown are the validated

SNP sites each SNP caller was able to identify at dif-

ferent levels of coverage for 36-bp SOLiD reads.

FIG. 5. E. coli experiment: Shown are the validated

SNP sites each SNP caller returned at different cover-

age levels for 36-bp Illumina reads.
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ComB was compared to soapSNP, MAQ-Consensus and Corona Lite at differing coverage levels. At 25·
coverage, ComB identified 10% more snps than any of the other SNP callers. Additionally, at 25· coverage

ComB was able to identify 1,382 of the 2,314 sites which were members of Block Nucleotide Poly-

morphisms. In comparison, soapSNP and MAQ-Consensus were able to identify 795 and 791 of the 2,314

sites at 25· coverage respectively. Corona lite had far less sucess at locating block nucleotide polymor-

phism. In total, there were only 952 unsupported SNPs that were identified with all four SNP callers. It’s

likely that these are true SNPs, while others may be false positives. The results of SNP calling with SOLiD

data at 25· coverage is summarized in Table 1, while SNP identification at different coverage levels is

shown in Figure 4.

3.1.2. E. coli SNP-Calling with nucleotide reads. Over 20 million 36-bp Illumina reads from a

sequencing run of E. coli k12-MG1665 were downloaded from NCBI (Archive b; 2010) to test the different

SNP callers performance in nucleotide space. The global alignment between E. coli K12-MG1655 and

REL606 was very similar to that of K12-DHB10 and REL606. In total the global alignement produced

33,994 SNPs including 2469 which were members of block nucleotide polymorphism and 22,377 which

were preceded by a SNP fewer than 50 bp away. At 25· coverage, ComB found just slightly more SNPs

than were located by MAQ-Consensus and soapSNP. However, ComB found far fewer unsupported SNPs.

In nucleotide data, ComB was able to identify 2248 of 2469 block polymorphism sites while soapSNP and

MAQ-consensus were able to locate 2019 and 2011 sites, respectively. The results at 25· coverage are

summarized in Table 1 and the change in performance at different coverage levels in shown in Figure 5.

3.1.3. Effect of Quality Calibration in E. coli Data. To test the effectiveness of recalibrating call

rates we performed SNP calling using E. coli data with and without recalibration of quality score. Using

color reads at 25· coverage, quality calibration resulted in the identification of 39 more SNPs and a

FIG. 6. Drosophila simulation: The precision of dif-

ferent SNP calling programs for the dense SNP(10%

SNP rate) case as a function of coverage. ComB’s it-

erative strategy allows it to use SNP locations to im-

prove mapping accuracy as well as solve ambiguous

mappings, leading to improved performance.

FIG. 7. Drosophila experiment: The recall to dense

SNPS (10% SNP rate) for each SNP caller as a function

of coverage. ComB shows an approximate increase

of 20% recall in comparison to soapSNP and MAQ-

consensus.
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decrease in the false positive rate of 19% (800 sites). In Illumina data, recalibration of quality score resulted

in six fewer SNPs being identified; however, the false discovery rate was decreased by 6% (243 sites). This

shows that in both Color and Nucleotide space that the recalibration of quality scores will lead to fewer

false SNP calls.

3.2. Drosophila Simulation

To determine the SNP distributions which affect performance, and to accurately assess the algorithms

propensity to make false positives, the 22.4 million bp Drosophilia melanogaster X chromosome was used

to simulate 50-bp color reads from four different distributions. Each simulation described below included a

uniform 1% error rate.

1. Isolated (22,422 uniformly selected snps, 0.1% SNP rate)

2. Dense SNPs (2,242,000 uniformly selected SNPs, 10% SNP rate) (Figs. 6 and 7)

3. Block Polymorphism (10,000 dinucleotide polymorphisms and 10,000 tri-nucleotide polymorphisms

0.2% SNP rate) (Figs. 8 and 9)

4. Heterozygous SNPs (22,422 SNPs located on only one chromosome, 0.1% SNP rate)

For each of the above SNP distributions, 100 million color reads were simulated to assure sufficient

coverage after alignment. Similar to the E. coli tests, the reads were mapped with BWA to facilitate color

translation for MAQ-Consensus and soapSNP and with PerM for ComB. SNP calling was performed with

different size trimmed read files for each algorithm to test performance at different coverage levels. Each

SNP caller had the same number of alignments to perform SNP calling. ComB vastly outperformed all

other SNP calling algorithms at identification of Block Nucleotide Polymorphism and Dense polymor-

FIG. 8. Drosophila simulation: The precision of dif-

ferent algorithms when confronted with adjacent SNPs

show the problems with converting the color reads to

nucliotide space. Adjacent SNPs generate color signa-

tures which could also be interpreted as color errors by

the translation algorithm. Information is lost in the

translation, and the SNP calling precision is affected.

FIG. 9. Drosophila simulation: The recall to block

nucleotide polymorphisms is roughly equal for MAQ-

Consensus and soapSNP. Corona-Lite locates very few

BNP, while ComB finds close to 95% of BNPs.
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phism. Performance was roughly equal for ComB, MAQ-Consensus and soapSNP for the isolated and

heterozygous SNP distributions. The results are shown in Tables 2–5.

3.3. Unmasked Human Genome Alignment

To demonstrate ComB’s ability to perform human genome scale SNP calling, we downloaded 1.48

billion single end 50-bp SOLiD reads from the ABI website (Archive c; 2010), a small subset of the reads

which were previously used to detect variants with ABI’s Corona Lite package (McKernan et al., 2009).

832.07 million reads had at least one mapping (and fewer than 100 mappings) to the non-repeat masked

human genome with fewer than five mismatches, providing a mean and median coverage of approximately

13· and 6·, respectively. Only 170.3 million reads (20.4%) mapped without mismatches and the mean

number of mismatches was 2.06, which is suggestive of a high error rate. ComB used 96 CPUs to perform

two homozygous and one heterozygous mapping and SNP calling iterations in fewer than seven hours

(approximately 140 minutes per iteration). The second and third iterations led to an increase of 6.25 and 2.5

million reads mapping with two or fewer mismatches than the previous iteration. After the heterozygous

iteration ComB identified 2,185,105 likely polymorphism sites (posterior probability > 0.95). These sites

included 56,317 block calls, 974,122 heterozygous calls, and 1,154,666 homozygous calls. Included in

these calls were 11,841 dense regions (100 bp region with ten or more NPs). In total, 84.06% of the

identified NP sites were annotated as a single SNP or BNP in the latest build of dbSNP 131 (dbSNP, 2001).

A small fraction 6,454 (<0.3%) of the sites were annotated with different base substitutions. ComB’s SNP

calling results are shown in Table 6.

4. CONCLUSION

ComB provides an efficient and accurate tool to perform SNP calling for both Illumina and SOLiD data.

The demonstration on the human genome shows that ComB can be efficient and accurate even for the

largest of datasets. ComB’s algorithms were designed to be especially accurate for SOLiD data; features

such as the inclusion of ambiguous reads, sensitivity to BNPs, and a Bayesian model that remains in color

space allow ComB to take full advantage of SOLiD’s novel color encoding and provide a statistically sound

method to determine genome variants in color space. The results on the E. coli genomes show that ComB is

capable of identifying more SNPs on both SOLiD and Illumina data than MAQ-Consensus, soapSNP, and

Corona-Lite. The results on the simulated data show that ComB is more accurate than the other SNP callers

Table 2. Drosophila Experiment: Isolated SNPs

Algorithm TP FP Precision Recall

ComB 21,882 26 0.999 0.976

MAQ-con. 21,308 186 0.991 0.950

soapSNP 21,309 194 0.991 0.950

Corona Lite 18,511 6,091 0.752 0.826

SNP Calling was performed for four different Simulated SNP distributions. In each distribution, 50-bp color

reads were simulated uniformly with a 1% error rate. In the isolated test, 22,422 SNPs were uniformly selected

on the 22.4 million–bp Drosophilia melanogaster X chromosome.

Table 3. Drosophila Experiment: Heterozygous SNPs

Algorithm TP FP Precision Recall

ComB 18,547 8 1.000 0.827

MAQ-con. 18,922 37 0.998 0.844

soapSNP 18,920 36 0.998 0.844

Corona Lite 3,210 1,151 0.736 0.143

22,422 Heterozgous SNPs were uniformly selected.
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especially when SNP loci are dense. That ComB did not significantly outperform other SNP calling tools on

a simulated isolated SNP distritbution is evidence that real data has a complicated SNP distribution and that

a SNP caller should be robust to dense SNPs as well as BNPs to fully analyze SNP data. ComB is an

efficent tool which is capable of providing scientists the ability to find new more accurate information from

short color or nucleotide reads.
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