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Purpose: Despite many years of research, most of the genetic factors contributing to myopia development remain
unknown. Genetic studies have pointed to a strong inherited component, but although many candidate regions have been
implicated, few genes have been positively identified.
Methods: We have previously reported 2 genomewide linkage scans in a population of 63 highly aggregated Ashkenazi
Jewish families that identified a locus on chromosome 22. Here we used ordered subset analysis (OSA), conditioned on
non-parametric linkage to chromosome 22 to detect other chromosomal regions which had evidence of linkage to myopia
in subsets of the families, but not the overall sample.
Results: Strong evidence of linkage to a 19-cM linkage interval with a peak OSA nonparametric allele-sharing logarithm-
of-odds (LOD) score of 3.14 on 20p12-q11.1 (ΔLOD=2.39, empirical p=0.029) was identified in a subset of 20 families
that also exhibited strong evidence of linkage to chromosome 22. One other locus also presented with suggestive LOD
scores >2.0 on chromosome 11p14-q14 and one locus on chromosome 6q22-q24 had an OSA LOD score=1.76
(ΔLOD=1.65, empirical p=0.02).
Conclusions: The chromosome 6 and 20 loci are entirely novel and appear linked in a subset of families whose myopia
is known to be linked to chromosome 22. The chromosome 11 locus overlaps with the known Myopia-7 (MYP7, OMIM
609256) locus. Using ordered subset analysis allows us to find additional loci linked to myopia in subsets of families, and
underlines the complex genetic heterogeneity of myopia even in highly aggregated families and genetically isolated
populations such as the Ashkenazi Jews.

Myopia is a leading cause of visual impairment
worldwide, affecting approximately 1 in 4 US adults [1-3].
Myopia is much more common in some other populations,
especially in East Asian cities where its prevalence has
reached epidemic proportions of 80% or more in young adults
[4-7]. Although much of this increase has been attributed to
environmental factors [8], genetic epidemiological studies
have firmly established that myopia (and refractive errors in
general) also have strong heritable components [9-20].
Genetic and environmental factors both clearly influence
myopia development, and it is possible that interactions
between genes and the environment may help explain the high
heritability and the recent rapid changes in prevalence [21,
22].

Many genetic linkage studies of myopia, predominantly
focusing on highly penetrant, severe manifestations in highly
ascertained families have identified several regions across the
genome that were linked to myopia including 2q37.1 [23],
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4q22-q27 [24], 5p15.3-p15.2 [25], 10q21 [26], 18p11.31
[27], 12q21-q23 [28], 7q36 [29], and 17q21-q22 [30]. The
more common, less severe form of myopia, has also been the
subject of several linkage analyses that have found significant
linked regions on 22q12 [31,32] and 2q37 [33,34]. There have
also been several studies of ocular refraction, defined as a
quantitative trait, in families. Significant linkage to ocular
refraction has been reported on 3q26, 4q12, 8p23 and 11p13
[34,35], 1p36 [36-38] and 7p15 [39]. Suggestive evidence of
linkage of ocular refraction to 22q in the Beaver Dam Eye
Study [40] has supported the significant linkage observed for
myopia to this region. Similarly, suggestive evidence of
linkage of myopia to 3q26 and 8p23 [41] in an Amish data set
and to 11p13 in a Caucasian-American data set [42] have
supported the significant linkage of ocular refraction seen in
British Twins [35] to these regions. These results underline
the large amount of genetic heterogeneity which is well
recognized in the field [29].

We have previously reported genomewide linkage
studies of ocular refraction phenotypes performed in
Ashkenazi Jewish families [31,32,36]. To investigate whether
there was substantial genetic heterogeneity of myopia in these
families, we used ordered subset analysis [43] in an attempt
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to find additional linked regions in these families which had
previously not been detectable in standard linkage analysis.

METHODS
Families: Family recruitment and selection criteria have been
reported elsewhere and are summarized here [31]. In brief,
participants were recruited into the Myopia Family Study
primarily from the Lakewood, NJ area. All participating
individuals were of Orthodox Ashkenazi Jewish cultural/
religious heritage (individuals of Sephardic Jewish origin and
their offspring were not included in the study). To be eligible
for the study, a nuclear family had to contain only one myopic
parent and at least one myopic offspring. These criteria were
established to enhance selection of autosomal-dominantly
transmitted myopia within families. Larger pedigrees were
then formed by extending nuclear families through first- and
second-degree relatives. Extended families were then selected
for the linkage study if a) at least one affected pair of relatives
besides a single parent-offspring pair existed and 2) biologic
specimens were available for at least these affected
individuals.
Phenotyping: Sixty-three multiplex Ashkenazi Jewish
families were included in the study. Eligibility for family
participation in the study required an index case whose
spherical equivalent refraction was −1.00 Diopters (D) or
lower in both eyes (as long as there was −1.00 D or lower in
each meridian if astigmatism was present) and had no history
of a systemic or ocular disease that might predispose to
myopia, including premature birth. Cycloplegic refractions
were used for index cases under 50 years of age while manifest
refractions were used for those above age 50. The same
classification scheme was used to determine affection status
for all individuals in the pedigrees, and subjects who did not
meet this standard were regarded as unaffected. If a subject
was reported to have been myopic but this diagnosis could not
be confirmed with either medical records, measurement of the
prescription of a pair of eyeglasses, or current physical
examination, the individual was treated as being of
“unknown” phenotype.

Because of the normal developmental changes in
refraction during childhood and the potential for
misclassification, a more stringent approach to classification
of affected versus unaffected subjects was used for the groups
of individuals aged 6–10 years and 11–20 years. All
individuals with a −1.00 D or lower spherical equivalent were
considered affected, as above, regardless of age. However,
subjects in the group of individuals aged 6–10 years with a
+2.00 spherical equivalent refraction or higher in both eyes
were classified as unaffected, since they are not likely to
develop myopia. Individuals in this age group with a spherical
equivalent between +2.00 and −1.00 were classified as
“unknown.” Individuals in the group of subjects aged 11–20
years with +1.50 spherical equivalent or higher in both eyes
were classified as unaffected. Any individual with a spherical

equivalent of between +1.50 and −1.00 in this age group was
placed in the “unknown” class. This conservative approach
balances the power loss that results from our lack of a good
segregation-analysis model of age-dependent penetrance and
the concomitant confusion about appropriate genotype
probabilities for young unaffected subjects, with the power
loss resulting from the classification of normal children as
“unknown.”
Microsatellite genotyping: High–molecular-weight DNA was
isolated from buffy coats with a kit (Puregene; Qiagen Inc.,
Valencia, CA). Samples were stored in a DNA repository
under a unique code. Altogether 481 DNA samples from 63
families including 220 affected males and 141 affected
females were genotyped at the Center for Inherited Disease
Research (CIDR; Johns Hopkins University, Baltimore, MD).
The first 44 families were genotyped by CIDR using
automated fluorescent microsatellite analysis. PCR products
were sized on an ABI 3700 sequencer (Life Technologies Inc,
Carlsbad, CA). The marker set used was a modification of the
Cooperative Human Linkage Center marker set, version 9
(387 markers; average spacing 9 cM; average heterozygosity
0.76). The final 19 families were genotyped at a later date also
by CIDR using 402 markers from the modified Cooperative
Human Linkage Center version 9. All genotyping was
performed blind to clinical status.

Since the two genome-wide linkage scans were
performed at different times, we felt it was problematic to
attempt to combine them by reconciling the genotypes at the
same loci in the two data sets. Instead, for each microsatellite
marker, we created two dummy markers with a genetic
distance of 0 between them. The first data set had real
genotypes at dummy marker 1 and missing data at dummy
marker 2. Individuals in the second data set were coded with
missing data at dummy marker 1 and their real genotypes at
dummy marker 2.
Linkage analyses: These analyses have been described
elsewhere and are summarized here [31,32]. Multipoint non-
parametric linkage analyses were performed with
GENEHUNTER-PLUS software [44,45] to obtain family-
specific non-parametric linkage scores (NPL scores).
Ordered subset analysis: To address genetic heterogeneity we
used linkage to 22q12 as a covariate and performed Ordered
Subset Analysis (OSA) [43]. Non-parametric linkage
methods are powerful to detect loci that contribute to risk in
a large proportion of families, but less powerful when the
proportion of linked families is small. By conditioning on our
identified locus, we can account for genetic heterogeneity
across families and increase power to detect linkage to other
loci. Multipoint NPL scores were used to take advantage of
extended pedigree structure, ranking families by maximum
non-parametric linkage to 22q12. The method ranks families
based on their NPL score -first in ascending order then in
descending order -to find an appropriate subset that
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maximizes evidence of linkage [43]. The ‘optimal-slice’
yields the maximum logarithm-of-odds (LOD) score
determined by a subset of any size of adjacent families based
on their covariate distribution (not necessarily including
endpoints), allowing exclusion of families with extreme NPL
scores. Interpretation of OSA LOD scores is not
straightforward since the OSA LOD is dependent on the
overall evidence for linkage in the complete sample. OSA
LOD scores are not equivalent to traditional parametric
linkage LOD scores. To evaluate the significance of the OSA
LOD scores in this study, we used the method developed by
Hauser et al. [43] of examining the difference in the overall
and conditional OSA LOD scores, which is similar to the
method of Cox et al. [46]. Empirical p values were calculated
to assess OSA LOD scores by performing OSA analyses on
10,000 randomizations of family order. This permutation test
is significant when the covariate-defined subset yields
stronger evidence of linkage than observed in the randomly
assigned family subsets and indicates how likely it is to obtain
by chance a subset-based OSA LOD score greater than or
equal to the observed OSA maximum LOD score. Using a
Bonferroni correction for multiple testing to account for the
two models used (ascending and descending NPL-scores)
[47], gives an adjusted significance threshold of 0.025 for
assessing the statistical significance of the change in the OSA
LOD score from the unconditional test (ΔLOD) . If there is
little evidence for linkage in the overall sample, the empirical
p value can still be quite significant even when there is only
moderate evidence for linkage in the subset. Conversely, if
there is strong but widely dispersed evidence for linkage, then
the empirical p values may not achieve statistical significance.

Results must therefore be considered in the context of the
evidence for linkage in the entire data set.

RESULTS
Individual family NPL scores calculated by GENEHUNTER-
PLUS for chromosome 22 at the position of the known linkage
peak were used as the covariate in the non-parametric OSA.
The distribution of individual family NPL scores can be seen
in Figure 1. There were 565 affected individuals, 355 males
and 210 females (male:female ratio=1.69:1), and the mean
number of affected individuals per family was 8.43.
Nominally significant increases in OSA LOD score
(compared to the 10,000 permutation results) were observed
in three regions of the genome, on chromosomes 6q22-q24,
11p14-q14 and 20p12-p11. When ordering families by
descending maximum non-parametric linkage to chromosome
22, a maximum OSA LOD score of 3.14 was obtained at
D20S470 (42.27cM) in the 20 families with family-specific
NPL scores on 22q between 2.25 and 0.6. This was an increase
of 2.139 in the OSA LOD compared with the unconditional
test using all families and this increase was nominally
significant by permutation testing (p=0.029). The 1-LOD-unit
support interval for this peak is 19 cM wide, from 34 to 53 cM
(Figure 2 and Table 1). However, this peak was not quite
significant (Bonferroni-corrected significance
threshold=0.025) after correction for multiple tests. This
subset of families contained 90 affected males and 62 affected
females (male:female ratio=1.45:1). Clinical characteristics
of this subset are detailed in Table 2.

Also found by ordering families by descending maximum
non-parametric linkage to chromosome 22 was a locus with a

Figure 1. Distribution of individual
family NPL scores in the Ashkenazi
Jewish families.
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maximum OSA LOD score of 2.36 obtained at D11S1344
(68.72 cM) in a subset of 45 families with the strongest
evidence of nonparametric linkage to chromosome 22 with
NPL score ranging from 12.2 to −0.3. This was an increase of
1.68 in the OSA LOD compared with the unconditional test
using all families and this increase was nominally significant
by permutation testing (p=0.035). The 1-LOD-unit support
interval spans 48cM, from 42 to 90 cM (Figure 3 and Table
1). This subset of families contained 197 affected males and
130 affected females (male:female ratio=1.52:1; Table 2).

The third locus, at 6q22-q24, was also found by ordering
families by descending maximum non-parametric linkage to
chromosome 22. This locus had a maximum OSA LOD score
of 1.76 at D6S1009 (142.57 cM), an increase of 1.65 in the
OSA LOD compared to the unconditional test using all
families and this increase was significant by permutation
testing (p=0.02) after correction for multiple tests. This subset
contained 36 families with the strongest evidence of
nonparametric linkage to chromosome 22. The 1-LOD-unit
support interval was 20 cM, from 129 to 149 cM. (Figure 4
and Table 1).This subset of families contained 254 affected
males and 160 affected females (male:female ratio=1.59:1;
Table 2).

DISCUSSION
We have identified three regions with suggestive evidence of
linkage to myopia in subsets of families already linked to
chromosome 22: a locus on 6q22-q24 which seems to be
entirely novel; a locus on 11p14-q14 which, although large,
does overlap with Myopia-7 (MYP7, OMIM 609256); and
another locus on 20p12-p11.

The 20p12-p11 locus appears about one third of our
Ashkenazi Jewish families. This locus overlaps with loci
known to be associated with other ocular traits such as
keratoconus and posterior polymorphous corneal dystrophy
[48], age-related macular degeneration [49,50] and juvenile
onset primary open angle glaucoma [51]. Suggestive evidence
of linkage of myopia to this region was previously found in a
set of African-American and White families [42]. The change
in LOD score in the OSA analyses of these Ashkenazi Jewish
families was not quite significant after correcting for multiple
testing, and therefore may be a type I error, but the number of
families in the subset was small (20 families, 32% of total)
and so it is also possible that analyzing this subset may not
have had sufficient power. The fact that NPL analyses of
multiple data sets (Ashkenazi Jewish, African American, and
White American families) all yield suggestive evidence of
linkage to myopia in this region gives support to the presence
of a risk locus in this region.

Figure 2. Nonparametric LOD score
plot for chromosome 20. LOD scores for
the overall sample (n=63 [dashed line])
and the subset with maximum NPL
score between 2.25 and 0.6 (n=20 [solid
line]) are presented. The 1-LOD-unit
down support interval (34–53 cM) is
marked by the dotted vertical line.

TABLE 1. MAXIMUM OSA LOD SCORES IN THE 63 FAMILIES CONDITIONING ON LINKAGE TO CHROMOSOME 22.

Region Slice cM Max OSA
LOD

NPL ΔLOD Empirical p
value

Families Proportion of
families

6q22-q24 Descending 142.57 1.74 0.09 1.65 0.015 36 0.58
11p14-q14 Descending 68.72 2.36 0.68 1.68 0.035 45 0.71
20p12-p11 Optimal

(descending)
42.27 3.14 0.75 2.39 0.029 20 0.32
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TABLE 2. CLINICAL CHARACTERISTICS OF THE SUBSETS IDENTIFIED BY OSA.

Family rank (Ascending by
NPL)

NPL for linkage to
Chromosome 22

Number of affected Male:Female ratio

Chromosome 20 subset
38 0.64568 6 2:1
39 0.65514 13 1:1.17
40 0.713566 10 1.5:1
41 0.765529 5 1:1.5
42 0.891322 9 2:1
43 0.94953 7 1.33:1
44 1.1722 8 7:1
45 1.247382 8 1.67:1
46 1.304162 7 1.33:1
47 1.306068 8 1:1
48 1.334312 6 1:1
49 1.336603 5 1:1.5
50 1.412251 2 1:1
51 1.557204 10 4:1
52 1.692256 4 3:1
53 1.851772 7 2.5:1
54 2.113614 11 4.5:1
55 2.185684 7 1.33:1
56 2.219589 13 1:1.6
57 2.242624 6 1:2

Chromosome 11 subset
19 −0.18266 8 1:3
20 −0.13992 12 5:1
21 0 3 2:1
22 0 5 0:5
23 0 4 0:5
24 0 3 2:1
25 0.100143 16 2.2:1
26 0.106514 8 3:1
27 0.109667 8 7:1
28 0.129182 8 3:1
29 0.15711 9 1:1.25
30 0.180609 8 3:1
31 0.205917 9 2:1
32 0.282509 9 0:3.5
33 0.351538 12 3:1
34 0.35623 5 0:5
35 0.383718 16 7:1
36 0.490716 9 2:1
37 0.504382 15 2.75:1
38 0.64568 6 2:1
39 0.65514 13 1:1.17
40 0.713566 10 1.5:1
41 0.765529 5 1:1.5
42 0.891322 9 2:1
43 0.94953 7 1.33:1
44 1.1722 8 7:1
45 1.247382 8 1.67:1
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TABLE 2. CONTINUED.

Family rank (Ascending by
NPL)

NPL for linkage to
Chromosome 22

Number of affected Male:Female ratio

46 1.304162 7 1.33:1
47 1.306068 8 1:1
48 1.334312 6 1:1
49 1.336603 5 1:1.5
50 1.412251 2 1:1
51 1.557204 10 4:1
52 1.692256 4 3:1
53 1.851772 7 2.5:1
54 2.113614 11 4.5:1
55 2.185684 7 1.33:1
56 2.219589 13 1:1.6
57 2.242624 6 1:2
58 2.676218 7 1.33:1
59 3.07075 8 1:1
60 3.420423 10 1:1
61 4.934796 25 1.5:1
62 6.694279 9 1:2
63 12.19355 17 1:1.83

Chromosome 6 subset
28 0.129182 8 3:1
29 0.15711 9 1:1.25
30 0.180609 8 3:1
31 0.205917 9 2:1
32 0.282509 9 0:3.5
33 0.351538 12 3:1
34 0.35623 5 0:5
35 0.383718 16 7:1
36 0.490716 9 2:1
37 0.504382 15 2.75:1
38 0.64568 6 2:1
39 0.65514 13 1:1.17
40 0.713566 10 1.5:1
41 0.765529 5 1:1.5
42 0.891322 9 2:1
43 0.94953 7 1.33:1
44 1.1722 8 7:1
45 1.247382 8 1.67:1
46 1.304162 7 1.33:1
47 1.306068 8 1:1
48 1.334312 6 1:1
49 1.336603 5 1:1.5
50 1.412251 2 1:1
51 1.557204 10 4:1
52 1.692256 4 3:1
53 1.851772 7 2.5:1
54 2.113614 11 4.5:1
55 2.185684 7 1.33:1
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The locus on chromosome 11, although broad, overlaps
MYP7, a locus previously reported in a population of UK
twins and of particular interest as it contains the known eye
gene, paired box gene 6 (PAX6) [10]. So far the literature on
PAX6 polymorphisms and myopia is mixed [52-58], and it
may be that this signal, and the signal found by Hammond et
al. [35], is coming from another gene in this region.
Suggestive evidence of linkage of myopia to this region has
also been observed in another, independent set of Caucasian-
American families [42] but not in an Australian set of
dizygotic twins [59]. Again, the increase in OSA LOD was
not significant after correcting for multiple testing but it is
nonetheless interesting that this large increase in linkage
evidence after OSA is observed that overlaps with a region
that has been significantly linked to myopia in a different
population.

The chromosome 6 locus is also novel and is the only one
of these three loci to withstand correction for multiple testing.

The region contains few genes, but D6S1009 is within 100 kb
of the peroxisome biogenesis factor 7 (PEX7) gene, mutations
in which can cause ocular phenotypes as part of the severe
systemic syndromes Refsum disease [60,61] and rhizomelic
chondrodysplasia punctata [60,62]. However, the severity and
systemic nature of these disorders make severe mutations in
this gene unlikely candidates for a relatively mild trait such as
myopia, but it is possible that mutations with only mild effects
on gene function could be involved. No other genes in the
region seem like obvious candidates, but there are a few genes
of unknown function and these may yet have some
undiscovered biologic relevance.

All three loci were found in subsets which already had
evidence of linkage to chromosome 22. There are several
possible reasons why these loci are not observed in the original
linkage analyses. One explanation might be that the effect on
risk due to these loci is smaller than the effect on risk of the
chromosome 22 locus, and thus there is not adequate power

TABLE 2. CONTINUED.

Family rank (Ascending by
NPL)

NPL for linkage to
Chromosome 22

Number of affected Male:Female ratio

56 2.219589 13 1:1.6
57 2.242624 6 1:2
58 2.676218 7 1.33:1
59 3.07075 8 1:1
60 3.420423 10 1:1
61 4.934796 25 1.5:1
62 6.694279 9 1:2
63 12.19355 17 1:1.83

Figure 3. Nonparametric LOD score
plot for chromosome 11. LOD scores for
the overall sample (n=63 [dashed line])
and the subset with maximum NPL
score between 12.2 and −0.3 (n=45
[solid line]) are presented. The 1-LOD-
unit down support interval (42–90 cM)
is marked by the dotted vertical line.
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to detect these linkage signals in the complete data set, even
using heterogeneity LOD scores. Another interpretation is that
if there is a true statistical interaction on risk between these
loci and the chromosome 22 locus, then individuals in non-
chromosome 22 linked families might share alleles identical-
by-descent at these novel loci without having similar
phenotypes. It does appear that multiple loci may be acting
together to account for the high risk of myopia in these
families. It is clear from the original linkage analyses that the
main effect is due to the chromosome 22 locus because the
additional signals appear in families linked to this locus. Our
interpretation of the results is that if these additional loci are
truly affecting risk of myopia, then they may be playing a
modifying role on the complex development of the eye,
perhaps through multiple different regulatory mechanisms.
Certainly the loci we have identified here did not have a strong
enough effect to be found on their own in the original analyses.
Alternatively, because these are highly selected families, it is
possible that each locus has independent, non-interacting
effects on risk of myopia, and risk genotypes are segregating
for all of these loci in the same families because of the mode
of ascertainment.

Emmetropisation is a very complex regulatory system
with bio-feedback loops that are able to work at a very local
level. Severing the optic nerve or blocking nerve transduction
does not prevent form-deprivation myopia [63-65] and using
diffusers or negative lenses to cover only half of the retina
produces enlargement and myopia only on that side [66-70].
Myopia is due to a failure of these regulatory mechanisms and
given the complexity of this process, which is still not well
understood, there are likely to be multiple genes important to

detecting, transmitting and responding to visual signals
entering the eye, and to controlling grow and stop signals. This
process could involve genes with large and small effects on
the pathways which come together to produce myopia. In
complex traits such as these, where multiple genetic loci are
thought to contribute to disease risk, techniques for detecting
the contributions of multiple loci are important if we are to
discover the underlying genetic risk factors. OSA can only use
one covariate at a time, which may be a limiting factor in traits
such as myopia, where environmental factors are expected to
play a significant role. Education has long been considered
influential in myopia development. In this population, large
differences in education of males and females exist which
could lead to differential misclassification of affection status
and a corresponding reduction in statistical power to detect
linkage. The power of OSA depends heavily on the degree of
correlation between the evidence of linkage and the levels of
the OSA covariate. In studies where an environmental
covariate is used such as age-at-onset, the mean value of all
affected family members is typically used as the covariate
value in the analysis. Power, therefore is dependent on the
extent to which phenotypic variability between families
reflects underlying genetic heterogeneity. In our analysis, our
covariate was itself a linkage signal, and so the extent to which
this varies between families will be closely correlated with the
overall genetic heterogeneity in the sample.

Association testing of the subsets under the identified
peaks found only nominal evidence of association which was
not robust to correction for multiple testing. However, since
this is a panel of microsatellites designed for linkage, there is
not sufficient density of markers to have any power for

Figure 4. Nonparametric LOD score
plot for chromosome 6. LOD scores for
the overall sample (n=63 [dashed line])
and the subset with maximum NPL
score between 12.2 and −0.3 (n=36
[solid line]) are presented. The 1-LOD-
unit down support interval (129–149
cM) is marked by the dotted vertical
line.
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association. To further investigate these loci, either fine-
mapping of the linked regions using a dense panel of single
nucleotide polymorphisms (SNPs) or targeted sequencing of
the region in selected individuals would be useful approaches
to try and narrow down the variants responsible for the signal.
Given the current advances in sequencing technology, whole
genome sequencing of appropriate individuals from these
families may be more cost effective than targeted sequencing
or custom genotyping.

Using ordered subset analysis allowed us to find
additional loci linked to myopia in subsets of Ashkenazi
Jewish families, and underlines the complex genetic
heterogeneity of myopia even in highly aggregated families
and genetically isolated populations. It is also of note that
when these data were analyzed as the refractive error
quantitative trait, linkage to the 22q12 locus was not
significant and instead a locus on 1p36 was strongly
significant [36,37]. This emphasizes that data sets such as
these provide rich opportunities for the further elucidation of
genetic risk factors in myopia and refractive error.
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