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Abstract

Background: Serine proteases are major components of viper venom and target various stages of the blood coagulation
system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake
venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel
therapeutics for treating snake bites.

Methodology and Principal Findings: Four serine protease-encoding genes from the venom gland transcriptome of Bitis
gabonica rhinoceros were amplified and sequenced. Mass spectrometry suggests the four enzymes corresponding to these
genes are present in the venom of B. g. rhinoceros. Two of the enzymes, rhinocerases 2 and 3 have substitutions to two of
the serine protease catalytic triad residues and are thus unlikely to be catalytically active, though they may have evolved
other toxic functions. The other two enzymes, rhinocerases 4 and 5, have classical serine protease catalytic triad residues
and thus are likely to be catalytically active, however they have glycine rather than the more typical aspartic acid at the base
of the primary specificity pocket (position 189). Based on a detailed analysis of these sequences we suggest that alternative
splicing together with individual amino acid mutations may have been involved in their evolution. Changes within amino
acid segments which were previously proposed to undergo accelerated change in venom serine proteases have also been
observed.

Conclusions and Significance: Our study provides further insight into the diversity of serine protease isoforms present
within snake venom and discusses their possible functions and how they may have evolved. These multiple serine protease
isoforms with different substrate specificities may enhance the envenomation effects and help the snake to adapt to new
habitats and diets. Our findings have potential for helping the future development of improved therapeutics for snake bites.
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Introduction

Snake venoms are complex mixtures of enzymatic and non

enzymatic proteins, together with other components such as

carbohydrates, lipids, nucleosides and metals. These function

together to immobilize, kill and digest the prey [1]. Snake venoms

have various envenomation effects and can be haemotoxic,

myotoxic, neurotoxic and nephrotoxic towards prey and victims

[2]. Snake venom serine proteases are a major component of

venom and have been identified mainly in the venoms of snakes

belonging to the viperidae family with a few occurring in members

of the elapidae, colubridae and hydrophidae families [3]. Viper

venom serine proteases (VVSPs) share similar nucleotide and

amino acid sequences (with more than 60% sequence identity) and

also three-dimensional structures, but have diverse functions.

Generally they have haemotoxic effects, by affecting various stages

of the blood coagulation system. They can act either as pro-

coagulants via fibrin formation, factor V activation, kininogen-

olysis or platelet aggregation, or as anti-coagulants via fibrinolysis,

plasminogen activation or protein C activation [4]. Several VVSP

nucleotide sequences have been obtained by screening and

sequencing venom gland cDNA libraries. Within these the 59

untranslated regions (UTRs), N-terminal signal and activation

peptide-coding sequences and 39 UTRs have been found to be

more highly conserved than the mature protein coding sequences

[5]. Thus it is possible to identify novel VVSPs by screening cDNA

libraries or amplifying a cDNA pool using specific primers for the

conserved regions. Analysis of the nucleotide and amino acid

sequences of these enzymes will help to understand their structure

and function and provide insight into their evolution. A knowledge

of the diversity of toxins and enzymes present within snake venom

will also aid the development of novel treatments for snake bites.

In this report, we describe the amplification and sequencing of

four serine proteases from the venom gland transcriptome of the

Gaboon viper Bitis gabonica rhinoceros using specific primers

designed for the 59 signal peptide coding sequence and the 39
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UTR and discuss the possible functions and evolution of these

enzymes.

Materials and Methods

Materials used
Lyophilized venom of B. g. rhinoceros was obtained from the

Liverpool School of Tropical Medicine, Liverpool, UK. The

Illustra mRNA purification system was from GE Healthcare

(Amersham, UK). Restriction enzymes, GoTaqH PCR Core

System I and WizardH SV Gel and PCR Clean-Up System were

from Promega (Southampton, UK). The ZAP-cDNA synthesis kit

was from Stratagene (La Jolla, USA), the TOPO TA CloningH
system and SimplyBlueTM SafeStain were from Invitrogen

(Paisley, UK), and the QIAprep Spin Miniprep kit was from

Qiagen (West Sussex, UK). TRI ReagentH and all other

chemicals used were analytical grade from Sigma Aldrich (Poole,

UK).

Ethical statement
All activities conducted in the Alistair Reid Venom Research

Unit at the Liverpool School of Tropical Medicine are licensed

and approved by the UK Home Office (Project Licence 40/3216).

Venom extraction from the snakes used in this study is no longer a

procedure regulated by the Animals (Scientific Procedures) Act

1986. All efforts were made to minimize the suffering of animals.

Venom gland cDNA synthesis
To enhance the expression of the venom gland genes, venom

was extracted from a single specimen of B. g. rhinoceros

maintained in the Liverpool School of Tropical Medicine three

days before the dissection of venom glands. Total RNA was

isolated from the venom gland tissues using TRI ReagentH and

polyadenylated mRNA was purified using the Illustra mRNA

purification system according to the manufacturer’s protocols.

cDNA was synthesized from the purified mRNA using the ZAP-

cDNA synthesis kit.

PCR amplification
Specific primers were designed for the 59 signal peptide coding

sequence and the 39 UTR of the known B. gabonica serine protease I

sequence (NCBI accession number: AAR24534) [6] and synthesized

by Sigma Aldrich (Poole, UK). The sequences of the primers are:

forward primer- 59TGGTGTTGATCAGAGTGCT39 and reverse

primer- 59ACAGAAGTACCAATAGAAGAGAAT39. These prim-

ers were used to amplify the serine protease genes present in the

venom gland cDNA by PCR (20 cycles) using denaturation at 94uC
for 30 seconds, annealing at 52.7uC for 30 seconds, extension at 72uC
for 1 minute and a final extension at 72uC for 10 minutes.

Purification, cloning and sequencing of amplified DNA
The amplified product was analysed by 1% (w/v) agarose gel

electrophoresis and the gel was sliced to purify the amplified DNA

using the WizardH SV Gel and PCR Clean-Up System. Eluted DNA

was cloned into a TOPO TA CloningH system according to the

manufacturer’s protocols. The recombinant colonies were selected

and grown in LB broth and the plasmids were purified using a

QIAprep Spin Miniprep kit. Restriction digest analysis was used to

confirm the presence of inserts and the plasmids were sequenced

using M13 forward and reverse primers (as these sites flank the multi

cloning site of the TOPO vector) by Cogenics Limited (Essex, UK).

Venom protein separation
The venom proteins were separated using a micro rotofor (Bio-

Rad, Hemel Hempstead, UK) as described previously [7]. Briefly,

1 mg of B. g. rhinoceros venom was mixed with 3 ml of non-

reducing rotofor buffer [7 M urea, 2 M thiourea, 10% (v/v)

glycerol and 2.5% (v/v) amphoyltes (pI 3–10) in Milli-Q water]

and loaded on to the focussing chamber. Isoelectric focussing was

performed under cooling setting I (temperature between 4uC and

15uC) with the programmed electric field (150 V/2 W/20 mA for

15 minutes, 200 V/2 W/20 mA for 15 minutes, 300 V/2 W/

20 mA for 20 minutes, 350 V/2 W/20 mA for 20 minutes and

400 V/2 W/20 mA for 60 minutes). 0.1 M orthophosphoric acid

and 0.1 M sodium hydroxide were used as anode and cathode

electrode buffers respectively. Twenty microlitres of separated

rotofor fractions were used to analyse the serine protease activity

and 10 ml were used for SDS-PAGE to analyse the protein

separation patterns.

SDS-PAGE and staining
Reducing SDS-PAGE was performed using standard techniques

[8]. The gel was stained with SimplyBlueTM SafeStain and

scanned using a Typhoon Trio variable mode imager (GE

Healthcare, Amersham, UK) before excising the bands for mass

spectrometry.

Serine protease assay
Serine protease activity of rotofor separated factions was

measured using a fluorescent substrate, Na-benzoyl-L-arginine

7-amido-4-methylcoumarin.HCl (Arg-AMC) (B7260, Sigma Al-

drich) as previously described [9]. Twenty microlitres of separated

rotofor fractions were mixed with Arg-AMC (20 nM) along with

trypsin and thrombin as positive controls and incubated at 37uC.

The amount of 7-amido-4-methylcoumarin (AMC) released was

measured at different time points using a spectrofluorimeter

(FLUOstar OPTIMA, BMG Labtech, Offenburg, Germany) at an

excitation wavelength of 366 nm and an emission wavelength of

460 nm. All measurements were performed in triplicate.

Table 1. Features of the nucleotide and protein sequences of rhinocerases 2 to 5.

Sequence
Length of
cDNA (bp)

Predicted coding
region (bp)

Length of mature
protein (aa)

Predicted
mol. mass (kDa)

Predicted
isoelectric point

No. of predicted
N-glycosylation sites

Rhinocerase 2 907 3–779 236 26.28 8.1 1

Rhinocerase 3 906 3–779 236 26.27 8.1 2

Rhinocerase 4 1137 3–773 234 25.65 8.7 3

Rhinocerase 5 1179 3–779 236 26.05 8.9 2

The predicted coding regions, molecular masses and isoelectric points were obtained from DNASTAR Lasergene version 7. The potential N-glycosylation sites were
predicted by NetNGlyc.
doi:10.1371/journal.pone.0021532.t001
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In-gel digests, liquid chromatography-tandem mass
spectrometry

In gel tryptic digestion was performed as described previously

[10]. Tryptic digests were then reconstituted in 12 ml 0.1% TFA.

Four microlitres of sample were loaded for 5 minutes at 30 ml/

minute 0.2% TFA on a 10 mm trap column packed with 3.5 mm

C18 particles (LC Packings/Dionex, Amsterdam, The Nether-

lands) and eluted in 0.2% formic acid for 10 minutes in a 2 to 15%

CAN gradient followed by 80 minutes on a 15–40% gradient and

finally 15 minutes on a 40–55% gradient at 250 nl/minute on a

15 cm675 mm PepMap C18 reverse phase analytical column

(3.5 mm particles; Packings/Dionex) using an UltimateTM nLC

system (LC Packings/Dionex). The LC system was coupled to a

nESI-MS/MS 3D ion trap mass spectrometer (HCT Esquire;

Bruker Daltonics, Bremen, Germany) and the nanoESI source was

mounted with a 5 cm long stainless steel emitter (Proxeon). The

LC system and the ion trap were controlled through HyStarTM

and Esquire Control modules in the CompassTM software suite

(Bruker Daltonics, Coventry, UK). Mass spectra were acquired

from m/z 300 to 2,000 using parameters optimised at m/z 850

with the trap ion charge control set at 150,000 and a maximum

acquisition time of 200 ms averaging three scans per spectrum.

The three most abundant ions were selected for MS/MS, the

isolation window was 4 m/z with a signal threshold of 5,000 and

the fragmentation amplitude was 2 V. The selected precursor ions

were actively excluded for 45s after two selections. Raw LC-MS/

MS data were batch-processed in DataAnalysis 4.0 (Bruker

Daltonics, Bremen, Germany). Up to 3,000 2+ and 3+ compounds

(retention time restriction of 10–120 minutes) with a signal-to-

noise ratio above 5 were extracted and exported as Mascot

Generic Files (MGF).

For protein identification MGF files were submitted to

Mascot2.2.2 (Matrix Science) on an in-house server. The Mascot

search parameters were the following: 1.2Da error tolerance in

MS mode and 0.4Da error tolerance in MS/MS mode, allowance

of up to one tryptic missed cleavages and 2+,3+ and 4+ charged

ions considered. Cysteine carbamidomethylation was set as a

permanent modification and methionine oxidation was included

as a variable modification.

Sequence analysis
The nucleotide and translated protein sequences were analysed

using DNASTAR Lasergene version 7 [11]. Multiple sequence

alignment and pairwise alignments were performed using

ClustalW [12] and EMBOSS [13] respectively. The sequence

alignment figure was prepared using GeneDoc [14]. Glycosylation

prediction was performed using NetNGlyc [15]. To generate the

phylogenetic tree, sequences were aligned using ClustalW within

MEGA 4 [16] using a gap opening penalty of 10 and a gap

extension penalty of 0.1 for the initial pairwise alignment and gap

opening penalty of 3 and gap extension penalty of 1.8 for the

multiple alignment and the Gonnet protein weight matrix. The

phylogenetic tree was generated within MEGA 4 using the

neighbour-joining method and the Jones-Taylor-Thornton substi-

tution model. The bootstrap test was done using 2000 replications.

The sequence of bovine a-chymotrypsinogen (NCBI accession

number: P00766) was used as an outgroup.

Structural modelling of rhinocerases
Structural models of rhinocerases 2 to 5 were created using the

IntFOLD server [17]. Good quality models were obtained for each

sequence using the structure of rat trypsin (PDB code: 1co9) as a

template. Models were visualised and compared with each other

and the structures of bovine a-chymotrpysin (PDB code: 1YPH)

and rat trypsin (PDB code: 1CO9) using PyMOL (DeLano

Scientific).

Results and Discussion

Amplification of venom gland serine protease genes
In order to amplify the serine protease genes from the venom

gland transcriptome of B. g. rhinoceros, specific primers were designed

for the 59 signal peptide coding sequence and 39 UTR of the B.

gabonica serine protease I sequence [6] as these regions are likely to be

similar in other venom gland serine protease genes. The amplifica-

tion resulted in DNA fragments with two different molecular masses,

corresponding to around 900 bp and 1200 bp. This suggests the

presence of venom gland serine protease genes which have similar 59

signal peptide coding regions and 39 UTRs but different lengths.

Similar amplified products were obtained previously from the venom

gland transcriptome of Macrovipera lebetina [5].

Sequence analysis of rhinocerases 2 to 5
Sequencing of the amplified cDNA clones resulted in four

distinct serine protease sequences, of lengths 906, 907, 1137 and

1179 bp. Each of these was confirmed by sequencing several

clones. The 906 and 907 bp sequences were named rhinocerase 2

and rhinocerase 3, and the 1137 and 1179 bp sequences were

named rhinocerase 4 and rhinocerase 5 respectively, following on

from the naming of our previously purified serine protease,

rhinocerase (now renamed rhinocerase 1) from the venom of B. g.

rhinoceros [7]. (These have been deposited in the GenBank database

under Accession Numbers FN868645 to FN868648.) Rhinocerases

2 and 3 are very similar to each other (nucleotide sequences 98%

identical) and encode similar protein sequences (94% identical)

with 259 amino acids (table 1). Similarly rhinocerases 4 and 5 are

90% identical to each other and encode proteins with 257 and 259

amino acids respectively which share 92% sequence identity.

However the nucleotide and protein sequences of rhinocerases 2

and 3 are on average only 64% and 69% identical to those of

rhinocerases 4 and 5.

Rhinocerases 2 to 5 share several common features of viper

venom serine proteases: 12 conserved cysteine residues and N-

terminal signal (normally 18 amino acids) and activation peptides

(normally 6 amino acids). Since the first nucleotide of the start

Figure 1. Identification of rhinocerases 1–5 in the venom of B. g. rhinoceros. A. 1 mg of venom was mixed with non-reducing rotofor buffer
containing ampholytes with pI 3–10 and separated under non-denaturing conditions using a micro rotofor. In total 10 fractions (indicated by the
numbers at the top of the gel) were collected. 10 ml of each fraction were run in SDS-PAGE (10%) and stained with SimplyBlueTMSafeStain. The
numbers mentioned on the gel bands represent the bands which were excised and used for mass spectrometry. B. 20 ml of each rotofor fraction were
used to measure serine protease activity using Arg-AMC fluorescent substrate. The data represent the mean6S.D. (n = 3). The hydrolytic activity
measured for fraction 3 was taken as 100%. C. The sequences of rhinocerases 2–5 were aligned with the partial sequence of rhinocerase 1 obtained
previously. Gel bands 1, 7, 8, 11 and 12 (Fig. 1A) were analysed by mass spectrometry and the corresponding peptide sequences are shown in
different colours (grey: band 1; red: band 7; yellow: band 8; blue: band 11; green: band 12) in italics on rhinocerase 1, 2, 4, 3 and 5 respectively. The N-
terminal sequences of serine proteases in the venom of B. g. rhinoceros identified by proteomic analysis previously are underlined. The symbols !, :
and . indicate conserved residues, biochemically related residues and biochemically less related residues respectively.
doi:10.1371/journal.pone.0021532.g001
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codon was not included in our forward primer, our translated

protein sequences show only 17 amino acids in the signal peptide

region. However, the signal sequences of the native proteins would

be expected to have 18 amino acids, similar to other VVSPs. As is

common for VVSPs including rhinocerase 1 [7] and other venom

enzymes [18], N-glycosylation sites were predicted in all four

proteins (table 1) and thus the molecular masses of the native

enzymes in the secreted venom may be higher than the predicted

molecular masses. The predicted isoelectric points of rhinocerases

2 to 5 were between 8 and 9 which is clearly distinct from

rhinocerase 1, the serine protease which we previously purified

from the venom of this snake which had an isoelectric point of

around 6, although the latter was measured for the glycosylated

protein [7].

Within a gel of rotofor-separated B. g. rhinoceros venom we have

identified five distinct bands with molecular masses (figure 1A,

bands 1, 7, 8, 11 and 12) and activities (figure 1B) consistent with

serine proteases. The pIs of these proteins together with sequences

derived from mass spectrometry analysis of tryptic digests of the

gel bands are consistent with rhinocerases 1 to 5 (figure 1C). This

suggests that, in addition to rhinocerase 1, rhinocerases 2 to 5 also

exist in the venom of B. g. rhinoceros. This is also consistent with a

proteomic analysis of B. g. rhinoceros venom which identified the N-

terminal sequences of five distinct serine proteases [19]. One of

these sequences is consistent with rhinocerases 2, 3 and 5, two

(identical sequences) are consistent with rhinocerase 4, and a

further sequence is consistent with our purified rhinocerase 1 [7]

(underlined in figure 1C). The fifth sequence identified in the

previous proteomic analysis must represent a serine protease

distinct from any identified in our research so far. The only

complete sequence of a serine protease within B. gabonica

determined to date is that of serine protease I, which has been

found at transcript level only [6]. The nucleotide sequence of this

serine protease is almost identical to that of rhinocerase 2; there is

one substitution in the mature protein-coding region at position

626 and a substitution in the 39 UTR at position 895. The amino

acid sequences of the corresponding proteins are identical, thus the

nucleotide substitutions could represent synonymous mutations.

Together these data are consistent with rhinocerases 2 to 5

representing novel venom serine proteases present in the venom of

B. g. rhinoceros.

Serine proteases in the B. g. rhinoceros transcriptome and
their homologues

Trypsin-like serine proteases share a catalytic triad which

comprises His57, Asp102 and Ser195 (bovine a-chymotrypsinogen

Figure 2. Phylogenetic tree showing relationship between
serine protease homologues and serine proteases from the
same snakes. 65 amino acid sequences from 10 snakes were included
together with bovine a-chymotrypsinogen (NCBI accession number:

P00766) which was used as an outgroup. The alignment was generated
using ClustalW [12] within MEGA 4 [16] using a gap opening penalty of
10 and a gap extension penalty of 0.1 for the initial pairwise alignment,
gap opening penalty of 3 and gap extension penalty of 1.8 for the
multiple alignment and the Gonnet protein weight matrix. The
phylogenetic tree was generated from this within MEGA 4 using the
neighbour-joining method and the Jones-Taylor-Thornton substitution
model. The bootstrap test was done using 2000 replications. In the
diagram sequences are identified using a code which consists of up to 3
characters representing the snake name, (TG: Trimeresurus gramineus;
VS: Viridovipera stejnegeri; TJ: Trimeresurus jerdonii; BJu: Bothrops
jararacussu ; ML: Macrovipera lebetina; EO: Echis ocellatus; BG: Bitis
gabonica; Bja: Bothrops jararaca; TF: Trimeresurus flavoviridis; BAs:
Bothrops asper) followed by a dash and then up to 5 characters
representing the protein name. Where possible NCBI accession
numbers are also included. ML-P3 and ML-P4 sequences were obtained
directly from the sequences named VLP3 and VLP4 in [5]. Red circles
indicate the sequences with mutations to the catalytic triad.
doi:10.1371/journal.pone.0021532.g002
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numbering). These residues are conserved in rhinocerases 4 and 5

and in the majority of known VVSPs. Thus rhinocerases 4 and 5

would be expected to be catalytically active. However rhinocerases

2 and 3 have His57Arg and Ser195Asn substitutions. Mutations to

the catalytic triad residues have previously been observed in a

small number of viper venom serine proteases [5,6,20,21]. The

majority of these sequences have been identified at transcript level

only; prior to this study only one serine protease with catalytic

triad substitutions has been identified within the venom of a snake

[21]. Functional analysis of this protein did not detect any arginine

esterolytic, fibrinolytic or proteolytic activity, and such sequences

are commonly called serine protease homologues [21]. 15

complete amino acid sequences of viper venom serine proteases

with mutations to the catalytic triad are available either in the

literature or in the NCBI sequence database. These are derived

from ten different snakes representing both Crotalinae and

Viperinae sub-families of viper snakes. Phylogenetic analysis of

the 65 VVSP sequences identified to date in these ten snakes shows

that the majority of the serine protease homologues, including

rhinocerases 2 and 3 cluster together, although one serine protease

with a standard catalytic triad is also in this cluster (figure 2). The

remaining three serine protease homologues occur individually

within the phylogenetic tree but Wu et al.’s [21] earlier analysis

concluded that only one sequence (KNH4 from Viridovipera

stejnegeri) did not cluster with the main group of serine protease

homologues. Our updated analysis suggests that the creation of

serine proteases with mutated catalytic triads has occurred several

times during the evolution of these sequences.

Figure 3 shows an alignment of the sequences of the 15 serine

protease homologues with all four rhinocerases and bovine a-

chymotrypsinogen. The most frequently mutated residue within

the catalytic triad is His57, which has been substituted by Arg in

Figure 3. Amino acid sequence alignment of rhinocerases with other viper venom serine protease homologues. The alignment was
created using ClustalW [12] and the figure was generated using GeneDoc [14]. The sequence of bovine a-chymotrypsinogen (NCBI accession number:
P00766) (BT-CHY) was included to allow conventional serine protease residue numbering to be assigned. The catalytic triad residues are coloured red,
the primary specificity pocket residues are coloured blue and residue 193, involved in the oxyanion hole is coloured green. BG-SP1: AAR24534; BG-
RHIN2: CBM40645; BG-RHIN3: CBM40646; EO-SP: ADE45141; ML-P2: Q9PT40; TF-SP2: O13057; TJ-SPH: B0ZT25; TG-SP2A: O13060; VS-KNH7: Q71Q10;
VS-SPH1: QAY82; TJ-SP1: Q9DF68; VS-KNH4: Q71QJ4; BJu-SPH: Q7T229; BJa-HP3: Q5W958; ML-P3 and ML-P4 from [5]; Bas-SPL: Q072L6; BG-RHIN4:
CBM40647; BG-RHIN5: CBM40648.
doi:10.1371/journal.pone.0021532.g003
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13 sequences (including rhinocerases 2 and 3), by Asn in 2

sequences and by Gln in one sequence. Seven of the sequences

have substitutions for the catalytic Ser195; in five proteins

including rhinocerases 2 and 3 this has been substituted by Asn,

one protein has a Ser195Pro mutation and one has a Ser195Thr

mutation. In contrast, Asp102 is absolutely conserved in all the

sequences. Structural models of the rhinocerases show their overall

similarity, consistent with the sequence similarity of the enzymes

(figure 4A), but differences in their active site regions. Asp102 is at

almost identical positions in rhinocerases 2 and 4, and bovine

chymotrypsin. The catalytic serine is at a very similar position in

rhinocerase 4 and chymotrypsin, and the substituted Asn in

rhinocerase 2 is also similarly located. However the substitution of

the long arginine side chain instead of histidine at position 57 in

rhinocerase 2 has resulted in a significant change to the orientation

of the side chain (figure 4B).

Proteins with mutations to the catalytic triad are present in

many enzyme families; indeed it has been estimated that up to

15% of the members of all encoded enzyme families may have lost

their catalytic activity [22]. In many cases the inactive homologues

are believed to have acquired alternative functions, such as

competing with and antagonising the active proteases, or

otherwise regulating their function. Within invertebrates, serine

protease homologues have been shown to be involved in various

defence responses [23]. However, it has been suggested that at

least some invertebrate serine protease homologues are unlikely to

bind peptide substrates by a canonical protease-like mechanism,

though other potential protein binding sites have been suggested

[24]. Within snake venom, catalytically inactive phospholipase A2

such as myotoxins II and IV from the venom of Bothrops asper are

known to act as toxins and are thought to bind to their target

membrane substrates in order to reduce their permeability control

and cause subsequent necrosis [25]. Clearly, experiments to

determine the function of the serine protease homologues within

snake venom need to be performed, but it is possible that they

could affect the physiology of victims or prey by binding

irreversibly to substrates involved in blood coagulation and

preventing their normal function.

There are also differences in the amino acids present in the

primary specificity pockets of rhinocerases 2 to 5. The primary

specificity pocket of trypsin-like serine proteases normally

comprises Asp189, Gly216 and Gly226 (bovine a-chymotrypsin-

ogen numbering) and these confer specificity towards basic

residues at the P1 position of potential substrates. Rhinocerases

2 and 3 have Asp189, which might indicate specificity for basic

residues but have Glu instead of Gly at position 216 and Ala

instead of Gly at position 226. These substitutions are likely to

restrict access to the specificity pocket, thus the binding specificity

of rhinocerases 2 and 3 is not clear. Rhinocerases 4 and 5 are the

only VVSPs represented in the sequence alignment which have

substitutions at position 189: they have Gly at this position instead

of the negatively charged Asp. This is an unusual substitution,

which is shared by the human kallikrein KLK9 whose specificity is

unknown [26]. The substitution might be expected to increase the

size of the specificity pocket; M. lebetina a and b-fibrinogenases

(ML-AF and ML-BF) also have Gly189 [27] and Siigur et al. [28]

have reported that ML-AF hydrolysed the Tyr16–Leu17, Phe24–

Phe25 and Phe25–Tyr26 bonds of the insulin B chain, suggesting

that enzymes with Gly189 can cleave substrates with large

hydrophobic residues at the P1 position. Unlike ML-AF

rhinocerases 4 and 5 also have a Gly to Ala substitution at

position 216 which may narrow the specificity pocket slightly.

Again, this is similar to human KLK9 which has Gly216 but

Ala226. Comparison of the positions and orientations of residues

in the S1 specificity pockets of rhinocerases 2 and 4 with those of

chymotrypsin and trypsin suggest that, the bottom of the specificity

pocket is very similar in rhinocerase 2 and trypsin, while the

glycine in rhinocerase 4 is uncharged and protrudes even less into

the pocket. At position 226, the glycines and alanines in all four

enzymes are very similarly located. In contrast, the substitution of

the large negatively charged glutamic acid at position 216 clearly

has a significant effect on the S1 pocket in rhinocerase 2

(figure 4C). However the primary specificity pocket is not the

sole determinant of specificity. For serine proteases involved in

coagulation, the importance of additional regions of the structure

e.g. exosites in recognition of substrates is becoming increasingly

recognised [29].Thus the precise specificity of these enzymes can

only be determined experimentally. The potential role of exosites

in binding to substrates also strengthens our suggestion above that

the serine proteases homologues which lack the catalytic triad may

Figure 4. Structural models of rhinocerases. Structural models of rhinocerases 2 to 5 were created using the IntFOLD server [17] using the
structure of rat trypsin (PDB code: 1co9) as a template. A. Schematic diagram showing the overall similarities in structure between rhinocerase 2
(yellow) and rhinocerase 4 (red). The side chain atom positions for the catalytic triad residues are included. B. Detailed view of the amino acids
corresponding to the catalytic triad residues in rhinocerase 2 (yellow), rhinocerase 4 (red) and chymotrypsin (PDB code: 1yph; cyan). Rhinocerase 2
has substitutions for the serine and histidine residues. C. Detailed view of the main constituents of the S1 specificity pocket in rhinocerase 2 (yellow),
rhinocerase 4 (red), chymotrypsin (cyan) and trypsin (pdb code: 1co9; green). In chymotrypsin these residues are: S189 at the base of the specificity
pocket, with G216 and G226 at the sides. In trypsin D189 is at the base of the pocket, with G216 and G226. All images were generated using PyMOL.
doi:10.1371/journal.pone.0021532.g004
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Figure 5. Evolution of rhinocerase enzymes. A. Amino acid sequence alignment of rhinocerases 2 to 5, M. lebetina a-fibrinogenase (ML-AF) and
venom serine proteinase-like protein 2 (ML-P2), and Bothrops atrox batroxobin (BA-BT). The alignment was created using ClustalW. The amino acids in
the batroxobin sequence are coloured according to the exons encoding them: amino acids encoded by exon 2 are coloured green, and residues
encoded by exons 3 to 5 are coloured dark red, blue and orange respectively. The catalytic triad residues are coloured red in the B.s gabonica and M.
lebetina sequences. Coloured shading is used to indicate the three surface segments within serine proteases identified by Doley et al. [26] as
undergoing accelerated change (ASSET). Residues in the first surface segment are shaded yellow or red depending on sequence similarity; residues in
the second segment are shaded green or turquoise and the residues in the third segment are shaded pink.B. Schematic diagram of rhinocerases 2 to
5 indicating the different regions described in the text. The light shading represents the regions of each sequence corresponding to exon 2 and exons
3 to 5. Rhinocerases 2, 3 and 5 have similar N-terminal regions corresponding to exon 2 (pink), while rhinocerase 4 has a different sequence in this
region (grey). In the C-terminal regions, corresponding to exons 3 to 5, rhinocerases 2 and 3 are similar (pale green) and rhinocerase 4 and 5 are
similar to each other (pale blue). The brighter shading represents the three surface segments as shown in A. The first surface segment is identical in
rhinocerases 2, 3 and 5 (yellow), and different in rhinocerase 4 (red). The second segment is identical in rhinocerases 3, 4 and 5 (green) and different in
rhinocerase 2 (turquoise), and the third segment is very similar in all 3 sequences (pink).
doi:10.1371/journal.pone.0021532.g005
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still be capable of interfering with the coagulation cascade through

exosite-mediated interactions.

A further interesting feature of these sequences is that Gly193,

which is generally highly conserved in serine proteases and is

involved in the oxyanion hole and in inhibitor binding, is

substituted in 8 sequences: by Val in four sequences including

rhinocerases 2 and 3, by Thr in one sequence and by Ala in three

sequences. As was found for TSV-PA, a venom plasminogen

activator from Trimeresurus stejnegeri, which has Phe at position 193

[30], bulky residues substituted for Gly193 may reduce the

sensitivity of the proteins to inhibitors such as bovine pancreatic

trypsin inhibitor as well as reduce their interaction with substrates.

Evolution of rhinocerases 2 to 5
The four distinct serine protease genes which we have identified

within the venom gland of B. g. rhinoceros provide further evidence

for the existence of multiple isoforms of toxins within snake

venom, yet the processes by which such isoforms have evolved are

not yet fully understood. Accelerated evolution is well established

as a mechanism for allowing changes at the individual amino acid

level, and alternative splicing [5] and accelerated segment switch

in exons to alter targeting (ASSET) [31,32] have been recently

proposed as additional mechanisms used for generating diversity in

snake toxin sequences. A closer analysis of the sequences of

rhinocerases 2 to 5 suggests that mechanisms such as alternative

splicing and ASSET, together with individual amino acid

mutations could have played a part in the generation of these

isoforms (figure 5A,B).

Although in terms of overall similarity, rhinocerases 2 and 3 are

very similar to each other and distinct from rhinocerases 4 and 5,

sequence comparisons and BLAST searches of regions of the

sequences corresponding to the exons as identified for the Bothrops

atrox batroxobin gene (the only VVSP whose gene structure has

been studied to date [33]) showed that rhinocerases 2, 3 and 5

have very similar N-terminal regions (up to residue 46 of

rhinocerase 2; corresponding to exon 2 in batroxobin) which are

most similar to the N-terminal region of M. lebetina venom serine

proteinase-like protein 2 (NCBI accession number Q9PT40;

indicated by ML-VLP2 in figures 3 and 5). Rhinocerase 4, on

the other hand, has a distinctly different N-terminal region which

is only 54% identical in sequence to the other rhinocerases and is

most similar (81% sequence identity) to M. lebetina a-fibrinogenase

(NCBI accession number Q8JH85, ML-AF).

A different pattern is seen within the C-terminal regions

(residues 47 onwards of rhinocerase 2; corresponding to exons 3 to

5 in batroxobin). Two distinctly different versions of this region are

also observed, however in part of the sequence rhinocerases 2 and

3 are very similar (92%) and rhinocerases 4 and 5 are identical to

each other, but only around 60% identical to rhinocerases 2 and 3.

The rhinocerase 2 and 3 sequences are most similar to M. lebetina

venom serine proteinase-like protein 2 (ML-P2; 83%) while

rhinocerase 4 and 5 are most similar to M. lebetina a-fibrinogenase

(ML-AF) in this region (77%). Similar results were obtained when

the C-terminal region was divided into separate regions corre-

sponding to exons 3, 4 and 5 of batroxobin.

Thus rhinocerases 2 and 3 as a whole are similar to ML-P2,

rhinocerase 4 as a whole is similar to ML-AF, while rhinocerase 5

has an N-terminal region very similar to rhinocerases 2 and 3 and

a C-terminal region similar to rhinocerase 4. This could have been

generated by splicing together exons corresponding to the N-

terminus of rhinocerase 2 or 3 with exons corresponding to the C-

terminal region of rhinocerase 4.

Doley et al. [32] identified three surface segments within serine

proteases which seem to be undergoing accelerated change

(ASSET). The first of these (residues 19–27) occurs within the

N-terminal region corresponding to exon 2 in batroxobin and,

consistent with the region as a whole, rhinocerases 2, 3 and 5 have

identical sequences to each other within this segment, while the

sequence of rhinocerase 4 is distinctly different. However it is

interesting to note that His57 is also in the N-terminal region and

this is conserved in rhinocerases 4 and 5 but mutated in

rhinocerases 2 and 3. Thus this substitution must be an individual

mutation occurring independently of any other mechanisms.

The second and third surface segments identified by Doley et al.

[32] within serine proteases are located in the C-terminal region,

corresponding to exons 3 to 5 in batroxobin. They found that the

third surface segment was the most conserved, and indeed this

segment is very similar (75% identical) in all four rhinocerase

sequences, even though there are two distinctly different versions of

the C-terminal region as a whole. The second surface segment

(amino acids 45–52) is identical in rhinocerases 3, 4 and 5, with a

different sequence in rhinocerase 2 (3 out of 8 residues matching).

Thus this region could be switching independently of the C-terminal

region as a whole, in which rhinocerases 2 and 3 are very similar.

Together these results suggest multiple mechanisms at work

even in the evolution of this sub-set of B. g. rhinoceros serine

proteases: mutations of individual amino acids clearly plays a role,

but alternative splicing appears to be working alongside, and there

are also changes within the surface segments identified by Doley et

al. [32] as undergoing accelerated change within serine proteases.

Further as yet unidentified mechanisms may also contribute to the

generation of the diversity of toxins present in this and other

snakes.

Conclusions
In this study, we have reported the sequences of four serine

proteases (rhinocerases 2 to 5) from the venom gland transcrip-

tome of B. g. rhinoceros. These are clearly distinct from the

rhinocerase 1 enzyme which we have recently purified from this

venom. Mass spectrometry suggests the four enzymes correspond-

ing to these genes are also present in the venom of B. g. rhinoceros.

All four sequences share several common features of viper venom

serine proteases: they have conserved signal and activation

peptides, conserved cysteines and are predicted to be N-

glycosylated. In addition these sequences have individual charac-

teristics which are likely to affect their catalytic activity, substrate

specificity and sensitivity to inhibitors. The variation within these

sequences suggests that alternative splicing together with individ-

ual amino acid mutations may have been involved in their

evolution. Changes within amino acid segments which were

previously proposed to undergo accelerated change in venom

serine proteases have also been observed. These multiple serine

protease isoforms with different substrate specificities may enhance

the envenomation effects and help the snake to adapt to new

habitats and diets. A better understanding of the diversity of toxin

isoforms present in individual snake venom will help in the design

of improved therapeutics for treating snake bites.
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27. Siigur E, Aaspõllu A, Siigur J (2003) Anticoagulant serine fibrinogenases from
Vipera lebetina venom: structure-function relationships. Thromb Haemost 89:

826–831.

28. Siigur J, Vija H, Samel M, Tonismagi K, Trummal K, et al. (2010) Separation
and analysis of peptides and proteins from Vipera lebetina snake venom. Procedia

Chemistry 2: 109–115.
29. Krishnaswamy S (2005) Exosite-driven substrate specificity and function in

coagulation. J Thromb Haemost 3: 54–67.
30. Braud S, Parry MA, Maroun R, Bon C, Wisner A (2000) The contribution of

residues 192 and 193 to the specificity of snake venom serine proteinases. J Biol

Chem 275: 1823–1828.
31. Doley R, Pahari S, Mackessy SP, Kini RM (2008) Accelerated exchange of exon

segments in Viperid three-finger toxin genes (Sistrurus catenatus edwardsii; Desert
Massasauga) BMC Evol Biol 8: 196.

32. Doley R, Mackessy SP, Kini RM (2009) Role of accelerated segment switch in

exons to alter targeting (ASSET) in the molecular evolution of snake venom
proteins. BMC Evol Biol 9: 146.

33. Itoh N, Tanaka N, Funakoshi I, Kawasaki T, Mihashi S, et al. (1988)
Organization of the gene for batroxobin, a thrombin-like snake venom enzyme.

J Biol Chem 263: 7628–7631.

Evolution of Novel Snake Venom Serine Proteases

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e21532


