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Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in
children. This disease group includes a spectrum of urinary tract defects including vesicoureteral reflux, duplex kidneys and
other developmental defects that can be found alone or in combination. To identify new regulators of CAKUT, we tested the
genetic cooperativity between several key regulators of urogenital system development in mice. We found a high incidence
of urinary tract anomalies in Pax2;Emx2 compound heterozygous mice that are not found in single heterozygous mice.
Pax2+/2;Emx2+/2 mice harbor duplex systems associated with urinary tract obstruction, bifid ureter and a high penetrance of
vesicoureteral reflux. Remarkably, most compound heterozygous mice refluxed at low intravesical pressure. Early analysis of
Pax2+/2;Emx2+/2 embryos point to ureter budding defects as the primary cause of urinary tract anomalies. We additionally
establish Pax2 as a direct regulator of Emx2 expression in the Wolffian duct. Together, these results identify a
haploinsufficient genetic combination resulting in CAKUT-like phenotype, including a high sensitivity to vesicoureteral
reflux. As both genes are located on human chromosome 10q, which is lost in a proportion of VUR patients, these findings
may help understand VUR and CAKUT in humans.
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Introduction

Congenital anomalies of the kidney and urinary tract (CAKUT)

are characterized by a high inter- and intra-familial variability in

phenotypic outcome [1]. They include defects such as duplex

systems, kidney and ureter agenesis, hydroureter, hydronephrosis

and vesicoureteral reflux (VUR) [2]. These conditions are often

associated with chronic renal disease in children. Phenotype analysis

performed in mouse models with CAKUT have revealed that these

defects arise at specific steps of urinary tract morphogenesis.

In the mouse, kidney and urinary tract development is initiated

with the formation of the ureteric bud, a diverticulum of the

Wolffian (nephric) duct. The ureteric bud invades the adjacent

metanephric mesenchyme and undergoes several rounds of

branching morphogenesis to form the collecting duct system of

the mature kidney [1]. Ureter budding is tightly regulated such

that a single kidney unit forms on each Wolffian duct. The position

of the ureteric bud along the Wolffian duct is also critical to insure

an appropriate insertion of the ureter in the bladder wall following

ureter maturation [2]. A rostral ureter budding will typically result

in vesico-ureteral obstruction (leading to the accumulation of urine

in the ureter and kidney [i.e. hydroureter and hydronephrosis]),

while a caudal budding site would typically result in a lateral ureter

insertion site and a refluxing uretero-vesical junction [2,3].

Crucial regulators of urogenital development have been

associated with CAKUT-like phenotypes both in mouse and

human [3]. Among them is the transcription factor Pax2. In the

mouse, homozygous gene inactivation of Pax2 leads to renal

agenesis and other developmental anomalies, while heterozygous

mice show kidney hypoplasia and VUR on an outbred genetic

background [4,5]. These defects mirror the renal hypoplasia and

VUR phenotypes of Renal-Coloboma syndrome patients, result-

ing from mutations in the PAX2 gene [6]. Inactivation of Emx2 in

the mouse arrests kidney development following ureter budding

and invasion of the metanephric mesenchyme [7]. Other gene

mutations result in CAKUT phenotypes in human and mouse

[3,8,9]. However, few or them includes VUR as a major

phenotype. Hence, despite the high frequency of VUR in humans,

the causal genes remain elusive.

A number of studies have attempted to identify VUR genes by

whole genome analysis of affected individuals. The two largest

studies to date both identified putative regions of linkage on

chromosomes 6q and 10q [10,11]. Of notice, the distal region of

chromosome 10 contains important regulators of kidney develop-

ment, including PAX2 and EMX2.

As the genetic cause underlying CAKUT may result from the

combination of haploinsufficient loci, we assessed the genetic

cooperativity between five critical regulators of urinary tract
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morphogenesis, namely Pax2, Emx2, Lim1, Evi1 and Gata3 [5,7,12,

13,14,15,16,17,18]. These experiments revealed a strong genetic

interaction between Pax2 and Emx2. Compound heterozygous

Pax2;Emx2 embryos harbored a range of ureter budding defects

leading to duplex systems and a very high incidence of VUR in

newborn mice. We further identified a direct role for Pax2 in Emx2

gene regulation through an enhancer located in the 39 region of

the gene. Together these results identify a regulatory cascade

between two critical regulators of urinary tract morphogenesis and

suggest a genetic model underlying VUR and CAKUT.

Results

A screen for genetic cooperativity between urinary tract
developmental regulators identifies a link between Pax2
and Emx2

To investigate the genetic cooperativity between essential

transcriptional regulators in genitourinary tract development, we

generated compound heterozygous combinations for Pax2, Emx2,

Lim1, Evi1 and Gata3, and assessed these mice for gross urogenital

system anomalies at day 18.5 of development (E18.5) (Table 1). All

mouse strains were bred on a pure C3H/HeJ genetic background

to minimize genetic variability. Double heterozygous combina-

tions were inspected for kidney dysplasia, duplex system and

hydroureter/hydronephrosis, and the kidney surface area was

measured to identify kidney hypoplasia. This analysis confirmed

hypoplasia of Pax2+/2 kidneys [5] and identified a novel genetic

interaction between Pax2 and Emx2 (Table 1). None of the other

allelic combinations revealed significant number of embryos with

gross urogenital malformations (Table 1; data not shown).

Of the Pax2+/2;Emx2+/2 embryos inspected visually, 38% (11/29)

displayed severe urinary tract malformations. These included triplex

kidneys (N = 2) (including a bifid ureter) (Fig. 1B,E) and duplex systems

with or without megaureter and hydronephrosis (N = 5)(Fig. 1C,F).

The other malformations were milder, consisting of a single

abnormally bifurcated ureter (N = 4) (data not shown). No gender bias

was observed in these samples. Histological analysis failed to reveal any

significant nephron differentiation defect in Pax2+/2;Emx2+/2 kidneys

(Fig. 1G,H,I). Together, these observations uncover a genetic

cooperativity between Pax2 and Emx2 in urinary tract development.

Severe ureter and kidney developmental defects in
Pax2+/2;Emx2+/2 embryos

The consistency of collecting duct duplication in Pax2+/2;Emx2+/2

embryos pointed to a defect in ureter formation. To visualize the

process of early urinary tract patterning, we performed whole-mount

in situ hybridization with a Gata3 cRNA probe at E12.5. At this stage,

the ureter is undergoing maturation and joins the caudal region of the

Wolffian duct, leaving a short common nephric duct (cnd) segment

(Fig. 2 A,C). In Pax2+/2;Emx2+/2 embryos, we observed duplex

systems in which one ureter branched relatively high on the Wolffian

duct, while the second ureter was connected with the caudal-most

Wolffian duct resulting in the absence of common nephric duct

(Fig. 2B). Other Pax2+/2;Emx2+/2 embryos harbored two ureters

connected with the caudal-most Wolffian duct and pointing in

different directions (Fig. 2D). These results identify ectopic ureter

defects in Pax2+/2;Emx2+/2 embryos.

High incidence of vesicoureteral reflux in
Pax2+/2;Emx2+/2 newborn

To determine whether Pax2+/2;Emx2+/2 embryos without duplex

systems had additional urinary tract defects, we initially measured the

diameter of the ureter lumen of E18.5 urinary tracts. These results

revealed a tendency toward ureter dilation in Pax2+/2;Emx2+/2 (18/

29 embryos) in comparison to wild-type, Pax2+/2 and Emx2+/2

embryos (Fig. S1A–C). As not all double heterozygous ureters were

affected, these measurements did not reach statistical significance.

Nonetheless, these results prompted us to further investigate ureter

defects in non-duplex Pax2+/2;Emx2+/2 embryos. For this, we first

investigated ureter epithelial and mesenchymal differentiation by

immunostaining against pan-uroplakins and smooth muscle actin

(SMAA), respectively. These markers were found to be normally

expressed in both normal and dilated Pax2+/2;Emx2+/2 ureters,

arguing against cellular differentiation defects (Fig. S1D–F).

We next investigated vesicoureteral reflux (VUR), as human

patients with CAKUT often show distention of the ureter caused by

the retrograde flow of urine towards the kidney. VUR was assessed by

estimating the pressure at which dye injection into the bladder of

newborn mice results in retrograde flow within the ureters [4,9,19].

This method is based on the linear relationship between height and

pressure and consists of inserting a needle in the bladder and

gradually raising the source of dye above bladder level. Strikingly,

Pax2+/2;Emx2+/2 mice were found to be much more sensitive to

VUR than controls (Fig. 3A–C). At 50 cm in height, 55% of

Pax2+/2;Emx2+/2 newborns had already undergone VUR, while

only 20% of controls refluxed at this pressure (Fig. 3C). Importantly,

the dye consistently exited through the urethra at 45–50 cm (shaded

area in Fig. 3C), which is therefore an equivalent to voiding pressure.

At 70 cm in height, 90% of Pax2+/2;Emx2+/2 newborns had

undergone VUR, while only 35% of controls had (Fig. 3C). This

difference identifies a highly significant interaction between the two

genes (Cox Proportional Hazards analysis; p = 0.005). Hence, loss of

Pax2 and Emx2 affect urinary tract morphogenesis, resulting in high

susceptiblity to VUR.

Table 1. Gross anomalies in mice compound heterozygous for kidney and urinary tract developmental regulators at E18.5.

Allelic combination wt Gata3 Lim1 Evi1 Emx2

Pax2 1/65* 0/11 0/12 0/10 11/29#

Emx2 0/52 0/8 0/9 0/12

Evi1 0/39 0/9 0/10

Lim1 0/38 11-Jan

Gata3 1/40*

Numbers refer to embryos of the indicated allelic combination analyzed.
*The single affected Pax2+/2 embryo displayed a unilateral duplex kidney with duplicated collecting duct system, the Gata3+/2 embryo displayed unilateral
hydronephrosis with associated megaureter.
#The Pax2+/2 Emx2+/2 anomalies are detailed in the text.
doi:10.1371/journal.pone.0021529.t001

VUR and CAKUT in Pax2+/-;Emx2+/- Mice
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VUR phenotype in Pax2+/2;Emx2+/2 mice caused by
severe defects in ureter budding

VUR has been associated with an abnormal budding of the

ureter in the caudal region of the Wolffian duct. In order to

visualize the process of ureter budding initiation, whole-mount in

situ hybridization was performed on Pax2+/2;Emx2+/2 and control

embryos at E10.75–E11.0 using the ureteric bud marker Ret. Wild-

type as well as Pax2+/2 and Emx2+/2 embryos formed a swelling of

the Wolffian duct that resolved in a well-defined ureteric bud and

a clearly demarcated common nephric duct between the bud and

the cloaca (Fig. 3D–F). In contrast, Pax2+/2;Emx2+/2 embryos

harbored defects in ureteric bud resolution whereby the budding

field remained wider than control embryos at a similar stage and

formed ectopic projections generally located in the caudal region

(Fig. 3G,H, data not shown). As expected, some of these extended

budding fields resolved in double/multiple ureteric buds

(Fig. 3G,I). These malformations were associated with an absence

of well-demarcated common nephric duct (6/6).

To examine the molecular consequences of reduced Pax2/Emx2

gene dosage on ureter budding, we performed in situ hybridization

for components and regulators of the Gdnf-Ret pathway. We

tested both epithelial markers (i.e. Ret, Etv5, Sprouty1), coexpressed

with Pax2 and Emx2 in the Wolffian duct epithelium, as well as

mesenchymal markers (Gdnf, FoxC2, Bmp4, Gremlin). These

experiments failed to reveal any significant difference in marker

expression between wild-type and double heterozygous embryos

(Fig. 4 and data not shown). From these results, we conclude that

the compound reduction in Pax2 and Emx2 expression severely

affects ureter budding, through subtle or yet unidentified

molecular mechanisms.

Pax2 is a direct transcriptional regulator of Emx2 in the
Wolffian duct

To further characterize the genetic interaction between Pax2

and Emx2, in situ hybridization was first performed for Emx2 on

E9.5 embryos deficient for Pax2 and Pax8 (Pax2-/-;Pax8+/-). This

Figure 1. Pax2;Emx2 compound heterozygotes display gross UGS morphological defects. (A,B,C) Isolated E18.5 urogenital systems of the
indicated genotypes. (D,E,F) Hematoxylin/eosin staining of cross sections of kidneys in A, B and C, respectively. (G,H,I) Higher magnification of kidneys
shown in D, E and F. Defects observed are triplex kidneys with duplex and bifid ureters (white arrows and arrowheads in B and E), and duplex kidney
associated with hydronephrosis and megaureter (arrows and arrowheads in C,F). Histological analysis in G,H,I reveals normal tissue differentiation in
compound heterozygotes (H,I) compared to wild-type (G). pt: proximal tubule; dt: distal tubule; G glomerulus; cd: collecting duct.
doi:10.1371/journal.pone.0021529.g001

VUR and CAKUT in Pax2+/-;Emx2+/- Mice
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allelic combination was previously shown to affect Pax gene dosage

while still allowing the formation of a pro/mesonephros [12,14].

The expression of Emx2 in the Wolffian duct was greatly reduced

in Pax2-/-;Pax8+/- embryos, indicating that Pax2/8 genes are

necessary for Emx2 expression in this tissue (Fig. 5A,B). In contrast,

Pax2 expression remained unchanged in Emx2-/- embryos

(Fig. 5C,D). In these experiments Pax8 mRNA expression was

used to unequivocally identify the mesonephros on these sections

(data not shown). These results indicate that Emx2 requires Pax

genes for normal expression in the Wolffian duct.

To determine whether the regulation of Emx2 by Pax2 was direct,

we initially performed a bioinformatics analysis to identify regions

conserved within 200 kb of mouse and human Emx2 sequence data

(150 kb upstream and 50 kb downstream of the transcriptional start

site) and then searched for Pax2 conserved consensus binding sites

within these regions. We identified several putative sites, notably in

five conserved segments; two upstream and three immediately 39 of

the transcribed region (Fig. 6A; Fig. S2, data not shown). We next

validated all 5 putative sites by chromatin immunoprecipitation assay

coupled with quantitative PCR detection (ChIP-qPCR) in mIMCD3

cells expressing endogenous Pax2. Quantitative PCR analysis on

ChIP material successfully validated a cluster of five Pax2 binding

sites (denoted A to E), located in the three conserved regions

downstream of Emx2 (Fig. 6B) while the other two putative sites

(denoted 1 and 2) in the upstream conserved segments were not found

to be enriched (data not shown). The enrichment ratios varied from

4-fold to more than 10-fold compared to controls (beads alone). To

eliminate the possibility of spill-over effect between these signals, we

tested regions upstream of site A (pre-A; pa), intersites (ibc, icd, ide)

and downstream of site E (post-E; pe). These experiments revealed an

independent binding of Pax2 on sites A/B, C, D and E. The icd

probe indicated a certain level of interference between the sites C and

D (separated by only 543 bp), while sites A and B were too close to

test for spill-over effect (separated by 9 bp). Together these results

point to a direct regulation of Emx2 expression by Pax2, through

multiple binding sites located in 39 of the gene.

Discussion

Congenital anomalies of the kidney and urinary tract (CA-

KUT), encompass a range of urogenital anomalies of variable

severity. In a screen for genetic cooperativity between known

regulators of urinary tract development, we found a novel mouse

model that is highly sensitive to VUR and recapitulates several

features of the phenotypic spectrum of CAKUT. We determined

that the malformations of Pax2+/-;Emx2+/- embryos were caused

by caudal and ectopic ureteric bud projections giving rise to

additional and misplaced urinary tracts. We further ascertained

that Pax2 and Emx2 are part of the same genetic cascade whereby

Pax2 directly regulates Emx2 gene expression in the Wolffian duct.

The cooperativity between Pax2 and Emx2 described here is

intriguing in that Pax2;Emx2 compound heterozygotes have a

unique phenotype that is stronger and more variable than one

would expect from the single heterozygote phenotypes. Pax2+/-

embryos show consistent hypoplasia and have been reported to be

more sensitive to reflux [4,5]. In the present experiments, we did

not see a significant difference in VUR between Pax2+/- and wild-

type controls. This possibly reflects the fact that we used a genetic

background (C3H/HeJ) that is already sensitive to VUR [19],

masking the effect of Pax2 haploinsufficiency for VUR. However,

upon removal of an allele of Emx2 in a Pax2 heterozygous

background, urinary tract malformations were strongly increased

and now included duplex and bifid ureters as well as a very high

sensitivity to VUR. This effect on VUR can be measured by the

fact that reflux occurred at a pressure equivalent to voiding

pressure. To our knowledge, such sensitivity to VUR has not been

reported to date in other mouse models.

The double heterozygous phenotype is also more complex than

the one reported for Emx2-/- embryos, which form a single ureteric

bud that fails to branch following mesenchymal invasion [7],

whereas no phenotype was reported for Emx2+/- embryos. As Pax2

directly regulates Emx2, one could expect the dosage of Emx2 to sink

below heterozygous levels in Pax2+/-;Emx2+/- Wolffian ducts, and

therefore approach Emx2 insufficiency levels. Instead, we observe a

complex misregulation of ureteric bud induction leading to caudal

ureter budding but also ectopic rostral buds and peculiar ventral

projections near the caudal end of the Wolffian duct. Hence, the

haploinsufficiency observed in Pax2+/-;Emx2+/- embryos seems to

result from anomalies downstream of both transcription factors, as

opposed to a simple Pax2-Emx2 linear cascade. Accordingly, the

molecular defects downstream of Pax2 and Emx2 have proven

difficult to identify, which suggests either an accumulation of subtle

changes or the misregulation of yet unidentified molecular players

involved in ureteric bud formation. The identity of these

downstream molecular effectors and whether they primarily affect

the epithelial (cell-autonomous) or mesenchymal (non-cell autono-

mous) compartment will be the focus of future investigations.

One possibility to explain the variability in Pax2+/-;Emx2+/-

ureter budding anomalies is that the process of bud induction is

still active but ureteric bud resolution is defective, resulting in a

wider budding region that stochastically resolves in one or two

ureters. Alternatively, lower gene dosage affects negative regula-

tors of ureter budding. In either case, the primary ureter is

positioned too far caudally, as reflected by the absence of clearly

demarcated common nephric ducts in Pax2+/-;Emx2+/- embryos at

Figure 2. Ectopic ureter budding in Pax2+/2;Emx2+/2 embryos.
(A–D) Whole-mount in situ hybridization with a Gata3 cRNA probe at
E12.5. (A) Side view of wild-type (wt) urogenital system. (B) Compound
heterozygote showing two independent ureters emerging from the
caudal region of the Wolffian duct. (C) Ventral view of wild-type
urogenital systems. (D) Pax2;Emx2 compound heterozygote showing
bifid ureteric buds pointing in opposite directions. wd: Wolffian duct,
ur: ureter, cnd: common nephric duct.
doi:10.1371/journal.pone.0021529.g002

VUR and CAKUT in Pax2+/-;Emx2+/- Mice
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E10.75–E11.0. As a result, close to 100% of Pax2+/-;Emx2+/-

ureters are refluxing at birth. These results are compatible with the

Mackie-Stephens hypothesis [20] that associates caudal ureter

budding with a lateral and refluxing ureter following ureter

maturation. It is also compatible with more recent models of distal

ureter maturation that are based on the Mackie-Stephens

hypothesis [2,21]. Although caudal ureter budding is sufficient to

explain the VUR phenotype, we cannot exclude a later distal

ureter maturation problem that could further contribute to the

incorrect positioning of the ureter in the bladder wall.

It is interesting to note that PAX2 and EMX2 are both located on

chromosome arm 10q in human, namely 10q24 and 10q26,

respectively. Monozygosity of 10q has been associated with a number

of urogenital anomalies including VUR [22]. In addition, candidate

regions for VUR were identified around chromosomal region 10q26

in two independent studies using large cohorts [10,11]. Our results

suggest that CAKUT and VUR in human may be caused by

compound heterozygote combinations, which may complicate the

interpretation of some of the genome-wide studies looking for the

genetic determinants of these diseases. Familial cases of VUR have

been associated with inheritance patterns as diverse as autosomal

dominant, autosomal recessive, sex-linked and multigenic [23]. In this

respect, VUR is increasingly considered as a complex trait in which a

combination of genetic factors contributes to the final outcome in a

Figure 3. Highly penetrant VUR associated with ureter budding defects in Pax2+/2;Emx2+/2 embryos. (A,B) Intravesical dye injection in
wild-type (A) and Pax2+/2;Emx2+/2 embryos (B) at P0. C) Graph of non-refluxing animals relative to pressure (reflected by height of dye reservoir from
bladder level) for wild-type (n = 20), Pax2+/2 (n = 20), Emx2+/2 (n = 22) and Pax2+/2;Emx2+/2 (n = 20). Grey area represents the average height/pressure at
which the urethra voids +/2 0.5 SD. (D–I) Whole-mount in situ hybridization for Ret at E11.0 in wild-type (D), Pax2+/2 (E), Emx2+/2 (F) and Pax2+/2;Emx2+/2

embryos (G–I). Note the ureteric bud malformations in compound heterozygous animals, including double buds in the same or opposite orientations,
ureteric bud enlargement and ectopic projection.
doi:10.1371/journal.pone.0021529.g003

VUR and CAKUT in Pax2+/-;Emx2+/- Mice
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single individual [23]. It will be interesting to see whether CAKUT

and VUR patients are found with mutations in both PAX2 and

EMX2.

Materials and Methods

Ethics Statement
This study was approved by the Animal Care Committee of

McGill University and strictly follows the guidelines from the

Canadian Council on Animal Care.

Mice
Pax2, Gata3, Lim1, Evi1, Emx2 mice were bred on a C3H/HeJ

background for at least 6 generations. Genotyping of these mice

has been described previously [7,14,15,18,24]. Evi1 mice were

obtained from the Jackson Laboratory (Bar Harbor, USA).

Figure 4. Unaltered expression of ureter budding regulators in
Pax2+/2;Emx2+/2 embryos. In situ hybridization for the main
regulators of budding at E10.5 reveals no significant difference in
mRNA expression between controls (A,C,E,G) and Pax2;Emx2 compound
heterozygous embryos (B,D,F,H). (A,B) Ret, (C,D) Etv5, (E,F) Sprouty1,
(G,H) Gdnf.
doi:10.1371/journal.pone.0021529.g004

Figure 5. Genetic regulation of Emx2 by Pax2. (A–D) In situ
hybridization on E9.5 sections for Emx2 (A,B), Pax2 (C,D) in wild-type
(A,C), Pax2-/-;Pax8+/- (B) and Emx2+/- (D) embryos. Emx2 mRNA
expression is significantly decreased in Pax2-/-;Pax8+/- embryos, while
Pax2 mRNA expression remains unchanged in Emx2+/- embryos.
doi:10.1371/journal.pone.0021529.g005

Figure 6. Pax2 directly binds the Emx2 gene through a
conserved 39 regulatory region. (A) Schematic representation of
the Emx2 locus. Arrow indicates start site, black boxes exons 1,2,3 and
white box indicate 39UTR. Thick black lines represent conserved regions
between mouse and human sequences. Five sites (A,B,C,D and E) were
identified by bioinformatics analysis. Primer pairs used for chromatin
immunoprecipitation experiment are labeled A to E and pa (pre-site A),
ibc, icd, ide (inter-BC, inter-CD and inter-DE, respectively) and pe (post-
site E). (B) Chromatin immunoprecipitation with anti-Pax2 antibody in
mIMCD3 cells for the sites indicated in (A). Results are expressed as fold
enrichment compared to an unrelated control region (near FoxO6
gene).
doi:10.1371/journal.pone.0021529.g006

VUR and CAKUT in Pax2+/-;Emx2+/- Mice
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Ureter diameter measurements
Ureter diameter was measured from pictures taken on an Zeiss

SEMI-200-C with an AxioCam MRC at a 2.5x zoom. The

AxioVision-4.2 measurement tool was used to determine ureter

diameter taking the caudal end of the kidney as a reference point.

In situ Hybridization and Histology
Urogenital systems (at E11.0 and E12.5) and whole embryos at

E9.5–11.0 were dissected in cold PBS and were subsequently fixed

overnight in 4% paraformaldehyde at 4uC. In situ hybridization on

E10.5 embryo cryosections with digoxigenin-dUTP RNA probes

was performed as described previously [25], using the following

probes: Emx2 [26], Ret [27], Gdnf [28], Wnt11 [29], Slit2 [30], Spry1

[31], Pax2 and Pax8 [12]. Etv5 probe was generated from E18.5

kidney cDNA with the following primer pair 59-TAGCAGTCCT-

CATCCAGGCAAC-39 and 59-GCAGCATCTTCCAAAGTAG-

GCAC-39. In situ hybridization stainings at E10.5 were evaluated

on metanephric mesenchyme sections at the ureteric bud level, as

well as from more rostral and caudal regions. Whole-mount E11.0

and E12.5 in situ hybridizations using Gata3 [32], and Ret [27]

probes were performed as described previously [33].

Immunofluorescence
Metanephric kidneys were dissected in cold PBS and fixed for

2 h in 4% paraformaldehyde at 4uC. Samples were processed for

paraffin embedding, sectioning and subsequent immunohisto-

chemistry as described previously [34].

Dye injection
Vesicoureteral reflux was assessed by methylene blue injection

into the bladder. Briefy, newborn mice were sacrificed and

dissected, exposing the bladder, kidneys and urinary tracts. A 30-

gauge needle was attached via tubing to a 60 ml syringe filled with

methylene blue. After introducing the needle into the bladder, the

level was raised at the rate of 5 cm/sec. from 30 to 120 cm. The

rate of injection was determined by the hydrostatic pressure

exerted by the weight of the column of methylene blue [9].

Chromatin immunoprecipitaton
Murine inner medullary collecting duct cells (mIMCD3) (kindly

provided by Dr. Paul Goodyer, McGill University) were cultured in a

1:1 mix of DMEM and HAM’s F12 media (Wisent) supplemented

with 10% fetal bovine serum (Wisent) in all experiments. Confluent

mIMCD3 cells stably expressing Gata3 (mIMCD3-Gata3) [13] were

cross-linked with 1% (w/v) formaldehyde for 10 min at room

temperature with mild rocking. The plates were then rinsed twice

with cold PBS to stop the cross-linking reaction. The cells were

collected and sonicated to achieve DNA shearing to an average of

200 bp. The chromatin was then pre-cleared with protein G-Agarose

beads (Roche, cat.11243233001). The chromatin fractions were

precipitated overnight with an anti-Pax2 antibody (Covance PRB-

276P, LN#143834801), or beads alone as a negative control. The

antibody was retrieved with protein G-Agarose beads for 2 hours, the

beads were washed extensively with: low salt buffer (0.1% SDS, 1%

Triton-X, 20 mM Tris-HCl (pH8), 150 mM Nacl), high salt buffer

(1% Triton-X, 20 mM Tris-HCl (pH8), 2 mM EDTA, 500 mM

NaCl), fresh LiCl buffer (250 mM LiCl, 1% Igepal, 1 mM EDTA,

1% Na-Desoxycholate, 10 mM Tris-HCl (pH8)) and 1x Tris-EDTA,

and de-crosslinked at 65uC overnight (1% SDS, 0.1 M NaHCO3).

The samples were then treated with proteinase K (0.2 mg/ml) for

1 hour at 55uC. The chromatin was isolated using the QIAquick

PCR purification kit (Qiagen cat.28106). Quantitative PCR was

performed on Pax2-precipitated samples and controls. The primers

used were: Fwd-1: ATACAACCCAAGCCCTCGGATCAG-39,

Rev-1: 59-TCCTGAGGACTTCCAGAAGACTTG-39, Fwd-2: 59-

CCGTGTGTGTTTTCTGTTTAGCAC-39, Rev-2: 59-TGCTG-

AAAGATAGGGGAGAGTCAG-39, Fwd-pa: 59- CCACAAAA-

GAGCCAGACTGGTG -39, Rev-pa: 59- AAAGTTGCTTGGA-

CAGCTTCTCTC -39 , Fwd-AB: 59- TGAGGGAGATGAACC-

CAAAGG -39: Rev -AB: 59- CTCGAACAGAACAGACGAGGT-

TTC -39 Fwd-ibc: 59- TGTTTTTCCTCCCCTCCTCTAAAG -39

Rev-ibc: 59- CAAAGTATGAGCAGCCAGGTCTG -39 , Fwd -C:

59- AAGTACGAGAAAGGGGAGTGGTG -39, Rev-C: 59- TCT-

TCCTACCATTGTGGGACCC -39, Fwd-icd: 59- GCCCAAA-

GAAGGATTTGATAGCC -39 Rev-icd: 59- TGACTGTCCTG-

CCTTTTTGAGG -39 Fwd-D: 59- AGGACAGTCAGCTTAT-

TAGCCGC -39 Rev-D: 59- TACGGAACACGAGTGGGAACTC

-39 , Fwd-ide: 59- TTGGGAAACTTGGGCTCCTC -39, Rev-ide:

59- TTACCACCACAGAACAGGGCAC -39, Fwd-E: 59- GTTTT-

GAGAACCCTCTGACCCC -39 Rev-E: 59- TGCTGGGCAACA-

GGCTCTAATG -39, Fwd-pe: 59- CGCCAAAGATCACAACCA-

CG -39, Rev-pe: 59- ACCAGGAAGGAACAAAAGGGGG -39. The

results are normalized to an unrelated control region near the FoxO6

gene on chromosome 1: Fwd: 59- AAACCTAAGTGCTTTCT-

CCCTTCC -39, and Rev: 59- GGCTTTATCTGGTGAACAG-

TGGAC -39. Putative Pax2 binding sites were identified on

MacVector 8.0 program using consensus sequence (A/G)N(A/C/

T)CANT(C/G)A(A/T)GCGT(A/G)(A/T)(A/C) with three mis-

matches allowed. This consensus was derived from validated Pax2/

5/8 binding sites reported in the literature.

Supporting Information

Figure S1 Pax2;Emx2 compound heterozygotes have
enlarged ureters associated with normal smooth muscle
and urothelium differentiation. (A) Wild-type kidney and

ureter at E18.5. (B) Ureter enlargement in Pax2+/2Emx2+/2 embryos.

Red bar denotes ureter diameter measurement at the level of the

caudal kidney end. (C) Measurements of ureter diameter in the

indicated genotypes. Horizontal bars represent averages. Urogenital

systems with duplex system or megaureters have been excluded. (D)

Immunofluorescent staining of ureters with smooth-muscle alpha-

actin (SMAA; red) and Uroplakin (green). Pax2+/2;Emx2+/2 embryos

show dilated ureters compared to controls. No difference is seen in

smooth muscle and urothelium differentiation.

(TIF)

Figure S2 Alignment of conserved regions and Pax2/5/
8 binding sites in Emx2 39 region. (A) Clustal alignment of

mouse and human sequences from the conserved 39 regions.

Numbers refer to start and end points of the mouse sequence

(Ensembl release 58). Conserved Pax2/5/8 binding sites are

bolded and shaded in gray. Up to 3 mismatches from consensus

were allowed. (B) Alignment of Pax2/5/8 binding sites from Emx2

conserved regions 1 to 3. Strand used for alignment to consensus is

indicated.

(DOC)
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