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Abstract
Purpose—To examine the effect of variable selection strategies on the performance of
propensity score (PS) methods in a study of statin initiation, mortality and hip fracture assuming a
true mortality reduction of <15% and no effect on hip fracture.

Methods—We compared seniors initiating statins with seniors initiating glaucoma medications.
Out of 202 covariates with a prevalence > 5%, PS variable selection strategies included none, a
priori, factors predicting exposure, and factors predicting outcome. We estimated hazard ratios
(HRs) for statin initiation on mortality and hip fracture from Cox models controlling for various
PSs.

Results—During one year follow-up, 2,693 of 55,610 study subjects died and 496 suffered a hip
fracture. The crude HR for statin initiators was 0.64 for mortality and 0.46 for hip fracture.
Adjusting for the non-parsimonious PS yielded effect estimates of 0.83 (95%CI:0.75–0.93) and
0.72 (95%CI:0.56–0.93). Including in the PS only covariates associated with a greater than 20%
increase or reduction in outcome rates yielded effect estimates of 0.84 (95%CI:0.75–0.94) and
0.76 (95%CI:0.61–0.95), which were closest to the effects predicted from randomized trials.

Conclusion—Due to the difficulty of pre-specifying all potential confounders of an exposure-
outcome association, data-driven approaches to PS variable selection may be useful. Selecting
covariates strongly associated with exposure but unrelated to outcome should be avoided, because
this may increase bias. Selecting variables for PS based on their association with the outcome may
help to reduce such bias.

INTRODUCTION
Propensity score (PS) methods1 have become a common analytic approach for controlling
confounding in non-experimental studies of treatment effects2,3. Propensity scores combine
information on a large number of covariates into a single variable representing a subject's
probability of receiving a particular treatment, given his/her measured characteristics. This
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score can be used for matching, stratification, as a weighting factor, or as an adjustment
factor in multivariable regression4,5. Ideally, investigators would have detailed knowledge
of potential confounders and their association with the exposure and outcome of interest and
would use PS methods to balance these confounders. In many practical settings, however,
knowledge is incomplete and investigators face a large collection of potential confounders.

In contrast to variable selection for conventional outcome models6, relatively little has been
written on variable selection for PS models. Simulations by Drake have shown that the
omission of confounders from PSs results in exposure effect estimates that are biased to the
same degree and in the same direction as estimates obtained omitting the same confounders
from a conventional outcome model7. Rubin and Thomas have recommended that all
variables related to the outcome be included in a PS regardless of their association with
exposure,8 a recommendation supported by simulations by Brookhart et al.9 These
simulations and further work have shown that including variables unrelated to the outcome
in the PS increases the variance of exposure effect estimates and, when unmeasured
confounders are present, may also increase bias compared with the crude estimate.9,10 In
practice, PS models are often constructed to maximize prediction of exposure with c
statistics reported in 38–52% of published papers.11,3

In this study, we explored how variable selection strategies for PS models affect the estimate
of the PS-adjusted exposure-disease association. We compared a strategy of including
covariates in the PS based their outcome associations with several common PS model
building strategies in a study on the effect of statin exposure on all-cause mortality and hip
fracture. These examples were chosen because estimates of the effect of statins on all-cause
mortality and hip fracture are available from randomized controlled trials, providing a gold
standard against which our estimates could be measured.

SUBJECTS AND METHODS
Study population

We identified a population of seniors aged 65+ enrolled in both Medicare and the
Pennsylvania Pharmaceutical Assistance Contract for the Elderly (PACE) program who
initiated a statin or glaucoma medication in 1995—2002, with no use of either drug in the
preceding 12 months. While the contrast of interest is statin initiation versus non-use, we
selected a subset of the non-user population, glaucoma medication initiators, as a referent
group because these patients, like statin initiators, initiated a preventive therapy, thus
reducing the potential for healthy user effects12,13,14. Each patient's initiation date was used
as the baseline for follow-up15. Subjects were counted as initiators only on their first
initiation during the observation period.

Based on knowledge of the clinical outcomes and their risk factors, we identified a priori a
number of potential confounders of the exposure / outcome associations in question. These
included age, sex, race, calendar year, receipt of preventive services and laboratory tests,
hospitalizations, number and types of drugs used, number of medical visits, nursing home
residency, comorbidity score16 and the presence of specific medical conditions. These
covariates were defined based on Medicare and PACE enrollment files and claims during
the year before initiation of therapy. In addition to covariates selected a priori, we identified
a list of potential confounders empirically. We selected medical conditions identified by 3-
digit diagnosis code occurring in >5% of the population and drugs at the generic entity level
prescribed with the same frequency. The arbitrary 5% cutpoint was selected because
confounding by a dichotomous covariates is in part a function of its prevalence, such that a
low prevalence bounds the potential for confounding. The final covariate list (including
those selected a priori or on prevalence) included 202 covariates. With the exception of age,
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which was modeled using a linear and quadratic term, all continuous covariates were
modeled by including quintile indicators. Selection criteria were applied to indicators
individually; in secondary analyses, indicators were selected as a group.

We used Medicare claims data to ascertain time to hip fracture (defined by a hospitalization
or outpatient visit with a diagnosis code of 820.x–821.x plus an ICD-9 procedure code of
79.x5 or CPT-4 code of 27230–27248) and mortality during a one-year follow-up period.
The positive predictive value (PPV) of the hip fracture definition has been estimated at 87 –
98% within the Medicare population17. Although the specificity could not be calculated in
this validation study, the high PPV indicates a high specificity, limiting the potential for bias
in relative measures of association.18 We restricted fracture analyses to subjects without a
hip fracture in the year before baseline. Follow-up was censored at the first of 365 days,
death, or development of the outcome.

Analytical strategies—We estimated propensity scores for each patient by fitting a
logistic regression model to predict statin versus glaucoma medication initiation, as a
function of baseline covariates. We constructed eight different PSs for each outcome: a
“non-parsimonious” PS including all 202 baseline covariates, an “a priori” PS including
only predictors thought, a priori, to be independently associated with the outcome, a
“stepwise” PS, and four scores including covariates selected based on their associations with
the outcome. We included age, a quadratic age term, and sex in all PS models.

Selection of variables based on association with the exposure: Because stepwise selection
procedures are used in PS construction by some researchers11, we included a “stepwise” PS
in our analysis. Variables were selected from the pool of 202 baseline covariates using a
stepwise selection procedure with an inclusion criterion of p ≤ 0.2 and retention criterion of
p ≤ 0.1.

Selection of variables based on association with the outcome: We employed several
strategies to identify covariates based on their association with the outcome of interest. We
began by entering each covariate, individually, into a Cox proportional hazards model
predicting the outcome of interest adjusted for age, age2, sex, and exposure. To select
covariates for the “outcome +/−20%” and “outcome +/− 30%” models, we examined the
point estimates of the covariate-outcome associations from these Cox models. For the
“outcome +/− 20%” model, we selected covariates with an outcome HR of > 1.2 or <1/1.2
to make our criteria symmetric on the log scale. Our more stringent “outcome +/− 30%”
criteria selected covariates with an HR > 1.3 or < 1/1.3. The “outcome p <0.2” and
“outcome p <0.1” relied on the significance of covariate-outcome associations.

Selection of variables based on their association with the outcome or the exposure: In
this hybrid PS, we included all covariates that were selected into either the “outcome +/−
20%” or the “stepwise” PS.

Selection of variables based on subject-matter knowledge: Because the selection of
variables based on detailed clinical knowledge of exposure-outcome relationships might
seem preferable to data-driven approaches, we tested the approach of pre-specifying our
covariate list. “A priori” PS covariates were identified based on the current medical
literature. For hip fracture, this list included factors known to contribute to low bone mineral
density or falls (see appendix). Indicators of major causes of mortality and potential
indicators of frailty were selected for inclusion in the mortality model (appendix).

Estimation of exposure effect estimates: The relation between statin initiation and each
outcome was estimated using a Cox proportional hazards model, with glaucoma drug
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initiators serving as the referent group. We estimated exposure / outcome associations
stratified on PS decile. In keeping with the typical application of PS methods, our primary
analyses were conducted on a trimmed dataset such that subjects with PSs falling in regions
of non-overlap (i.e. statin exposed subjects with PSs higher than those of any unexposed
subjects and vice versa) were excluded. We conducted a series of secondary analyses (see
appendix) exploring the effects of trimming, propensity score parameterization, and the
inclusion of interaction terms in the PS. Lastly, we examined the variables responsible for
differences in the exposure effect estimates obtained from different models.

We took RCT evidence as the gold standard for treatment efficacy. We assumed that statins
reduce all-cause mortality by 15% as reported in a recent meta-analysis of RCT data from
elderly adults19 and have no effect on hip fracture, as reported in another recent meta-
analysis of data from secondary analyses of four statin trials (OR: 1.03, 95% CI: 0.91 –
1.16)20. We further assumed that the effectiveness in our unselected population would be
attenuated relative to the RCT efficacy.21

Model-based standard errors obtained from a regression analysis are known to underestimate
the true uncertainty surrounding a treatment effect estimate when data-driven model
selection strategies are used. To determine whether this is an issue in using data-driven
approaches to PS variable selection, we performed bootstrapping analyses, re-sampling our
data with replacement 1,000 times, and conducting the model selection strategies and
analyses on each sample. We used the standard-deviations of the resulting distributions of
statin effect estimates to construct empirical confidence intervals for the estimates from our
main analyses.

RESULTS
During 1995–2002, 40,721 PACE-Medicare enrollees initiated statins and 14,889 initiated
glaucoma medications. Compared with glaucoma medication initiators, statin initiators were
slightly younger, and were more likely to have cardiovascular disease (see table 1)

During up to one year of follow-up, 2,693 subjects (4.8%, table 2) died. Statin exposure was
associated with a 36% (HR: 0.64, 95% CI: 0.59–0.69) reduction in mortality in unadjusted
analyses. Adjustment for the non-parsimonious PS shifted the estimate to 0.83 (0.75 – 0.93).
Adjustment for a PS including only covariates associated with a 20% increase or reduction
in outcome rate (outcome +/− 20%) yielded an estimate of 0.84 (0.75 – 0.94). PSs
constructed using the p-value based and stricter outcome association criteria yielded
estimates of 0.81 to 0.83.

Among the 55,276 subjects without a prior hip fracture, 496 (0.8%) experienced hip
fractures during follow-up. In unadjusted analyses, statin use was associated with a 54%
reduction in the risk of hip fracture (HR: 0.46 95% CI: 0.39 – 0.55). Adjustment for
nonparsimonious PS moved the effect estimate to 0.72 (0.56 – 0.93). The stepwise PS and
stepwise +/−20% PSs yielded similar estimates. Adjustment for the outcome +/−20% PS
yielded an estimate of 0.76 (0.61 – 0.95). Again, PS models including covariates meeting
stricter or p-value based outcome-association criteria yielded larger apparent protective
effects.

As shown in table 3, the difference between the statin effect estimates obtained adjusting for
the “outcome +/− 20%” PS and those obtained adjusting for the non-parsimonious PS was
driven largely by the inclusion of a glaucoma diagnosis covariate in the latter PS. This
covariate was strongly inversely associated with statin exposure (OR=0.07) because of the
comparison group used, but was not independently associated with hip fracture or mortality
under our “outcome +/− 20%” criteria. The covariate was included when the outcome
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association criteria were relaxed slightly (outcome HR > 1.175 or < 1/1.175). When the
glaucoma diagnosis covariate was forced into the outcome +/− 20% PS and this PS was
used to control for confounding, the resulting statin effect estimates for hip fracture and
mortality were 0.69 and 0.82 – close to the values obtained adjusting for the non-
parsimonious PS.

In addition to being associated with a change in statin effect estimate, addition of the
glaucoma diagnosis covariate to the PS was associated with a jump in c statistic. The
“outcome +/− 20%” PSs for hip fracture and mortality had c statistics of 0.81 and 0.82.
These c statistics increased to 0.89 and 0.90 when the glaucoma diagnosis covariate was
forced into the model. The highest c statistics (0.91) were consistently obtained from the
non-parsimonious, stepwise, and “stepwise or +/−20%” PSs. The greater discrimination
between exposed and unexposed by the non-parsimonious PS compared with the outcome +/
− 20% PS can be seen in the PS distributions in figure 1.

The model-based standard errors for statin effects estimated adjusting for PSs constructed
using outcome-association variable selection criteria were consistently underestimated (table
4). This problem was greatest using the “outcome +/− 20%” PS, where the standard errors
for the estimated effect of statin use on hip fracture and mortality were underestimated by
19% and 14% respectively. Excluding the prior glaucoma diagnosis covariate from the
covariate list considerably reduced the degree of underestimation. The model-based standard
errors for the non-parsimonious, a priori and stepwise PS models were correct.

Our results were unchanged in secondary analysis exploring the effects of not trimming for
PS non-overlap, propensity score parameterization as splines versus deciles, selection of
covariate quintile indicators as a group vs. individually, and the inclusion of interaction
terms in the PS (see appendix).

DISCUSSION
In a study of the effects of statin use on mortality and hip fracture, we found that the effect
estimates obtained varied across a range of commonly-employed PS variable selection
strategies. Estimates of the effect of statins on mortality varied from 0.81 (0.73 – 0.90) to
0.84 (0.75 – 0.94) and estimates of the effect of statins on hip fracture varied from 0.63 (95
% CI: 0.52 – 0.76) to 0.76 (0.61 – 0.95). While our findings are not unexpected given the
theory and existing simulation-based evidence on PS model construction, they illustrate the
implications of PS variable selection strategy in a practical pharmacoepidemiologic setting
for the first time.

For both outcomes, adjusting for the non-parsimonious PS yielded apparent protective
effects that were larger than those reported in meta-analyses of RCTs: i.e. a 15% reduction
in all-cause mortality22 and no protection (RR=1.03) for hip fracture.23 Because
effectiveness is likely to be less than efficacy in our population,24 we assumed the true effect
for mortality in our population would be no more than a 15% reduction. Adjusting for a PS
including only covariates empirically associated with the outcome – i.e. those associated
with a greater than 20% increase or reduction in outcome rates, adjusted for age, sex, and
exposure – yielded estimates that were closer to the assumed true effects.

Although these differences were not pronounced, our findings are consistent with the results
of recent simulations which suggested that covariates associated with the outcome should be
included in the PS regardless of their association with exposure and that covariates strongly
associated with exposure and unassociated or only weakly associated with the outcome
should be avoided, as these covariates can increase the variance and bias of effect
estimates.9 Our results are also consistent with those of a recent paper demonstrating that the
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inclusion of covariates strongly associated with exposure and unassociated or only weakly
associated with the outcome in a PS can increase bias10. Our findings were mainly driven by
the presence of a covariate strongly predictive of exposure status and likely unrelated to hip
fracture and mortality. They argue in favor of considering outcome associations when
selecting covariates to be entered into the PS. A model including only covariates specified a
priori did not perform as well, attesting to the potential value of empirical variable selection
strategies unless all confounders are known.

Our work adds to evidence that the c statistic may not be a useful measure of the ability of a
PS to adjust for confounding. Work by Weitzen et al., has shown that model discrimination
tests were not useful in detecting the omission of a confounder from a PS model.25 In our
case, the addition of the prior glaucoma diagnosis covariate to a PS increased its c statistic
considerably, but also increased the bias. Rather than using the c statistic as a quality
criterion, our findings suggests that pronounced changes in the c statistic of the PS model
after inclusion of a single covariate may be a useful tool in detecting covariates strongly
predictive of exposure that should then be subjected to further scrutiny with respect to their
potential as a confounder.

Our study suffers from several limitations. We examined only a handful of possible
approaches that could be applied to the PS variable selection problem. We did not use cross-
validation in our variable selection procedures because existing literature suggests that the
estimated PS generally performs better to control for confounding than the true PS.26,27

Despite its advantages30, the use of an active control group may increase the risk of
encountering a covariate that is strongly related to exposure but unrelated or only weakly
related to the outcome. However, this type of variable, a prime example of which is any
variable that might be used as an instrument, such as physician preference or distance to a
provider, is likely to exist in other settings as well.28 It is possible that covariate values were
misclassified in our study due to our reliance on administrative claims data from the year
preceding medication initiation. Disease history is captured only to the extent that diagnoses
are accurately captured in the billing process, and it is possible that some chronic conditions
were missed due to our use of a 12-month versus longer covariate assessment period.
Misclassification may partly explain the divergence of our results from those reported in
RCTs. In addition, it should be noted that while a meta-analysis of RCT data reported no-
effect of statins on hip fracture, observational studies have generally,29,30,20 although not
always31,20 reported protective effects. While confounding has been frequently cited as an
explanation for the divergence of findings, it is also possible that effect measure
modification or other factors are responsible.

Our consideration of covariate-outcome associations in the first step of some PS building
strategies seems to differ from the design notion proposed by Rubin32 of creating
comparable groups of exposed and unexposed using the PS without information on the
outcome. While Rubin mentions that “variables that are effectively known to have no
possible connection to the outcomes” should not be included in a list used to define
comparable groups of exposed and unexposed, he argues that the outcome should be locked
away during the design phase.32 Our use of outcome information to select covariates for
which our groups of exposed and unexposed should be balanced differs somewhat from this
approach, but it should be noted that we are using outcome information only to estimate the
association between the potential covariate and the outcome and not to assesses which
covariates have what confounding effect. While not locking away the outcome when
implementing our method, we are still agnostic about the exposure-outcome association and
the effects of the covariates on this association. An alternative approach could be to evaluate
covariate / outcome associations within the comparator group only.33, 34
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While automated PS variable selection approaches are appealing in their ease of execution
and ability to identify confounders that may be missed by the study investigators, they suffer
from some limitations and should not take the place of a thoughtful consideration of
confounding by the study investigators35. One disadvantage to any automated variable
selection strategy, including those we used to select covariates associated with the outcome,
is that it requires setting an arbitrary threshold. The performance of our method based on the
covariate-outcome associations was sensitive to the threshold chosen and performed
variably in bootstrapped samples, resulting in larger standard errors based on bootstrapped
datasets compared with the model-based standard errors. Nevertheless, the relatively poor
performance of the PSs constructed based on a priori hypotheses attests to the difficulty of
correctly pre-specifying all empirical confounders of an exposure effect in administrative
claims data. A middle ground might be to use a data-driven approach to identify a pool of
potential covariates (i.e. based on prevalence) from which potentially problematic covariates
(i.e. those strongly related to exposure and not thought to be related to the outcome) could
be identified and excluded. In the absence of covariates strongly related to exposure, the
same PS could be used to study multiple outcomes; in the presence of such covariates, the
suitability of a generic PS would need to be evaluated for each outcome of interest. This
approach would preserve some of the advantage of PSs over traditional outcome models –
namely the ability to use a single score to study multiple outcomes.
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Figure 1.
Estimated density of propensity score
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Table 1

Distribution of covariates prior to drug initiation

Statin initiators* Glaucoma Initiators*

N 40,721 14,889

Demographic

Age (mean, SD) 76.8 (6.1) 80.4 (6.8)

Sex (female) 33417 (82.1) 12329 (82.8)

Race

 white 37925 (93.1) 13355 (89.7)

 black 2335 (5.7) 1369 (9.2)

 other 461 (1.1) 165(1.1)

Diagnoses

Cardiovascular

 MI* 4289 (10.5) 478 (3.2)

 Prior CABG or PTCA 3207 (7.9) 146 (1)

 Angina 9393 (23.1) 1800 (12.1)

 Ischemic Heart Disease 20764 (51.0) 5104 (34.3)

 Asymptomatic CVD 5217 (12.8) 1649 (11.1)

 Coronary atherosclerosis 18911 (46.4) 4351 (29.2)

 Stroke / TIA 7068 (18.7) 1911 (12.8)

Hyperlipidemia 29229 (71.8) 4190 (28.1)

Diabetes 15255 (37.5) 4841 (32.5)

Hypertension 32896 (80.8) 10907 (73.3)

Conduction disorders 2718 (6.7) 778 (5.2)

Heart Failure 12507 (30.7) 4349 (29.2)

Atrial Fibrillation 5391 (13.2) 1872 (12.6)

Osteoporosis 4029 (9.9) 1497 (10.1)

Prior hip fracture† 177 (0.4) 157 (1.1)

Prior fracture of wrist, spine or humerus 1037 (2.5) 510 (3.4)

Disorders of refraction 108 (0.3) 53 (0.4)

Blindness 477 (1.2) 341 (2.3)

Cataract 14532 (35.7) 8500 (57.1)

Syncope 2962 (7.3) 1,062 (7.1)

Gait abnormality 2023 (5.0) 824 (5.5)

COPD 7806 (19.2) 2825 (19.0)

Rheumatoid arthritis 1309 (3.2) 577 (3.9)

Arthritis 14127 (34.7) 5404 (36.3)

Hyperthyroidism 1163 (2.9) 355 (2.4)

Hyperparathyroidism 201 (0.5) 76 (0.5)

Falls 1805 (4.4) 944 (6.3)
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Statin initiators* Glaucoma Initiators*

N 40,721 14,889

Cancer 9646 (23.7) 3833 (25.7)

Urinary tract infection 6382 (15.7) 2,455 (16.5)

Alzheimer's disease 1906 (4.7) 1019 (6.8)

Parkinson's disease 546 (1.3) 281 (1.9)

Depression 2454 (6.0) 877 (5.9)

Comorbidity Score (mean, SD) 1.93 (2.1) 2.03 (1.98)

Health System Service Use

Use of preventive care services 28280 (69.4) 9878 (66.3)

Bone mineral density testing 695 (1.7) 245 (1.6)

Nursing home residence 1863 (4.6) 855 (5.7)

Hospitalization 14046 (34.5) 4318 (29.0)

Number of drugs used

 1–3 6119 (15.0) 2444 (16.4)

 4–5 7505 (18.4) 2892 (19.4)

 6–8 10622 (26.1) 3754 (25.2)

 9–11 7388 (18.1) 2574 (17.3)

 >12 9087 (22.3) 3225 (21.7)

Number of physician visits

 0–2 8419 (20.7) 2892 (19.4)

 3–4 6979 (17.1) 2395 (16.1)

 5–7 9167 (22.5) 3225 (21.7)

 8–11 7987 (19.6) 2980 (20.0)

 12+ 8169 (20.1) 3397 (22.8)

Cardiovascular medication use 34918 (85.7) 11477 (77.1)

NSAIDS use 12240 (30.1) 4748 (31.9)

Hormone therapy 2261 (5.6) 674 (4.5)

Corticosteroid use 2785 (6.8) 1201 (8.1)

Loop diuretics 7852 (19.3) 2797(18.8)

Osteoporosis med use 3,327 (8.2) 1173 (7.9)

Psychoactive med use 8,799 (21.6) 3313 (22.3)

*
N (%) unless stated otherwise; SD: standard deviation

†
patients with prior hip fracture were excluded from statin-hip fracture analysis
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Table 3

Effect of outcome-association cut-point used as variable selection criterion

PS Characteristics Outcome Effect Estimate

Model N covariates C statistic Estimate HR

Mortality

Non-parsimonious 202 0.91 −0.18 0.83

Outcome +/− 5% 181 0.91 −0.20 0.82

Outcome +/− 7.5% 172 0.90 −0.21 0.81

Outcome +/− 10% 163 0.90 −0.21 0.81

Outcome +/− 12.5% 157 0.90 −0.22 0.81

Outcome+/− 15% 151 0.90 −0.22 0.80

Outcome +/− 17.5% 149 0.90 −0.22 0.81

Outcome +/− 20% + glaucoma diagnosis 144 0.90 −0.20 0.82

Outcome +/− 20% 143 0.82 −0.18 0.84

Outcome +/− 22.5 % 139 0.81 −0.17 0.84

Outcome +/− 25% 135 0.81 −0.17 0.84

Outcome +/− 27.5% 130 0.81 −0.18 0.83

Outcome +/− 30% 127 0.81 −0.19 0.83

Hip Fracture

Non-parsimonious 201 0.91 −0.32 0.72

Outcome +/− 5% 177 0.90 −0.37 0.69

Outcome +/− 7.5% 170 0.90 −0.36 0.70

Outcome +/− 10% 160 0.90 −0.36 0.70

Outcome +/− 12.5% 151 0.90 −0.37 0.69

Outcome +/− 15% 146 0.90 −0.38 0.68

Outcome +/− 17.5% 137 0.89 −0.37 0.69

Outcome +/− 20% + glaucoma diagnosis 121 0.89 −0.37 0.69

Outcome +/− 20% 120 0.81 −0.27 0.76

Outcome +/− 22.5 % 108 0.81 −0.31 0.74

Outcome +/− 25% 100 0.81 −0.28 0.75

Outcome +/− 27.5% 91 0.80 −0.35 0.71

Outcome +/− 30% 87 0.80 −0.35 0.71

‡ Outcome effect estimates were compared to statin effect estimates from meta-analyses of randomized controlled trials: a 15% reduction in all-

cause mortality (95% CI: 7% to 22%)39 and no effect on hip fracture (OR: 1.03, 95% CI: 0.91 – 1.16)40. We further assumed that the

effectiveness in our unselected population would be attenuated relative to the RCT efficacy.41
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Table 4

Model-based and bootstrapped standard errors

Model-based SE Bootstrapped SE % underestimation*

HIP FRACTURE

Unadjusted 0.090 0.091 1%

Age, sex adjusted 0.095 0.094 −1%

Adjusted for PS:

 Non-parsimonious 0.129 0.132 3%

 A priori 0.100 0.100 <1%

 Step wise 0.128 0.131 2%

 Outcome +/− 20% 0.112 0.138 19%

 Outcome +/− 30% 0.108 0.139 22%

 Outcome p < 0.2 0.125 0.133 6%

 Outcome p < 0.1 0.111 0.136 19%

 Stepwise or +/− 20% 0.090 0.091 1%

MORTALITY

Unadjusted 0.040 0.039 −2%

Age, sex adjusted 0.042 0.043 −1%

Adjusted for PS:

 Non-parsimonious 0.056 0.056 −1%

 A priori 0.049 0.048 −3%

 Stepwise 0.056 0.056 −1%

 Outcome +/− 20% 0.049 0.057 14%

 Outcome +/− 30% 0.048 0.051 6%

 Outcome p < 0.2 0.056 0.057 1%

 Outcome p < 0.1 0.056 0.055 −1%

 Stepwise or +/− 20% 0.056 0.056 −1%

*
% underestimation is calculated as 1 minus the ratio of the model-based SE to the bootstrapped SE.
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