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Abstract
A significant number of drug discovery efforts are based on natural products or high throughput
screens from which compounds showing potential therapeutic effects are identified without
knowledge of the target molecule or its 3D structure. In such cases computational ligand-based
drug design (LBDD) can accelerate the drug discovery processes. LBDD is a general approach to
elucidate the relationship of a compound's structure and physicochemical attributes to its
biological activity. The resulting structure-activity relationship (SAR) may then act as the basis for
the prediction of compounds with improved biological attributes. LBDD methods range from
pharmacophore models identifying essential features of ligands responsible for their activity,
quantitative structure-activity relationships (QSAR) yielding quantitative estimates of activities
based on physiochemical properties, and to similarity searching, which explores compounds with
similar properties as well as various combinations of the above. A number of recent LBDD
approaches involve the use of multiple conformations of the ligands being studied. One of the
basic components to generate multiple conformations in LBDD is molecular mechanics (MM),
which apply an empirical energy function to relate conformation to energies and forces. The
collection of conformations for ligands is then combined with functional data using methods
ranging from regression analysis to neural networks, from which the SAR is determined.
Accordingly, for effective application of LBDD for SAR determinations it is important that the
compounds be accurately modelled such that the appropriate range of conformations accessible to
the ligands is identified. Such accurate modelling is largely based on use of the appropriate
empirical force field for the molecules being investigated and the approaches used to generate the
conformations. The present chapter includes a brief overview of currently used SAR methods in
LBDD followed by a more detailed presentation of issues and limitations associated with
empirical energy functions and conformational sampling methods.

1. Introduction
When ligands and data on the biological activities of those ligands are the only information
available for drug development, computer-aided ligand based drug design (LBDD)1-6 is an
effective method to extend the knowledge of the known ligands to design compounds with
improved biological activity. The importance of LBDD is emphasized by more than 50 % of
current FDA-approved drugs targeting membrane proteins such as G protein coupled
receptors (GPCRs), nuclear receptors, and transporters7, for which three-dimensional (3D)
structures are often not available, a necessary prerequisite for target based drug design
approaches8-10. Considering the difficulties in determining 3D structures of membrane-
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associated proteins, LBDD methodologies are anticipated to continue to have a significant
impact on drug development into the foreseeable future11, 12.

Drugs typically exert their pharmacological effects by specific interactions with their target
proteins. Such unique interactions have been understood as “lock-and-key”13, “induced-
fit”14, “conformational selection” or “population shift” hypotheses,15-19 which are based on
the inherent chemical structure of molecules, their dynamic conformational properties and
how those two influence the receptor. Therefore, identifying any causation or correlation
between structures and activities, referred to as a structure-activity relationship (SAR)20-22,
can be of utility for ligand design. LBDD based SAR identifies similarities and/or
differences in structural or physicochemical properties of compounds and relates them to
activity, including efficacy (e.g. activation or stimulation of receptors, Vmax of enzymes),
affinity (e.g. Ki), selectivity (e.g. Ki, isoform1/Ki, isoform 2), pharmacokinetics (ADME)23, 24,
drug-drug interactions, or any biological properties of interest. Various descriptors of the
ligands are related to biological activities through various statistical methods, for instance,
regression, classification, dimension reduction, variable selection, etc. from which important
features of the ligands responsible for activity are identified and used to develop new leads
or to optimize known ligands.

Three major categories of LBDD are quantitative structure activity relationship
(QSAR)25-27, pharmacophore modeling28-32, and similarity searching33-36. Over several
decades, statistics, computational algorithms, and descriptors comprising the three
categories and their pipelining have led to significant improvements both in efficiency and
accuracy. Programs can deal with 100∼1000s of molecules to build models or search
molecular properties against databases of millions compounds in a short period of time.
Overall improvements have been achieved by sophisticated data mining techniques and by
more accurate mathematical descriptions of molecules through molecular mechanics
(MM)37 and quantum mechanics (QM) methods38.

Recent advances in statistical, algorithmic and chemoinformatics in relation to LBDD have
been discussed elsewhere in depth39-42. This chapter will briefly overview LBDD followed
by a detailed presentation of new developments in the areas of conformational sampling and
force fields (FF) with respect to LBDD.

2. Basic components of computer-aided LBDD
2.1. Representation of molecules

Molecules may be described in different ways ranging from one- to three dimensional (3D)
and higher methods. For simple counting of molecular constitutions or fragments in 1D, one
can use line notation such as SMILES (Simplified molecular input line entry specification)43

and SLN (SYBYL line notation)44 or chemical fingerprints, such as the MACCS
representation45. 1D representations are used for fast lookup and comparison and in some
cases do not yield a unique description of the molecules, as in the MACCS fingerprints.
When molecules are represented as a graph46, atoms are nodes and bonds are edges
connecting the nodes, yielding a 2D description of a molecule. Information on bond or atom
types, atom size, or stereochemistry and so on can be stored in the form of matrix and
readily accessed. Along with the graph representation, a simple connection table may be
used to calculate 2D molecular properties, for example, molecular weight, molar refractivity,
number of rotatable bonds, branching, number of hydrogen bond acceptors and donors, and
sum of atomic polarizabilities. Such descriptors are widely used in QSAR analysis. For a
more detailed and realistic representation of molecules, a 3D representation, typically in the
form of atomic Cartesian coordinates, is required. Such 3D descriptions also allow for the
calculations of various descriptors and, more importantly, can represent the bio-active
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conformations of a molecule. This is particularly important when comparing compounds
with different chemical structures that may show similar biological properties by having
similar 3D placement of biologically important functional groups. 3D descriptors, such as
the spatial relationship between functional groups, may be calculated using semi-empirical
or ab initio QM methods for small size ligands (number of atoms ≤ 100) and MM for most
ligands. With growing computational power, the use of QM & MM is significantly
increasing in the field of LBDD1, 38. Beyond 3D methods are 4D and higher representations.
For example, the different possible conformations of the 3D structure of a molecule may be
considered a 4D representation. The remainder of section 2 will present different nD
representations of molecules and their utilization in LBDD.

2.2. 2D-QSAR
A large number of 1D or 2D molecular descriptors have been developed47, 48. Most software
packages that include a QSAR module calculate a range of descriptors such as
physicochemical, electronic, topological, and shape properties. Lipinski's rule of five49 is a
classical example of a straightforward application of QSAR where bioavailability is related
to descriptors including octanol/water partition coefficient (logP), molecular weight, number
of hydrogen bond donors and acceptors, and number of rotatable bonds.

Development of SAR models often requires pre-processing of the descriptors prior to model
development. Values are often normalized such that coefficients obtained from fitted models
represent the significance of the individual descriptors. Importantly, given the large number
of possible 1D/2D descriptors it is necessary that the number of descriptors used during
model development be limited by selection methodologies50, 51. In simple terms highly
correlated descriptors are typically removed from model development. Descriptor selection
is then often linked to model development itself. Those descriptors most predictive of a
target property are selected by iterative analysis (stepwise multiple linear regression
(MLR)52, replacement method53) or by learning algorithms (Genetic algorithm54, adaptive
fuzzy partition algorithm55, Gaussian processes56, or Genetic function approximation
(GFA)57). Correlated or redundant descriptors may also be eliminated by partial least square
(PLS)58-61 or principle component analysis (PCA)62, 63.

Given a suitable training set (i.e. set of compounds with known biological activities) and
descriptors, one applies statistical methods according to the characteristics of the data set.
When linearity is present MLR and PLS are good choices. Nonlinearity64, 65 occurs when
one handles a large number of non-homologous data sets, for example in pharmacokinetic
(PK) studies where multiple biological phenomena such as absorption and metabolism can
impact the biological data, or when activities are influenced by many factors such as
receptor dimerization, existence of receptor isoforms, and conformational changes. Selection
(or design) of the experimental data for model development can minimize nonlinearity,
thereby reducing possible ambiguities in the developed QSAR but users need to keep in
mind the inherent complexity of biological phenomena. Selection of the appropriate
statistical methods also depends on whether the goal of the study is interpretation or
predictability. Classical methods such as MLR produce explicit physical meaning but
predictability is not as good as using modern statistical tools that improve predictability.
However, interpretability is often compromised with improved predictability. While the
MLR method, which maximizes interpretability, was the most used method in 2008, it was
followed by PLS & support vector machine (SVM) approaches that yield improved
predictability. Newly developed statistical methods39 include Gene Expression
Programming (GEP) 66, Project Pursuit Regression (PPR)67, Local Lazy Regression
(LLR)68 while recent variations in QSAR approaches are hologram-QSAR69, auto-QSAR70,
and inverse-QSAR71 among others. Hologram-QSAR69 partitions molecules into smaller
fragments and uses size, length, and as well as additional information on those fragments as
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descriptors. It is usually combined with PLS to derive a QSAR. Auto-QSAR70 is an
automated QSAR where the best descriptors, the best statistical methods, and validations are
chosen for given set of molecules and updated as the number of molecules in training set
increases. In Inverse-QSAR71 after a QSAR model is built, distributions of descriptors
yielding optimal activity are estimated and structures are generated or searched that match
those distributions.

As a last step in QSAR model development, the models require validation72, 73. Approaches
to do this include cross-validation, y-randomization, or external test set. It is generally
perceived that leave-one-out or leave-n-out cross-validations do not necessarily indicate
predictability directly and external validation using compounds not included in model
development is recommended to verify predictability of the developed models. An overview
of statistical methods used in QSAR analysis is given in Table S1 of the supporting
information.

2.3. nD-QSAR (3 ≤ n ≤ 7)
QSAR methods based on 3D descriptors (Table 1) such as molecular volume, surface area,
ΔGsolvation, dipole moments, HOMO, and LUMO, depend on the chemical and spatial
features of molecules. Alternatively, 3D-QSAR74-76 may be based on the molecular
interaction field mapped onto a 3D grid surrounding the molecules of interest. The
descriptors are the magnitudes of the fields at the grid points, an approach used in CoMFA
(comparative molecular field analysis)77 and CoMSIA (comparative molecular similarity
indices)78. For example, in CoMFA polar or hydrophobic probes are placed on grid points
and non-bonded interaction energies with the ligands are calculated, with the resulting
values used as descriptors for each molecule, such that each molecule has, in essence, a
number of descriptors that correspond to the number of grid points. The grid point values are
subjected to statistical methods such as PLS or PCA and related to biological activities.
Notably, these approaches require alignment of the different ligands being studied. When
flexibility is added to the shape information by using multiple conformations, it is classified
as 4D-QSAR79, 80. Although 3D-QSAR can use multiple conformers it means multiple
model evaluations, with the input into each model being one static conformer for each ligand
in the training set. 4D-QSAR, in one embodiment, overcomes this limitation by using grid
cell occupancy descriptors calculated based on multiple conformers. 5D-QSAR81, 82

attempts to construct a pseudo-receptor based on ligand information in combination with a
GA to vary the grid point locations to produce a favorable induced-fit state. Beyond this,
6D-QSAR83 incorporates solvation energy terms. Finally, the inclusion of 3D structure of
the target from X-ray crystallography or NMR in the models represents the highest
dimension, 7D, applied to date, though the approach is no longer formally LBDD.

Of the methods in Table 1, CoMFA and CoMSIA are the most widely used. Their main
limitations are their dependency and sensitivity to conformations and alignments of the
molecules under study. Different occupancies by different conformations or changes in
molecular alignments can cause different interaction fields yielding different QSAR models.
To overcome the limitations, alignment-independent 3D-QSAR was developed by
transforming 3D-grid data into 2D descriptors such as GRIND (Grid independent
descriptors)84, 85 and VolSurf84. The approaches are listed and summarized in Table 1.

2.4. Pharmacophore modelling
The IUPAC definition87 of a pharmacophore is “the ensemble of steric and electronic
features that is necessary to ensure the optimal supramolecular interaction with a specific
biological target structure and to trigger (or block) its biological response.” Pharmacophore
modelling is closely related to 3D or 4D-QSAR and commonly used pharmacophoric keys
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include hydrogen bond donors and acceptors, ionizable groups, aromatic rings, aliphatic
hydrophobic groups, among others. In many cases superimposed compounds based on
pharmacophore models are the starting point for 3D-QSAR analysis. Alternatively,
pharmacophore features may be identified by building 3D-QSAR iteratively with different
conformations or alignment attempted to increase activity prediction28. As with 3D-QSAR
methods, critical steps in pharmacophore modelling are selection of bio-active
conformations and structure alignments. Conformations can be pre-calculated and saved in a
database or be generated on-the-fly during alignments. Various sampling methods used to
generate multiple conformations will be discussed below. Using a collection of
pharmacophoric keys or points (i.e. functional groups that may contribute to biological
activity) and a conformational ensemble which is expected to include the active
conformation, molecular alignment (or superposition)1, 28, 31, 32, 88 is carried out by mapping
fragments of the compounds with a target function being minimized. In the clique detection
algorithm89 distances between features are stored in a matrix and the differences between
two matrices become the target function. Another way is using GA,90 where a chromosome
describes a molecule and genes encoded in it represent the ligand fragments to be matched
to the features of the reference compound. The target function or fitness function in GA can
include a range of information such as the similarities between features and volumes of
aligned structures. The GA is often extended for on-the-fly conformational sampling by
including geometric information of a molecule into the chromosomes. FlexS algorithm91 is
also used in pharmacophore feature mapping. It decomposes a molecule and grows it on top
of the reference compound beginning from an anchor fragment. In all cases, it is important
to select a reference structure that has high experimental activity, a known 3D binding
conformation or a favorable docking score to facilitate interpretation of the obtained model.
Details of methods used by the major pharmacophore modelling programs and recent
research on alignment methods were reviewed in Leach et al.31 and Lemmen and
Lengauer88. Such alignment methods are also of general utility for pharmacophore-based
similarity searching.

2.5. Ligand based similarity searching
Similarity searching is an effective, computationally accessible method to identify
compounds with qualities similar to that of an active, lead compound. For example, if the
number of ligands for which biological activity is known are too few to build a QSAR
model, similarity searching may be effective. Similarity searching can be based on a number
of features including chemical fingerprints, physiochemical properties as well as 2D and 3D
features selected by QSAR or pharmacophore models. If compounds structurally similar to
active compounds are desired, searches based on chemical fingerprints are appropriate.
However, if the goal of the study is the identification of ligands that have a new scaffold/
chemical structure but maintain the desired biological activity (i.e. scaffold hopping92),
searching based on physiochemical properties may be of utility. The most widely used
descriptors in similarity searching are chemical fingerprints or large numbers of
physiochemical properties. Fingerprints can have diverse properties and combinatorial or
compressed fingerprints are emerging and efforts are being made to improve the fingerprint
representations. To quantify the extent of similarity between compounds, different similarity
measures are used alone or in combinations; these include the Tanimoto, Cosine, Hamming,
Russel-Rao, and Forbes indices. Finally, it should be noted that it is useful to perform
successive searches using the nearest neighbors of a query compound. A number of software
packages, including MOE (Molecular Operating Environment, Chemical Computing
Group93) and Discovery Studio (Acclerys Inc94) allow for similarity searching. Public small
molecule databases such as PubChem95 ZINC96 and ChEMBL97 or open source software98

using those databases provide similarity searching and clustering tools. Notable are
clustering techniques99 where output structures from a similarity search are further grouped
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into subsets to reduce redundancy and to check diversity in compounds selected, for
example, for a target-based database screen100. Results of clustering vary based on
classification algorithms, descriptors, and similarity measures101-103 and there is no gold
standard to obtain the best clustering. Therefore it is desirable to perform clustering with a
combination of methods, descriptors, and similarity coefficients followed by manual
evaluation of the results to achieve the desired outcome.

3. Conformational sampling
For the 3D and higher order methods it is essential that the appropriate, biologically relevant
conformations be identified. Considering that drug-like molecules can have 10 or more
rotatable bonds and each such bond may have 3 accessible rotamers a compound may have
310 conformations that must be considered. The need to access a large number of these
conformations is further emphasized by studies showing that bioactive conformations of
compounds in X-ray crystal structures of ligand-protein complexes can have energies 15∼20
kcal/mol higher than the global minimum104-107. While the value of 310 is likely an
overestimation due to steric clashes, it is evident that a major concern in modern LBDD
methods is securing bioactive conformations given that model assessment includes multiple
conformations in a large number of studies105, 106, 108-112. Furthermore, taking all
conformations into account during model development can account for the dynamic nature
of molecules; 4D-QSAR79, 80 and the Conformationally sampled pharmacophore
(CSP)113-115 are representative methods that use this information.

Various methods are employed to generate multiple conformations of a ligand. Systematic
search approaches116-118 formally perform an exhaustive sampling of conformational space,
thereby covering the whole energy surface. However, as the degrees of freedom increases
the number of possible conformations becomes enormous and often includes non-physical
structures. Systematic search procedures therefore often limit the number of conformations
accessed and select conformations within a user-defined energy difference range. For
example, MOE supports a maximum of up to 10000 conformers and each one is subjected to
trial model buildup. An alternative to systematic sampling is Monte Carlo based
approaches119-121 where random changes in structures (i.e. trial moves) are attempted by
rotation about a dihedral angle or other geometric change with the new conformations
associated with the trial moves accepted or rejected according to the Metropolis
criterion120, 121. In the Metropolis method a conformation with an energy, ΔE, lower than
that of the previous conformation is accepted while conformations with higher, less
favorable energies are kept based on the acceptance probability, p=e-ΔE/kT where k is the
Boltzmann constant, T is the temperature and p is compared to a random number. If p is
greater than the random number the conformation is accepted, allowing higher energy
conformations to be sampled. In this method energy barriers are easily overcome by
increasing the effective temperature but random elements still exist during sampling leading
to inefficiencies due to similar conformations being accessed. The Poling method122 adds a
penalty function (poling function) to the energy during the conformational search that is
inversely proportional to the root mean square distance between conformations so sampling
of similar conformation is avoided while accessing new conformation is maximized. With
the same goal as the Poling method, Tabu search123 keeps a record of previous sampled
states thereby maximizing the exploration of previously unsampled conformations. When
GA124, 125 is applied for conformational sampling, each chromosome is a conformer and
contains genes corresponding to structural degrees of freedom in the molecule.
Chromosomes undergo mutations and crossover resulting in the sampling of diverse
conformations in the descendant conformations. Molecular dynamics (MD) simulations
sample conformations deterministically according to Newton's equations of motion and
overcome trapping in local minima due to the inclusion of kinetic energy in the system, as
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described below. All of the methods mentioned in this paragraph have advantages and
disadvantages. For small molecules systematic search algorithms in combination with an
accurate force field, as discussed below, can assure that all relevant conformations are taken
into account. With larger molecules, exhaustive sampling of all accessible conformations is
not feasible, MC or MD methods allow for extensive sampling of accessible conformations,
though care must be taken to assure that all the relevant conformations are being sampled.
One outstanding advantage of both MD and MC methods is that a variety of methods that
allow for detailed representation of the biological environment of a molecule by, for
example, the explicit treatment of waters and ions have been developed for these
approaches. Given the wide use of MD methods for conformational sampling as well as for
studies of the dynamics of molecules ranging from small ligands to large macromolecular
complexes containing 1 million or more atoms, the remainder of the discussion of
conformational sampling will focus on MD based approaches126-130.

MD simulations 127, 131, 132 are based on Newton's equations of motions. The second law
F=ma states that from position ri(t), velocity vi(t), and mass mi for an atom i at time t, force
Fi(t) can be calculated. In MD simulations, forces are usually obtained from analytical
derivatives of the potential energy function and integration methods are used to obtain new
positions ri(t+δt) and velocities vi(t +δt) from the previous states, ri(t), vi(t), and ai(t). For
example, the original Verlet integrator133 uses a Taylor series expansion of position.
Summing equation 1a and 1b yields 1c which determines the new position. This integration
minimizes memory requirements as it is not necessary to store velocities, although they can
readily be calculated using equation 1d if required.

Equation 1a

Equation 1b

Equation 1c

Equation 1d

Leapfrog Verlet integration134, 135 uses an expansion of positions and velocities to the
second order and an interval 1/2δt instead of δt. Subtraction of equation 2b from 2a yields
2c. New positions may then be obtained by substituting v(t) from rearrangement of 2a into
v(t) of 1a and truncating the expansion at the velocity term yielding equation 2d.

Equation 2a
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Equation 2b

Equation 2c

Equation 2d

Extended integration methods have been developed to enhance accuracy and provide special
features for the simulation system of interest136. For example, for simulations of aqueous
solutions it may be desirable to reproduce constant pressure, temperature, or volume in
accord with the specific ensemble being targeted. For example, simulations in the constant
pressure, temperature and number of particles ensemble (NPT) may be used to calculate
Gibbs free energies while a constant volume, temperature and number of particles ensemble
(NVT) yields Helmholtz free energies. However, such simulations require the appropriate
boundary conditions, such as periodic boundaries136. While these are necessary for sampling
the conformations of ligands in the presence of explicit solvent, for LBDD MD simulations
are typically performed in the absence of explicit solvent. Such simulations may be
performed in the “gas phase” or using implicit solvent models to treat the solvent
environment, as detailed below.

High temperature MD has long been used to facilitate the crossing of high energy barriers to
assure a broad sampling of conformational space. In high temperature MD, the probability
of particles having the necessary velocity (or kinetic energy) to cross energy barriers is
increased over room temperature simulations. While sampling in MD is driven by
information on the molecular forces thereby guiding conformational sampling to physically
meaningful regions, unwanted sampling may occur in high temperature MD. This is due to
the high temperature leading to sampling of conformations that are inaccessible at room
temperature thereby causing inefficient use of computational effort. However, care to avoid
excessively high temperatures can minimize this problem and a number of protocols,
referred to as simulated annealing137, perform high temperature MD followed by room
temperature MD to assure that conformations relevant to the latter are being sampled.

A simple way to improve sampling via MD simulations is to perform multiple simulations
of the system starting with different initial random number seeds to assign the velocities to
the particles in the system. Typically, a Gaussian distribution of velocities are randomly
generated and assigned to each particle with those initial velocities satisfying a Maxwell-
Boltzmann distribution defining a selected temperature. While the overall velocity
distribution is approximately reproduced with the different random number seeds yielding
the same macroscopic temperature, the individual atoms have different velocities, thereby
directing the molecule to sample different conformations. However, this approach does not
always avoid kinetic trapping for larger molecules due to large barriers often associated with
large conformational changes.

Methods that go beyond the use of high temperature and multiple MD runs are referred to as
generalized ensemble (GE) algorithms.138-140 These include replica exchange MD
(REXMD)141, meta-dynamics142, 143, accelerated MD (AMD)144 and λ-dynamics145 among
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others. In GE algorithms energy barriers are overcome by adding an external biasing
potential(s) to the system. This may be performed by accessing additional conformations
from additional simulations, as in REXMD, or by approaches that directly modify the free
energy landscape of the system. Many GE MD simulation approaches sample the free
energy landscape efficiently and may be used to calculate accurate free energy differences.
The free energies are often calculated by thermodynamic integration (TI) 146 or the weighted
histogram analysis method (WHAM).147

Standard REXMD involves parallel independent simulations (replicas) at a range of
temperatures and exchanges conformations between replicas according to an exchange
probability (Equation 3).

Equation 3a

Equation 3b

Equation 3c

In equation 3 Ti indicates the temperature of replica i, qi is the configuration of replica i at
the point of exchange, and Ei represents Hamiltonian energy of replica i. The main idea
behind REXMD is that one MD trajectory in a local minima can take conformational
information from another replica which may be found in another region of conformational
space (e.g. across an energy barrier) but have similar energies. The probability of exchange
between replicas is such that it enforces sampling of a Boltzmann distribution of
conformations, thereby satisfying a proper thermodynamic ensemble as defined by the
simulation conditions. Implementation of REXMD is not straightforward, with issues
including how to set up the proper temperature spacing, the number of replicas, and the
exchange frequency. For large systems with explicit solvent, REXMD requires a large
number of replicas and small temperature difference between adjacent replicas to achieve an
acceptable exchange ratio. To overcome this implicit solvent models, as discussed below,
may be used thereby allowing for a significant increase in the difference in temperature
between adjacent replicas. For example, in the presence of explicit solvent replicas may
have temperature differences of 10 K while when implicit solvent is used 30 K may be used.
In addition, hybrid methods have been developed148. Concerning, exchange frequency,
higher exchange frequencies typically lead to enhanced sampling149. However, care must be
taken as although high temperature enhances barrier crossing, it may shift the equilibrium
between two states and make high temperature states more favorable throughout all replicas.

Hamiltonian replica exchange molecular dynamics (HREXMD)150-152 overcomes
drawbacks of REXMD by scaling the potential energy function (i.e. Hamiltonian) rather
than the temperature (Equation 3c). Perturbation of the Hamiltonian can involve almost any
term in a force field such as the peptide backbone conformational energies, dielectric
constant or ligand-solvent interactions. HREXMD needs a lower number of replicas than

Shim and MacKerell Page 9

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



REXMD since the perturbation is applied locally on selected components of the system.
Generally the perturbation is expressed as a function of an order parameter λ in

Equation 4

where 0 ≤ λi ≤ 1, such that the Hamiltonian is the reference state H0 (i.e. the ground state)
when λ is zero and target state H1 (i.e. fully perturbed) when λ is one. In HREXMD,
simulations are carried on each replica with H(λi) and conformations exchanged between
adjacent H(λi) replicas thereby facilitating the crossing of energy barriers.

There are single MD approaches using dynamic variations of λ. Lambda-dynamics145, 153

implements λ as an artificial particle that is propagated during the MD simulations thereby
sampling various λ values as dictated by the free energies of the system without the need of
using pre-defined λ values. The Hamiltonian is expressed by adding two more terms for
dynamic λ variables to H(λi), as shown below, and {λi} is used since multiple λs can be used
to perturb different components of the Hamiltonian such as electrostatic or dihedral energies.
In the approach the extended Hamiltonian, comprised of the standard, ground state
Hamiltonian and the perturbations associated with the λ terms is defined as

Equation 5

where mi and λi are dynamic variables which overcome the limitation of using discrete λ
values and U*({λi}) is a λi-dependent biasing potential which can take various forms to
sample as many states as possible.

Another single dynamics GE method, Metadynamics142, 143, 154 uses a history-dependent
biasing potential to force selected degrees of freedom (e.g. collective variables, CV) of the
system being sampled away from conformations visited frequently. This is performed by
“lifting” low energy regions with a biasing potential as those regions are being sampled,
thereby facilitating conformational changes away from the low energy regions. The biasing
potential is the sum of Gaussian functions, VG, that are used to fill valleys of the free energy
surface as defined as follows

Equation 6

where U(q) is the potential energy of coordinates q at time t, h is Gaussian height, w is
Gaussian width, and CV(t) is the value of the CV at time t. The simulation remembers
information about the added biasing potentials and the final VG is a negative image of the
free energy surface thereby allowing reconstruction of the original free energy surface.
Metadynamics is able to run with multiple CVs such as distance between two atoms, angles,
or torsion angles; the choice of CVs, and optimal h and w for each CV are user selected and
optimization of these parameters for the system of interest is often required.

Taking a similar strategy, the orthogonal space random walk (OSRW) algorithm155, 156 is
another efficient way of conformational sampling. This strategy simultaneously perturbs the
order parameter space (general term for λ or CV above) and generalized free energy space to
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overcome not only local minima trapping but also lagging of changes in the environment
surrounding the CV or λ required for conformational changes to occur. OSRW uses 2D
Gaussian-shaped repulsive potentials to flatten the free energy surface and avoid often-
visited states. After searching the whole conformational space it is possible to select
accessible conformations by order parameters associated with the conformational change.

Another approach is accelerated MD (AMD).144 AMD is a simple but efficient sampling
method that has shown good performance for biomolecules. Compared to metadynamics and
OSRW, it uses a simpler form of the biasing potential (equation 7). When applying the
method, the boost energy E and α, which is a tuning factor for the biasing potential's well-
depth, need to be pre-defined and the biasing potential is applied when the potential energy
is less than E.

Equation 7

REXMD and HREXMD have been successfully used for conformational sampling of
flexible ligands114, 157-159, while the other GE algorithms have been used mainly in
biomolecules to date. However, considering their success in conformational sampling,
problems involved in flexible protein loops and ligand passage in receptors160, 161, it is
anticipated that they will be of utility to conformational sampling in LBDD.

In addition to the sampling algorithms, an important consideration is the role of solvent in
conformational sampling. Conformational changes and sampling are dependent on the
surrounding environment of all molecules such that energetically favorable conformations in
gas phase may not be favorable in solution (or a receptor binding site) and vice versa. This
occurs due to water competing for favorable intramolecular interactions, for example, by
disrupting intramolecular hydrogen bonds or reduced intramolecular dipole-dipole
interactions. Alternatively, water can impact the orientation of hydrophobic groups, which
may remain “accessible” in the gas phase, but cluster together in the presence of solvent.
Therefore sampling conformations in the presence of explicit water molecules is ideal when
studying biological systems but such calculations are computationally expensive due to the
presence of additional particles in the system. In addition, the viscosity of the water
surrounding a molecule can slow conformational sampling during MD simulations, thereby
further increasing the computational costs. An effective alternative to explicit solvent are
continuum solvent models that allow for distributions of conformations to be obtained that
approximate an explicit solvent environment while allowing for efficient sampling by
avoiding the increased number of particles and the viscosity issues with water. A large
number of implicit solvent models are available and recent reviews on the topic have been
presented162-164. Simple implicit solvent models use constant or distance-dependent
dielectric constants. Another approach is using solvation parameters for each atom based on
their solvent accessibility so that particles in the system have varying responses to
environments. More accurate solutions to solvation effects are obtained by the Poisson-
Boltzmann (PB)165, 166 or Generalized Born (GB)167 models. In MD, the most widely used
methods are GB models due to the high efficiency of their analytical solution and
comparable accuracy with respect to PB models that typically require numerical solutions.
GB models calculate the electrostatic component of the solvation free energy as shown in
Equation 8, with that term added to the total energy.
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Equation 8

In equation 8 ε is the dielectric constant of solvent, qi is the partial atomic charge of atom i,
rij is the interatomic distance between atom i and j, and Ri, which is the most important
parameter in GB models, is the effective Born radii of atom i. The effective Born radii can
be understood as an atom's degree of burial within the solute or radius exposed to the solvent
environment. A number of GB models have been developed such as GBMV168 and
GBSW169 in CHARMM170, 171 and GBOBC 163 in AMBER172, 173 which differ primarily in
the way that the effective Born radii are calculated.

The final portion of this section presents a simple example of sampling the conformational
space of a peptide using three MD-based sampling approaches based on the CHARMM22/
CMAP protein force field174. Figure 1 shows the extent of sampling attained by MD in both
vacuum and explicit solvent (Fig. 1a and 1b) and by two sampling methods (single MD vs.
HREXMD using explicit solvent, Fig. 1b and 1c) for the flexible opioid pentapeptide, Leu-
enkephalin. For the explicit solvent HREXMD, λ=0, 0.14, 0.19, 0.27, 0.37, 0.52, 0.72, and
1.0 where 1.0 represents a CHARMM phi, psi energy surface that is flat for non-glycine
residues, as implemented using the CMAP tool174. Simulations were performed using the
REPDSTR module in CHARMM for 10 ns, attempting exchanges every 0.5 ps for the
HREXMD. The range of conformational sampling was measured by the 2D probability
distribution of the distance between two aromatic rings (A and B) and the angle between two
aromatic rings and N-terminal nitrogen (N). Additional details of the simulation
methodology are included in the supporting information. Comparison of figures 1a and 1b
show that the sampling of conformational space by MD differs in gas phase vs explicit
solvent. In explicit solvent, structures with longer AB distances and larger ANB angles are
being sampled. These represent more extended structures due to the presence of solvent; in
the gas phase the peptide folds back on itself leading to more compact structures as no
solvent is available to compete for intramolecular interactions. As expected, HREXMD (1c)
samples a similar range of conformations as the standard explict solvent MD (1b), but the
extent of sampling is more complete using the same amount of simulation time. The more
complete sampling by HREXMD is due to the simulation overcoming an energy barrier in
the vicinity of 10∼12 Å for the AB distance and 60∼100° for the ANB angle. Although this
example is not a rigorous test from which better performance can be proved based on more
efficient sampling, it points out the importance of the simulation method and solvent
environment when performing conformational sampling.

An important consideration when performing conformational sampling is the extent of
convergence; have all the accessible conformations of the molecule been sampled? When
conformational sampling is done by MD, convergence of sampling may be checked by
continuing the simulation time and testing if additional conformations are being sampled. If
additional conformations are not being sampled the sampling may be considered converged.
For conventional MD, root mean square deviations of overall structure, distance between
atoms or functional groups (as in Figure 1), or torsions may be used for simple evaluation of
convergence. Alternatively, differences in probability distributions between two intervals of
a trajectory (e.g. the first and second half) can also indicate if the simulation has reached
convergence. For GE methods, convergence of the calculated free energy surface indicates
adequate sampling. However, it should be emphasized that the appearance of convergence
does not necessarily mean that true convergence has been attained. There is always the
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possibility that a molecule, especially more complex molecules such as polypeptides, may
have access to significantly different conformations than those accessed in the performed
simulations.

4. Force fields (FF)
While the appropriate sampling approaches can assure that the required range of
conformations is being accessed it is the underlying energy function that largely determines
the probability of the conformations being sampled. While QM methods can supply this
information their computational demand limits their utility for sampling large numbers of
conformations for even small molecules. Accordingly, it is necessary to use molecular
mechanics energy functions. While such functions are computationally efficient, they are
based on simple terms that require a set of parameters to allow for the energy and forces on
a molecule to be accurately calculated, as described below. These parameters, therefore,
dictate the applicability and quality of the force field and a number of force fields are
available for drug-like molecules. In the remainder of this article an overview of the force
fields most commonly used for ligands will be presented, including examples of the ability
of selected force fields to reproduce QM conformational energies of two example ligands.

A force field consists of a potential energy function and the associated parameters that allow
the energy and forces to be calculated as a function of the molecular structure and
conformation. Potential energy functions used in molecular mechanics typically include
terms for bond stretching, angle bending, rotation around bonds (dihedral or torsion angles),
out of plane motions (improper angles), and non-bonded interactions (electrostatic and van
der Waal energies). Such force fields are referred to as Class I models. In Class II force
fields crossterms to treat correlation between bonds and angles, angles and torsions, and so
on are included and different variations of the nonbond terms may be used. Equations 9 and
10 show examples of potential energy functions in the two classes, which are classified by
their simplicity and potential transferability. Detailed descriptions of the example functional
forms are found in Brooks et al.170 for the class I force field in CHARMM and in
Plimpton175, 176 for a class II FF. Class I FFs include those specialized for biomolecules (see
below). The simple functional form shown in Equation 9 is computationally efficient
allowing them to handle macromolecules in aqueous or other condensed phase
environments. Equation 10 is a typical energy function used in a Class II FF and employs
more complex form which facilitates (but doesn't necessarily dictate) transferability across a
wider range of molecules.
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Equation 9

In equation 9 b, θ, S, n, φ, δ, and ω represent the bond length, angle, distance between 1-3
atoms, multiplicity, torsion, phase, and improper angle, respectively, and the subscript zero
indicates the equilibrium geometry parameter. Kx are the associated force constants. The
Lennard-Jones 6-12 equation is commonly used to model the van der Waals energy between
atom i and j, where εij, rij, and Rmin,ij are the well-depth, interatomic distance, and
interaction distance at minimum of the energy between atoms i and j, respectively. In the
electrostatic or Coulombic term, qi and qj are partial atomic charges and ε is the dielectric
constant.

For equation 10 the same symbols are used as in Equation 9 and additionally b′ and θ ′ used
in the crossterms represent the second bond or angle associated with the cross interaction.
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Equation 10

To move from a potential energy function to a FF requires determination of the values of the
parameters, a process referred to a parameter optimization or parametrization. Parameters to
be optimized in equations 9 and 10 include force constants, equilibrium geometries, partial
atomic charges, well depth and interaction distance at minimum energy (Rmin,ij) and so on.
The goal of parameter optimization is reproducing a collection of quantum mechanical and/
or experimental observables for the ligands of interest.

Parameters for macromolecules such as proteins, nucleic acids, lipids and carbohydrates
have been paid special attention and optimized extensively in Class I FFs such as
AMBER(Assisted Model Building with Energy Refinement)172, 173, CHARMM(Chemistry
at Harvard Molecular Mechanics)170, 171, GROMACS177 and OPLS(Optimized Potential for
Liquid Simulations)178, 179. Subsequently, parameters for drug-like molecules were added to
be compatible with the individual biomolecular FFs while maintaining the accuracy of the
“parent” biomolecular FF. To achieve this, the parent and related small molecule parameters
use the same form of the potential energy function and strategy used for optimization of the
FF. This is necessary to provide consistent and balanced energy and force evaluations during
simulations of small molecule-biomolecular complexes. For example, the CHARMM
General FF (CGenFF) 180 follows the standard optimization procedure of the CHARMM
additive biomolecular FF181.

As an example of parameter optimization the approach used in the CHARMM additive force
field for small molecules, with which we are intimately familiar, will be used. Typically,
optimization of CGenFF parameters is performed as follows. Force constants, equilibrium
bond lengths and valence angles are parametrized to reproduce experimental or QM
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vibrational frequencies and geometries. Dihedral angle force constants, phases, and
multiplicities are optimized targeting QM potential energy scans or spectroscopic data such
as NMR J coupling constants. Charges are optimized by evaluating optimal distances and
interaction energies of water interaction with the drug-like molecule based on QM
calculations as well as dipole moments and optimization of LJ parameters is guided by the
reproduction of pure solvent or crystal experimental data. To date, CGenFF includes
approximately 150 atom types, 400 bond, 1200 angle, 3000 torsion parameters explicitly
optimized based on 500 model compounds. When extending the force field to new chemical
entities, parameters for the new molecules not already available in the CGenFF may be
assigned by analogy for the bond/angle/dihedral and LJ terms, while determination of the
partial atomic charges is based on a bond-charge increment algorithm extended to included
angle- and dihedrals increments that have been trained to reproduce CGenFF charges for
over 500 model compounds (K. Vanommeslaeghe and A.D. MacKerell, Jr., work in
progress). A web-based utility in the context of the ParamChem project is available to
perform these functions. An important feature of CGenFF when automatically assigning
parameters is information about the quality of the assigned parameter based on a penalty
score. This is important as the ability of parameters to be transferred between molecules in
the context of empirical force fields is limited, as shown below, and it allows users to know
which parameters require validation and further optimization to obtain the required level of
accuracy. However, as with conformational sampling, even in cases where the parameters
are directly transferred to a new molecule, the possibility that those parameters may not
perform with adequate accuracy exists, such that the aware user is advised to perform
validation tests of the transferred parameters, as previously described.180

Beyond CGenFF there are a number of other small molecule FFs designed to be compatible
with biomolecular FFs. GAFF (General AMBER FF)182 was developed for the simulation of
pharmaceutical compounds with the AMBER biomolecular FF. It is based on QM
optimization of about 3000 model compounds and geometric information from the
Cambridge structure database (CSD)183. It has 57 atom types, 700 bond length parameters,
3000 angle parameters, and 500 dihedral angle parameters. Beyond these available
parameters, the Antechamber toolkit184 is used to assign parameters for novel molecules.
SwissParam is a web-based utility used to generate CHARMM consistent parameters for
ligands. It takes internal energy parameters and charges from MMFF (Merck Molecular
FF)185, 186 while cubic and quadratic terms for bond, angle, and improper energies that are
present in the Class II force field are truncated as required for use with the Class I
CHARMM additive FF. In addition, van der Waals energy parameters are from the
CHARMM additive FF based on atom type similarity. However, it should be noted that the
nonbond parameters being derived in a different manner than that of the parent biomolecular
FF make them formally incompatible with the CHARMM biomolecular FF. OPLS-AA (All
Atom) emphasizes parameters to reproduce the conformational energetic and condensed
phase properties of small molecules for use in biological environments. Initial parameters
were adopted from the OPLS-UA (united atom), AMBER, and CHARMM FFs and 50
model compounds were optimized focusing on torsion and non-bonded parameters178.
OPLS-AA uses experimental liquid properties as target data during parameter optimization.
Thus, Class I biomolecular FFs have been extended to include parameters for a range of
small molecules though the extent of chemical space covered and the quality of the
parameters for those molecules vary significantly.

Class II FFs were initially designed to treat a wide range of small molecules. Examples
include CFF/CVFF (consistent valence FF)187, MM2 (molecular mechanics)188, MM3189,
MM4190, MMFF94185, and Tripos 5.2 FF191. These FFs are typically not optimized with
respect to interactions with the environment, with the exception of MMFF, limiting their
applicability. In general, Class II force fields were optimized to reproduce geometries,
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vibrational spectra and conformational energies in the gas phase, with the various cross and
higher order terms in the energy functions (Equation 10) included to allow for both better
reproduction of those properties as well as facilitate transferability of the parameters to a
wider range of compounds. MMFF94 is currently one of the most widely used FFs for small
molecules and is available in numerous LBDD software packages for small molecule
simulations. Its goal is broad applicability and QM data for over 3000 molecules and
condensed phase data for 2800 CSD compounds were used to optimize and validate the
parameters. Allinger and coworkers have developed the MM1-4 FF series achieving high
accuracy for organic molecules with respect to geometries, conformational properties and
heats of formation. Upon going from MM1 to MM2, the MMx series shifted to a simpler
form of Class II FF and MM3 lead to further improvements by including more model
compounds, additional experimental data, and higher energy conformations during
parameter optimization. MM4 represents a further extension of a Class II FF due to the
inclusion of four-fold torsional energy terms, torsion-improper-torsion cross terms, bond-
torsion-bond cross terms, two torsion-bond cross terms for central and terminal bonds each
and so on. MM4 was optimized targeting thermodynamic quantities ΔH, ΔS, ΔG, and
geometries from QM calculations or experimental spectroscopic data. All of these class II
FFs are primarily utilized for organic compounds in the gas phase, though MMFF94 has
shown limited use in macromolecular condensed phase simulations.

Use of a FF for energy evaluation, energy minimization, MD simulation or other sampling
approach represents a significant, important step forward in most modern LBDD studies and
the quality of the FF plays an important role in the outcomes of such studies. As emphasized
in the preceding paragraph, the various FFs were optimized targeting a training set of
molecules. Accordingly, each FF may be anticipated to reproduce the energies and forces of
the molecules in the respective training sets with reasonable accuracy. However, the
question of transferability remains such that how accurate is the treatment of a molecule not
in the training set originally used to optimize the FF. While a full investigation to address
this issue represents a significant challenge, two examples of the transferability of selected
FFs will be given targeting QM dihedral potential energy scans of dimethyltryptamine and
dimethylamino[1,4]diazepine which are analogues of serotonin and clozapine.

Figure 2 shows dihedral potential energy surface generated by MMFF, SwissParam,
CGenFF, and, in 2b, CGenFF after additional parameter optimization along with QM data
obtained at the MP2/6-31G* level using the Gaussian03 program192. Dihedral angles, shown
as curved arrows in the figure, were rotated in 15° increments and the geometries were
optimized at each step. MMFF, SwissParam and CGenFF parameters were input into
CHARMM and geometries were minimized to an RMS force of < 10-6 kcal/mol/Å. With
dimethyltryptamine, MMFF and SwissParam underestimated the height of energy barriers
and CGenFF had a different peak shape at 45° and 330°. Since SwissParam adopted
parameters from MMFF, its energy surfaces were similar to that of MMFF, though not
identical. This is due to the different representations of the nonbond terms, which contribute
to the energy surfaces and emphasize the problem with mixing parameters from different
force fields. Overall, the shape of the surfaces for dimethyltryptamine are acceptable for all
three FFs. However, results for dimethylamino[1,4]diazepine emphasize that caution needs
to be taken as when transferring parameters to new compounds (Figure 2b and Table 2). The
MMFF energy surface has local minima around 150° and 270° which will lead to errors in
conformational sampling; similar problems are present with the parameters generated by
SwissParam. When energies as a function of conformation are incorrectly represented the
conformations selected from the sampling approach will typically be incorrect or the
probabilities of those conformations improperly represented. Initial parameters from
CGenFF showed poor agreement with the QM PES, but the FF is in significantly better
agreement following optimization of selected dihedral angle parameters. The results with all
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the tested FFs indicate the limited ability to transfer parameters to new molecules. An
advantage of CGenFF is that penalty values are provided for each parameter assignment.
This alerts the user to possible limitations in the FF, such as occur in
dimethylamino[1,4]diazepine's conformational energy. In such cases validation of the
parameters and additional optimization should be performed as required. Efforts to extend
the ParamChem web server to include an automated interface for parameter validation and
optimization are ongoing (K. Vanommeslaghe, S. Pamidighantam, M. Sheetz and A.D.
MacKerell, Jr. Work in progress).

5. Conformationally sampled pharmacophore (CSP)
Leveraging the ability to perform extensive conformational sampling of small molecules
using a properly optimized FF for the ligands of interest facilitated the development of a
novel approach in our laboratory, the conformationally sampled pharmacophore
(CSP)113-115, 159, 193, 194. CSP is a LBDD approach based on extensive sampling of
conformational space, under the assumption that such sampling will lead to inclusion of the
bioactive conformation being sampled despite that conformation not being known. The use
of all accessible conformations in the CSP approach allows for probability distributions of
different geometric features and/or physical properties to be determined, as shown in Figure
1 for Leu-Enkephalin. As 4D-QSAR uses occupancy of lattice points on a 3D grid by
conformations of the ligands being studied as descriptors, CSP uses probability distributions
of pharmacophoric features (e.g. distances, angles and dihedrals) as descriptors for model
development. The use of all accessible conformations in CSP has allowed it to be applied
successfully to highly flexible molecules such as peptidic opioids113-115 and bile
acids159, 193, 194. A strength of the method is the ability to connect the pharmacophore
models to molecular details of the ligands being studied thereby facilitating physical
interpretation of the models and applying the knowledge for ligand optimization, including
rational drug design. By including all conformations, CSP can often recognize subtle
differences among structurally similar compounds as well common pharmacophore features
among diverse compounds. By using the quantitative overlap of pharmacophoric feature
probability distributions of different ligands rather than conformations of the ligands
themselves during model fitting, the molecular alignment problem is eliminated. However,
once a suitable model is developed the conformational distributions from the MD
simulations used in CSP model development may be used to guide possible superposition
thereby identifying the biologically relevant conformations of the ligands. For example, CSP
model for δ-opioid receptor ligands demonstrated how flexible peptidic opioids can be
superimposed with non-peptidic opioids114.

For proper CSP modelling, accurate FF and efficient conformation searching are needed. To
date, MMFF and CGenFF have been used successfully. Conformational sampling has used
extended MD simulations alone at both room and high temperatures113-115 and temperature
REXMD simulations in implicit solvent114, 159, 194. Figure 3 shows the general procedure
used in CSP modelling. Once conformations are pre-enumerated for the training set of
compounds, which may be performed using any of the above sampling methods,
pharmacophore development is performed in an automated, computationally feasible
fashion. As for identification of pharmacophore features, aromatic ring, ionizable groups, or
hydrogen bond donors and acceptors can be identified, the associated probability
distributions between the features calculated and, based on the extent of overlap of those
distributions, the various combination of overlaps iteratively regressed against biological
data, with those features yielding the best correlation with experimental data used for further
model development. Notably, the CSP method can be readily combined with
physicochemical descriptors to further facilitate model development159, 194.
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6. Conclusions
Presented is an overview of computational ligand-based drug design approaches currently in
use in rational drug design. Over the last 2-3 decades, a large number of methods have been
developed and many of these have been implemented in readily accessible software
packages. While this convenience is important for utilization of these methods, it is essential
that users understand the assumptions and limitations in those methods allowing for decision
on the suitability of the methods for a given project, what kind of knowledge one can obtain
through the study, and which aspect is the limiting factor with respect to producing accurate
SAR models. As many LBDD approaches require extensive sampling of conformational
space emphasis in this article was placed on recent FF development and the use of MD
simulations and related techniques for conformational sampling.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported in part by National Institutes of Health grants DK67530, DA13583, and DA19634,
Accelrys Inc., and the University of Maryland Computer-Aided Drug Design Center for computational resources.

References
1. Leach, AR.; Gillet, VJ. An Introduction to Chemoinformatics. Springer; 2007.
2. Merz, KM.; Ringe, D.; Reynolds, CH. Drug Design: Structure- and Ligand-Based Approaches.

Cambridge University Press; 2010.
3. Wermuth, CG. The practice of medicinal chemistry. Elsevier/Academic Press; 2008.
4. Young, DC. Computational drug design: a guide for computational and medicinal chemists. Wiley-

Interscience; 2009.
5. Andricopulo AD. Current Topics in Medicinal Chemistry. 2009; 9:754–754. [PubMed: 19754392]
6. Kapetanovic IM. Chemico-Biological Interactions. 2008; 171:165–176. [PubMed: 17229415]
7. Overington JP, Al-Lazikani B, Hopkins AL. Nat Rev Drug Discov. 2006; 5:993–996. [PubMed:

17139284]
8. Gane PJ, Dean PM. Current Opinion in Structural Biology. 2000; 10:401–404. [PubMed: 10981625]
9. Jhoti, H.; Leach, AR. Structure-based drug discovery. Springer; 2007.
10. Marrone TJ, Briggs JM, McCammon JA. Annual Review of Pharmacology and Toxicology. 1997;

37:71–90.
11. Costanzi S, Tikhonova IG, Harden TK, Jacobson KA. Journal of Computer-Aided Molecular

Design. 2009; 23:747–754. [PubMed: 18483766]
12. Tropsha A, Wang SX. Ernst Schering Foundation Symposium Proceedings. 2006:49–73. [PubMed:

17703577]
13. Fischer E. Berichte der deutschen chemischen Gesellschaft. 1894; 27:2985–2993.
14. Koshland DE. Proceedings of the National Academy of Sciences of the United States of America.

1958; 44:98–104. [PubMed: 16590179]
15. Boehr DD, Nussinov R, Wright PE. Nature Chemical Biology. 2009; 5:789–796.
16. Kumar S, Ma B, Tsai CJ, Sinha N, Nussinov R. Protein Science: A Publication of the Protein

Society. 2000; 9:10–19. [PubMed: 10739242]
17. Ma B, Kumar S, Tsai CJ, Nussinov R. Protein Engineering. 1999; 12:713–720. [PubMed:

10506280]
18. Tsai CJ, Kumar S, Ma B, Nussinov R. Protein Science: A Publication of the Protein Society. 1999;

8:1181–1190. [PubMed: 10386868]

Shim and MacKerell Page 19

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Tsai CJ, Ma B, Nussinov R. Proceedings of the National Academy of Sciences of the United States
of America. 1999; 96:9970–9972. [PubMed: 10468538]

20. Free SM, Wilson JW. Journal of Medicinal Chemistry. 1964; 7:395–399. [PubMed: 14221113]
21. Hansch C, Fujita T. Journal of the American Chemical Society. 1964; 86:1616–1626.
22. Hansch, C.; Selassie, C. Quantitative structure-activity relationship-a historical perspective and the

future. Elsevier; Oxford: 2007.
23. Ekins S, Boulanger B, Swaan PW, Hupcey MAZ. Molecular Diversity. 2002; 5:255–275.

[PubMed: 12549676]
24. Ekins S, Ecker GF, Chiba P, Swaan PW. Xenobiotica; the Fate of Foreign Compounds in

Biological Systems. 2007; 37:1152–1170.
25. Winkler, DA. Molecular analysis and genome discovery. John Wiley and Sons; 2004.
26. Gedeck P, Lewis RA. Current Opinion in Drug Discovery & Development. 2008; 11:569–575.
27. Scior T, Medina-Franco JL, Do QT, Martínez-Mayorga K, Yunes Rojas JA, Bernard P. Current

Medicinal Chemistry. 2009; 16:4297–4313. [PubMed: 19754417]
28. Martin, YC.; John, BT.; David, JT. Comprehensive Medicinal Chemistry II. Elsevier; Oxford:

2007. p. 119-147.
29. Güner, OF. Pharmacophore perception, development, and use in drug design. Internat'l University

Line; 1999.
30. Wermuth, CG. Pharmacophores and pharmacophore searches. Wiley-VCH; 2006.
31. Leach AR, Gillet VJ, Lewis RA, Taylor R. Journal of Medicinal Chemistry. 2010; 53:539–558.

[PubMed: 19831387]
32. Wolber G, Seidel T, Bendix F, Langer T. Drug Discovery Today. 2008; 13:23–29. [PubMed:

18190860]
33. Gillet, VJ.; Willett. Compound selection using measures of similarity and dissimilarity In

Comprehensive medicinal chemistry II. Elsevier; 2007.
34. Willett P. Drug Discovery Today. 2006; 11:1046–1053. [PubMed: 17129822]
35. Geppert H, Vogt M, Bajorath Jr. Journal of Chemical Information and Modeling. 50:205–216.

[PubMed: 20088575]
36. Shanmugasundaram K, Rigby AC. Combinatorial Chemistry & High Throughput Screening. 2009;

12:984–999. [PubMed: 20025564]
37. Leach, AR.; John, BT.; David, JT. Comprehensive Medicinal Chemistry II. Elsevier; Oxford:

2007. p. 87-118.
38. Zhou T, Huang D, Caflisch A. Current Topics in Medicinal Chemistry. 10:33–45. [PubMed:

19929831]
39. Liu P, Long W. International Journal of Molecular Sciences. 10:1978–1998. [PubMed: 19564933]
40. Yap CW, Li H, Ji ZL, Chen YZ. Mini Reviews in Medicinal Chemistry. 2007; 7:1097–1107.

[PubMed: 18045213]
41. Güner O, Clement O, Kurogi Y. Current Medicinal Chemistry. 2004; 11:2991–3005. [PubMed:

15544485]
42. Gasteiger, J.; Engel, DT. Chemoinformatics: a textbook. Wiley-VCH; 2003.
43. Weininger D. Journal of Chemical Information and Computer Sciences. 1988; 28:31–36.
44. Ash S, Cline MA, Homer RW, Hurst T, Smith GB. Journal of Chemical Information and Computer

Sciences. 1997; 37:71–79.
45. Durant JL, Leland BA, Henry DR, Nourse JG. Journal of Chemical Information and Computer

Sciences. 2002; 42:1273–1280. [PubMed: 12444722]
46. Bonchev, D.; Rouvray, DH. Chemical graph theory: introduction and fundamentals. Taylor &

Francis; 1991.
47. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH; 2002.
48. Helguera AM, Combes RD, González MP, Cordeiro MNDS. Current Topics in Medicinal

Chemistry. 2008; 8:1628–1655. [PubMed: 19075771]
49. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Advanced Drug Delivery Reviews. 2001;

46:3–26. [PubMed: 11259830]

Shim and MacKerell Page 20

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



50. González MP, Terán C, Saíz-Urra L, Teijeira M. Current Topics in Medicinal Chemistry. 2008;
8:1606–1627. [PubMed: 19075770]

51. Miller, AJ. Subset selection in regression. CRC Press; 2002.
52. Draper, NR.; Smith, H. Applied regression analysis. Wiley; 1981.
53. Mercader AG, Duchowicz PR, Fernández FM, Castro EA. Chemometrics and Intelligent

Laboratory Systems. 2008; 92:138–144.
54. Devillers, J. Genetic algorithms in molecular modeling. Academic Press; 1996.
55. Pintore M, van de Waterbeemd H, Piclin N, Chrétien JR. European Journal of Medicinal

Chemistry. 2003; 38:427–431. [PubMed: 12750031]
56. Obrezanova O, Csányi G, Gola JMR, Segall MD. Journal of Chemical Information and Modeling.

2007; 47:1847–1857. [PubMed: 17602549]
57. Rogers D, Hopfinger AJ. Journal of Chemical Information and Computer Sciences. 1994; 34:854–

866.
58. Geladi P, Kowalski B. Analytica Chimica Acta. 1986; 185:1–17.
59. Rosipal R, Krämer N. Subspace, Latent Structure and Feature Selection. 2006:34–51.
60. Wold, H. Partial least squares. Wiley; New York: 1985.
61. Wold S, Ruhe A, Wold H, Dunn WJ Iii. SIAM Journal on Scientific and Statistical Computing.

1984; 5:735–743.
62. Jolliffe. Principal Component Analysis. Springer-Verlag; New York: 2002.
63. Wold S, Esbensen K, Geladi P. Chemometrics and Intelligent Laboratory Systems. 1987; 2:37–52.
64. Michielan L, Moro S. Journal of Chemical Information and Modeling. 50:961–978. [PubMed:

20527756]
65. Sakiyama Y. Expert Opinion on Drug Metabolism & Toxicology. 2009; 5:149–169. [PubMed:

19239395]
66. Si HZ, Wang T, Zhang KJ, Hu ZD, Fan BT. Bioorganic & Medicinal Chemistry. 2006; 14:4834–

4841. [PubMed: 16580211]
67. Friedman JH, Stuetzle W. Journal of the American Statistical Association. 1981; 76:817–823.
68. Kulkarni AJ, Jayaraman VK, Kulkarni BD. Combinatorial Chemistry & High Throughput

Screening. 2009; 12:440–450. [PubMed: 19442070]
69. Trevor, W Heritage; David, R Lowis. Rational Drug Design. American Chemical Society; 1999. p.

212-225.
70. Cartmell J, Enoch S, Krstajic D, Leahy DE. Journal of Computer-Aided Molecular Design. 2005;

19:821–833. [PubMed: 16416245]
71. Wong WW, Burkowski FJ. Journal of Cheminformatics. 2009; 1:4–4. [PubMed: 20142987]
72. Golbraikh A, Tropsha A. Journal of Molecular Graphics & Modelling. 2002; 20:269–276.

[PubMed: 11858635]
73. Kohavi R. IJCAI. 1995:1137–1145.
74. Clark RD. Current Topics in Medicinal Chemistry. 2009; 9:791–810. [PubMed: 19754395]
75. Cross S, Cruciani G. Drug Discovery Today. 15:23–32. [PubMed: 19150413]
76. Verma J, Khedkar VM, Coutinho EC. Current Topics in Medicinal Chemistry. 10:95–115.

[PubMed: 19929826]
77. Cramer RD, Patterson DE, Bunce JD. Journal of the American Chemical Society. 1988; 110:5959–

5967.
78. Klebe G, Abraham U, Mietzner T. Journal of Medicinal Chemistry. 1994; 37:4130–4146.

[PubMed: 7990113]
79. Andrade CH, Pasqualoto KFM, Ferreira EI, Hopfinger AJ. Molecules (Basel, Switzerland).

15:3281–3294.
80. Klein CD, Hopfinger AJ. Pharmaceutical Research. 1998; 15:303–311. [PubMed: 9523319]
81. Polanski J. Current Medicinal Chemistry. 2009; 16:3243–3257. [PubMed: 19548875]
82. Vedani A, Dobler M. Journal of Medicinal Chemistry. 2002; 45:2139–2149. [PubMed: 12014952]

Shim and MacKerell Page 21

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



83. Vedani A, Dobler M, Lill MA. Journal of Medicinal Chemistry. 2005; 48:3700–3703. [PubMed:
15916421]

84. Cruciani G, Pastor M, Guba W. European Journal of Pharmaceutical Sciences: Official Journal of
the European Federation for Pharmaceutical Sciences. 2000; 11 2:S29–39. [PubMed: 11033425]

85. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S. Journal of Medicinal Chemistry. 2000;
43:3233–3243. [PubMed: 10966742]

86. G. D. G. Hawkins, D. J.;Lynch, G. C.;Chambers, C. C.;Rossi, I.;Storer, J. W.;Li, J.;Zhu,
T.;Thompson, J. D.;Winget, P.;Rinaldi, D.;Liotard, D. A.;Cramer, C. J.;Truhlar, D. G., University
of Minnesota: Minneapolis, MN, 2002.

87. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA, James AB. Academic Press. 1998:385–395.
88. Lemmen C, Lengauer T. Journal of Computer-Aided Molecular Design. 2000; 14:215–232.

[PubMed: 10756477]
89. Brint AT. J Chem Inf Comput Sci. 1987; 27:152–158.
90. Jones G, Willett P, Glen RC. Journal of Computer-Aided Molecular Design. 1995; 9:532–549.

[PubMed: 8789195]
91. Lemmen C, Lengauer T, Klebe G. Journal of Medicinal Chemistry. 1998; 41:4502–4520.

[PubMed: 9804690]
92. Schneider G, Schneider P, Renner S. QSAR & Combinatorial Science. 2006; 25:1162–1171.
93. Chemical Computing Group. http://www.chemcomp.com
94. Acclerys. http://accelrys.com
95. PubChem. http://pubchem.ncbi.nlm.nih.gov/
96. Irwin JJ, Shoichet BK. Journal of Chemical Information and Modeling. 2005; 45:177–182.

[PubMed: 15667143]
97. ChEMBL. http://www.ebi.ac.uk/chembldb
98. Villoutreix BO, Renault N, Lagorce D, Sperandio O, Montes M, Miteva MA. Current Protein &

Peptide Science. 2007; 8:381–411. [PubMed: 17696871]
99. Barnard JM, Downs GM. Journal of Chemical Information and Computer Sciences. 1992; 32:644–

649.
100. Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M, Bunting KL, Polo JM,

Farès C, Arrowsmith CH, Yang SN, Garcia M, Coop A, MacKerell AD, Privé GG, Melnick A.
Cancer Cell. 17:400–411. [PubMed: 20385364]

101. Martin YC, Kofron JL, Traphagen LM. Journal of Medicinal Chemistry. 2002; 45:4350–4358.
[PubMed: 12213076]

102. Matter H. Journal of Medicinal Chemistry. 1997; 40:1219–1229. [PubMed: 9111296]
103. Nettles JH, Jenkins JL, Bender A, Deng Z, Davies JW, Glick M. Journal of Medicinal Chemistry.

2006; 49:6802–6810. [PubMed: 17154510]
104. Perola E, Charifson PS. Journal of Medicinal Chemistry. 2004; 47:2499–2510. [PubMed:

15115393]
105. Agrafiotis DK, Gibbs AC, Zhu F, Izrailev S, Martin E. Journal of Chemical Information and

Modeling. 2007; 47:1067–1086. [PubMed: 17411028]
106. Foloppe N, Chen IJ. Current Medicinal Chemistry. 2009; 16:3381–3413. [PubMed: 19515013]
107. Nicklaus MC, Wang S, Driscoll JS, Milne GW. Bioorganic & Medicinal Chemistry. 1995; 3:411–

428. [PubMed: 8581425]
108. Günther S, Senger C, Michalsky E, Goede A, Preissner R. BMC Bioinformatics. 2006; 7:293–

293. [PubMed: 16764718]
109. Kirchmair J, Laggner C, Wolber G, Langer T. Journal of Chemical Information and Modeling.

2005; 45:422–430. [PubMed: 15807508]
110. Kirchmair J, Wolber G, Laggner C, Langer T. Journal of Chemical Information and Modeling.

2006; 46:1848–1861. [PubMed: 16859316]
111. Loferer MJ, Kolossváry I, Aszódi A. Journal of Molecular Graphics & Modelling. 2007; 25:700–

710. [PubMed: 16815716]

Shim and MacKerell Page 22

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.chemcomp.com
http://accelrys.com
http://pubchem.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/chembldb


112. Moock TE, Henry DR, Ozkabak AG, Alamgir M. Journal of Chemical Information and Computer
Sciences. 1994; 34:184–189.

113. Bernard D, Coop A, MacKerell AD. Journal of the American Chemical Society. 2003; 125:3101–
3107. [PubMed: 12617677]

114. Bernard D, Coop A, MacKerell AD. Journal of Medicinal Chemistry. 2007; 50:1799–1809.
[PubMed: 17367120]

115. Bernard D, Coop A, MacKerell AD Jr. Journal of Medicinal Chemistry. 2005; 48:7773–7780.
[PubMed: 16302816]

116. Beusen DD, Berkley Shands EF, Karasek SF, Marshall GR, Dammkoehler RA. Journal of
Molecular Structure: THEOCHEM. 1996; 370:157–171.

117. Lipton M, Still WC. Journal of Computational Chemistry. 1988; 9:343–355.
118. Garland, R Marshall; Barry, DC.; Heinz, E Bosshard; Richard, A Dammkoehler; Deborah, A

Dunn. Computer-Assisted Drug Design. AMERICAN CHEMICAL SOCIETY; 1979. p.
205-226.

119. Li Z, Scheraga HA. Proceedings of the National Academy of Sciences of the United States of
America. 1987; 84:6611–6615. [PubMed: 3477791]

120. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. The Journal of Chemical
Physics. 1953; 21:1087–1087.

121. Metropolis N, Ulam S. Journal of the American Statistical Association. 1949; 44:335–341.
[PubMed: 18139350]

122. Smellie A, Teig SL, Towbin P. Journal of Computational Chemistry. 1995; 16:171–187.
123. Cvijovicacute D, Klinowski J. Science. 1995; 267:664–666. [PubMed: 17745843]
124. Nair N, Goodman JM. Journal of Chemical Information and Computer Sciences. 1998; 38:317–

320.
125. Parrill AL. Drug Discovery Today. 1996; 1:514–521.
126. Brooks C, Case DA. Chemical Reviews. 1993; 93:2487–2502.
127. Brooks, CL.; Karplus, M.; Pettitt, BM. Proteins: A Theoretical Perspective of Dynamics,

Structure and Thermodynamics. John Wiley and Sons; 1990.
128. Karplus M, Petsko GA. Nature. 1990; 347:631–639. [PubMed: 2215695]
129. McCammon, JA.; Harvey, SC. Dynamics of Proteins and Nucleic Acids. Cambridge University

Press; 1988.
130. van Gunsteren WF, Berendsen HJC. Angewandte Chemie International Edition in English. 1990;

29:992–1023.
131. Frenkel, D.; Smit, B. Understanding molecular simulation: from algorithms to applications.

Academic Press; 2002.
132. Rapaport, DC. The art of molecular dynamics simulation. Cambridge University Press; 2004.
133. Verlet L. Physical Review. 1967; 159:98–98.
134. Potter DE. Computational Physics. 1988 Books on Demand.
135. Hockney RW. Methods Comput Phys. 1970; 9:136–211.
136. Tuckerman ME, Martyna GJ. The Journal of Physical Chemistry B. 2000; 104:159–178.
137. Kirkpatrick S, Gelatt CD, Vecchi MP. Science. 1983; 220:671–680. [PubMed: 17813860]
138. Chipot, C.; Pohorille, A. Free energy calculations: theory and applications in chemistry and

biology. Springer; 2007.
139. Mitsutake A, Sugita Y, Okamoto Y. Biopolymers. 2001; 60:96–123. [PubMed: 11455545]
140. Okamoto Y. Journal of Molecular Graphics & Modelling. 2004; 22:425–439. [PubMed:

15099838]
141. Sugita Y, Okamoto Y. Chemical Physics Letters. 1999; 314:141–151.
142. Laio A, Parrinello M. Proceedings of the National Academy of Sciences of the United States of

America. 2002; 99:12562–12566. [PubMed: 12271136]
143. Micheletti C, Laio A, Parrinello M. Physical Review Letters. 2004; 92
144. Hamelberg D, Mongan J, McCammon JA. The Journal of Chemical Physics. 2004; 120:11919–

11929. [PubMed: 15268227]

Shim and MacKerell Page 23

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



145. Kong X, Brooks CL. The Journal of Chemical Physics. 1996; 105:2414–2414.
146. Hermans J, Yun RH, Anderson AG. Journal of Computational Chemistry. 1992; 13:429–442.
147. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. Journal of Computational

Chemistry. 1992; 13:1011–1021.
148. Okur A, Wickstrom L, Layten M, Geney R, Song K, Hornak V, Simmerling C. Journal of

Chemical Theory and Computation. 2006; 2:420–433.
149. Sindhikara D, Meng Y, Roitberg AE. The Journal of Chemical Physics. 2008; 128:024103–

024103. [PubMed: 18205439]
150. Fukunishi H, Watanabe O, Takada S. The Journal of Chemical Physics. 2002; 116:9058–9067.
151. Sugita Y, Kitao A, Okamoto Y. The Journal of Chemical Physics. 2000; 113:6051, 6042–6051,

6042.
152. Sugita Y, Okamoto Y. cond-mat/0009119. 2000
153. Knight JL, Brooks CL. Journal of Computational Chemistry. 2009; 30:1692–1700. [PubMed:

19421993]
154. Laio A, Gervasio FL. Reports on Progress in Physics. 2008; 71:126601–126601.
155. Zheng L, Chen M, Yang W. Proceedings of the National Academy of Sciences. 2008;

105:20227–20232.
156. Zheng L, Chen M, Yang W. The Journal of Chemical Physics. 2009; 130:234105–234105.

[PubMed: 19548709]
157. Sanbonmatsu KY, García AE. Proteins. 2002; 46:225–234. [PubMed: 11807951]
158. Su L, Cukier RI. The Journal of Physical Chemistry B. 2007; 111:12310–12321. [PubMed:

17918879]
159. González PM, Acharya C, MacKerell AD, Polli JE. Pharmaceutical Research. 2009; 26:1665–

1678. [PubMed: 19384469]
160. Lee S, Chen M, Yang W, Richards NGJ. Journal of the American Chemical Society. 132:7252–

7253. [PubMed: 20446682]
161. Provasi D, Bortolato A, Filizola M. Biochemistry. 2009; 48:10020–10029. [PubMed: 19785461]
162. Feig M, Brooks CL. Current Opinion in Structural Biology. 2004; 14:217–224. [PubMed:

15093837]
163. Onufriev A, Bashford D, Case DA. Proteins. 2004; 55:383–394. [PubMed: 15048829]
164. Koehl P. Current Opinion in Structural Biology. 2006; 16:142–151. [PubMed: 16540310]
165. Honig B, Nicholls A. Science (New York, NY). 1995; 268:1144–1149.
166. Jackson, JD. Classical electrodynamics. Wiley; 1999.
167. Still C, Tempczyk A, Hawley R, Hendrickson T. Journal of the American Chemical Society.

1990; 112:6127–6129.
168. Lee MS, Feig M, Salsbury FR, Brooks CL. Journal of Computational Chemistry. 2003; 24:1348–

1356. [PubMed: 12827676]
169. Im W, Lee MS, Brooks CL. Journal of Computational Chemistry. 2003; 24:1691–1702.

[PubMed: 12964188]
170. Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G,

Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J,
Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB,
Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus
M. Journal of Computational Chemistry. 2009; 30:1545–1614. [PubMed: 19444816]

171. MacKerell, ADJ.; Brooks, B.; Brooks, CLI.; Nilsson, L.; Roux, B.; Won, Y.; Karplus, M.
CHARMM: The Energy Function and Its Parameterization with an Overview of the Program.
John Wiley & Sons; Chichester: 1998.

172. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C,
Wang B, Woods RJ. Journal of Computational Chemistry. 2005; 26:1668–1688. [PubMed:
16200636]

173. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T,
Caldwell JW, Kollman PA. Journal of the American Chemical Society. 1995; 117:5179–5197.

Shim and MacKerell Page 24

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



174. MacKerell AD, Feig M, Brooks CL. Journal of Computational Chemistry. 2004; 25:1400–1415.
[PubMed: 15185334]

175. Plimpton S. J Comput Phys. 1995; 117:1–19.
176. LAMMPS. http://lammps.sandia.gov
177. Hess B, Kutzner C, van der Spoel D, Lindahl E. Journal of Chemical Theory and Computation.

2008; 4:435–447.
178. Jorgensen WL, Maxwell DS, Tirado-Rives J. Journal of the American Chemical Society. 1996;

118:11225–11236.
179. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. The Journal of Physical Chemistry B.

2001; 105:6474–6487.
180. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O,

Lopes P, Vorobyov I, MacKerell AD. Journal of Computational Chemistry. 2009; 31:671–690.
[PubMed: 19575467]

181. MacKerell AD. Journal of Computational Chemistry. 2004; 25:1584–1604. [PubMed: 15264253]
182. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Journal of Computational Chemistry.

2004; 25:1157–1174. [PubMed: 15116359]
183. Allen FH. Acta Crystallographica Section B, Structural Science. 2002; 58:380–388.
184. Wang J, Wang W, Kollman PA, Case DA. Journal of Molecular Graphics & Modelling. 2006;

25:247–260. [PubMed: 16458552]
185. Halgren TA. Journal of Computational Chemistry. 1996; 17:616–641.
186. Halgren TA. Journal of Computational Chemistry. 1996; 17:490–519.
187. Lifson S, Hagler AT, Dauber P. Journal of the American Chemical Society. 1979; 101:5111–

5121.
188. Allinger NL. Journal of the American Chemical Society. 1977; 99:8127–8134.
189. Allinger NL, Yuh YH, Lii JH. Journal of the American Chemical Society. 1989; 111:8551–8566.
190. Nevins N, Lii JH, Allinger NL. Journal of Computational Chemistry. 1996; 17:695–729.
191. Clark M, Cramer RD, Van Opdenbosch N. Journal of Computational Chemistry. 1989; 10:982–

1012.
192. M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;

Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul,
A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara,
A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and
Pople, J. A.;, Gaussian, Inc. Wallingford CT, 2004.

193. Rais R, Acharya C, MacKerell AD, Polli JE. Molecular Pharmaceutics. 2010; 7:2240–2254.
[PubMed: 20939504]

194. Rais R, Acharya C, Tririya G, MacKerell AD, Polli JE. Journal of Medicinal Chemistry. 2010;
53:4749–4760. [PubMed: 20504026]

Shim and MacKerell Page 25

Medchemcomm. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://lammps.sandia.gov


Figure 1.
2D-probability distribution of AB distance-ANB angle pair of Leu-Enkephalin.
Pharmacophoric point A represents the centroid of the aromatic ring of tyrosine, B is the
centroid of the aromatic ring of phenylalanine, and N is the basic nitrogen. a) through c)
compares different sampling of conformational space by a) gas phase MD, b) explicit
solvent MD and c) explicit solvent HREMD. Simulation details are in the supporting
information.
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Figure 2.
Comparison of conformational energy surface. A) is potential energy surface (PES) of
dimethyltryptamine and B) shows that of dimethylamino-dibenzo[1,4]diazepine.
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Figure 3. Schematic diagram of CSP procedures
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Table 1
Overview of nD-QSAR approaches (3 ≤ n ≤ 7)

method description

CoMFA Probes placed on grid points in the 3D field around a molecule experience an interaction energy with the ligands that defines the
molecular shape and electrostatic properties in the surrounding environment.

CoMSIA It expands CoMFA by including hydrophobic and hydrogen bonding contributions and calculates how these contributions are
similar between molecules.

GRIND It eliminates alignment-dependency by using distances between 3D grid points. Highly relevant regions among a set of molecules
are selected as nodes and the intensity of molecular interaction field at those nodes are used as descriptors. The program

ALMOND provides tools to compute, analyze, and interpret the GRIND.

VolSurf Information on 3D grid voxels (shape, electrostatic, volume) are compressed into 2D numerical descriptors by image analysis
tools.

4D-QSAR Multiple conformations in a grid box generate the occupancies at grid points, with those occupancies used as the descriptors.

5D-QSAR Multiple hypothetical binding pockets are generated around ligands based on a 3D grid and the receptor models are evolved by
GA with the most favorable binding pocket model evaluated by relative free energy of ligand binding.

6D-QSAR It includes optimization of structures in aqueous solution and calculates solvation energy and charges by semi-empirical QM
method, AMSOL86. Ligands' arrangement in pseudo-binding pocket is determined by MC simulation.
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Table 2
Root mean square deviation from QM potential energy surface

RMSD

FF dimethyltryptamine dimethylamino-dibenzo[1,4]diazepine

MMFF 0.87 5.04

SwissParam 1.42 5.42

CGenFF 0.62 12.84

CGenFF* n.d. 3.59
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