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The numbers of animals approved for scientific experiments 
must be justified and reasonable. The IACUC Guidebook16 includes 
power analyses and pilot studies among the methods to achieve 
this end. A companion article9 showed how use of power analysis 
or a pilot study with a traditional null-hypothesis test for animal 
studies can be inefficient under some circumstances. This tradi-
tional test is called the ‘fixed stopping rule’ because one must 
stop testing after a fixed number of subjects. By contrast, some 
statistical methods allow investigators to test sequentially, with 
numerous interim ‘peeks’ at the data, to control errors and in-
crease efficiency. A sequential stopping rule (SSR) allows one to 
conduct an experiment in stages in order to minimize the number 
of subjects used (see the section Other Techniques for Sequential or 
Interim Analysis for additional discussion). An SSR is powerful, 
flexible, and usually more efficient for animal subjects than is the 
fixed stopping rule. The variable-criteria SSR7,8 is an improve-
ment of previous methods3,11,21 that holds the rate of false discov-
eries (type I errors) stable while providing excellent power. The 
method helps an investigator to ensure that no more than the 
minimal number of animals will be used and that experiments 
are repeatable as well as significant without wasting animals. The 
SSR is particularly useful when little prior information is avail-
able for conducting a power analysis under novel experimen-
tal circumstances. It legitimately allows an investigator to invest 
minimal resources in a new project until it is fairly certain that the 
experiment could succeed in its goals. This ability saves money, 
resources, and animals.

Some experiments are not suitable for use with an SSR. The SSR 
is intended for use with a null hypothesis significance test, which 
is appropriate when an investigator is interested in whether a dif-

ference or relationship exists and, if so, in which direction.10,11 SSR 
are not helpful for determining the size of an effect with a narrow 
confidence interval because, to save animals, the method stops 
the experiment while the confidence interval is still very wide 
(just significant). For details of these and other limitations of the 
SSR, see the section When to Use the Variable-Criteria SSR.

This article provides guidance for biomedical researchers on 
how to use the variable-criteria SSR in several common, practi-
cal experimental circumstances. It describes how and when to 
use SSR and provides concrete examples of experiments using 
a t test, one-way ANOVA, ANOVA with planned comparisons, 
and multifactorial ANOVA. Finally, the article provides advice 
to principal investigators and IACUC on how to incorporate the 
variable-criteria SSR into the justification of the number of ani-
mals used in IACUC protocols.

How to Use the Variable-Criteria SSR
Requirements and terminology. The variable-criteria SSR is a set 

of rules for using a null hypothesis significance test in a particular 
way. In most cases, using the SSR will require no additional soft-
ware than what is available on the typical laboratory computer. In 
simplest terms, the investigator begins with a few subjects in the 
test and then decides whether to add additional subjects or stop 
the test. The test can be stopped if the experiment is significant (P 
less than or equal to a lower criterion), if the experiment is quite 
unlikely to succeed (P is greater than an upper criterion), or if the 
experiment has used up all of the assigned subjects. If the P value 
is between the lower and upper criteria and if adding subjects will 
not exceed the maximum, the investigator may add a set number 
of subjects to each group and test again. Some investigators use a 
variation of this technique inappropriately by always using 0.05 
as the lower criterion and by having no determined value for the 
upper criterion. This use is inappropriate because it increases the 

Minimizing Animal Numbers: The Variable-Criteria 
Sequential Stopping Rule

Douglas A Fitts

The variable-criteria sequential stopping rule (SSR) allows an investigator to use a few subjects at a time to determine whether 
a planned experiment is worth pursuing without increasing the rate of false discoveries (type I errors). The SSR is appropriate 
whenever testing a null hypothesis if the experiment can be conducted in stages. The investigator adds a predetermined number of 
subjects at each stage and tests repeatedly for significance until the experiment is stopped because: (1) a significant effect is detected; 
(2) the effect is clearly not going to be significant; or (3) the predetermined maximal number of subjects has been reached. Two 
crucial features of the SSR are that it holds the probability of a type I error constant and maintains excellent power. The method is 
more efficient than is performing a typical significance test after a power analysis because SSR can require 30% fewer subjects to 
achieve the same power. The variable-criteria SSR provides a formal method for assuring the use of a minimal number of animals. 
This article provides practical examples of how to use the SSR in combination with a t test, one-way ANOVA, one-way ANOVA 
with a planned contrast as the focus of the stopping rule, or, in limited circumstances, multifactorial ANOVA.

Abbreviation: SSR, sequential stopping rule.

Received: 20 Jul 2010. Revision requested: 24 Sep 2010. Accepted: 26 Dec 2010.
Office of Animal Welfare, University of Washington, Seattle, Washington.

Email: dfitts@u.washington.edu

JAALAS10000090.indd   206 6/13/2011   2:55:19 PM



Variable-criteria sequential stopping rule

207

sample size (therefore, ‘variable criteria’) and are included in a 
table.7 If the P value obtained from the significance test is less 
than or equal to the lower criterion, one can conclude that the 
alternative hypothesis is more likely than the null hypothesis as 
an explanation for the data and that the effect is significant. When 
declaring significance in an experiment, it is important to know 
and state the rate of type I errors. Investigators who are particu-
larly concerned about not publishing type I errors may want to 
use a smaller α, such as 0.01 or 0.005. These will require larger 
sample sizes to achieve the same level of power as a test at the 
0.05 level.

The sample size model consists of a starting sample size per 
group, called the lower bound, and a sample size per group that 
will not be exceeded in the experiment, called the upper bound. 
The stopping criteria in a variable-criteria SSR must be deter-
mined individually by using hundreds of thousands of computer 
simulations for each sample size model, so only a few sample 
size models are available. Lower bounds are available from 3 to 
10 subjects per group. For each lower bound, there is a choice of 
2 upper bounds, and the largest available upper bound is 40. Few 
experiments in biomedical sciences exceed 40 subjects per group, 
so the range is appropriate for many studies in many fields. The 
investigator selects the model that most closely fits the needs of 
the experiment. As with the fixed stopping rule, larger sample 
size models provide greater power in the experiment. Therefore, 
knowing the power of the model can be helpful in deciding which 
model to use.

Power curves have been published7,8 to assist in the selection of 
a sample size model to use for the SSR with a t test or ANOVA. 
The use of these power curves is not essential as long as the inves-
tigator has a good idea of some starting and stopping sample siz-
es that will bracket the ideal sample size with the desired amount 
of power. Unlike the fixed stopping rule, the variable-criteria SSR 
begins with a sample size that provides modest power and pro-
gresses to sample sizes that have strong power. The investigator 
stops the experiment with the smallest sample size that yields 
significance in the null hypothesis test. Advice on how to use the 
curves is provided in the examples that follow.

The power curves rely on a standardized size of effect for the 
t test or ANOVA.4 These standardized effect sizes can easily be 
calculated from sample size software.6 Sometimes means and 
standard deviations are not available in prior publications, and 
for these circumstances, formulas are available for calculating 
effect sizes from other types of statistics such as the t or F value 
and the sample size.19

When the null hypothesis is that the difference in the popula-
tion is 0 (rather than some specific nonzero value), the calculation 
of the effect size for an independent groups t test, d, is simply the 
difference between the means divided by a pooled estimate of 
the population standard deviation.4 For a matched samples t test, 
d is calculated as the mean of the difference scores divided by 
the standard deviation of the difference scores.4 If the difference 
scores are not available, the SD of the differences can be calculated 
from a formula using the SD of the 2 sets of scores and the Pear-
son product–moment correlation coefficient, r, between the 2 sets 
of scores. For ANOVA involving multiple groups, Cohen4 devised 
a different measure of effect size, f, that is a ratio of the amount 
of spread among the various means derived from the between-
groups mean square and an estimate of the pooled within-sample 
SD of the scores derived from the error mean square. These effects 

rate of type I errors in the experiment.9,11 The variable-criteria SSR 
provides criteria suited to the particular experimental design so 
that the rate of type I errors does not increase.7,10

A full-featured statistics program is recommended but not re-
quired. A few necessary or highly desirable computer programs 
or documents (described following) will be of great help. At a 
minimum, investigators must be able to determine the P value 
to several decimal digits. A program or table that simply reports 
whether the P is less than 0.05 will not be adequate. Calculators 
are available on the Internet5 that report a P value to several digits 
given an obtained statistic and its degrees of freedom (df). Free 
calculators to determine power and sample size are also available 
on the Web, although some are better than others. One suggested 
calculator is G*Power.6

A user of the variable-criteria SSR needs to acquire a publica-
tion7 that contains a table of stopping criteria and power curves 
for the significance test that will be used in the planned experi-
ment. This table of stopping criteria can be used with either 
an independent- or dependent-samples t test with either 1- or 
2-tailed P values. 7 The criteria were validated by using indepen-
dent-groups ANOVA with as many as 20 groups8 without any 
substantial drift of type I errors from the nominal level (alphas 
are provided for 0.005, 0.01, 0.05, and 0.10 levels). The author also 
can provide tables for selected nonparametric tests including the 
Mann–Whitney–Wilcoxon rank test, Wilcoxon signed-rank test, 
and Kruskal–Wallis test for multiple independent groups. Using 
nonparametric tests with the criteria from the ANOVA table will 
severely deflate alpha and power.

Once the appropriate table has been identified, additional deci-
sions are necessary before an investigator can select the correct 
criteria from the table. These are a level of α (0.005, 0.01, 0.05, or 
0.10), a sample size model, and the number to be added at each 
stage of the experiment (the ‘n added’). Each combination of these 
factors has been tested with simulations to produce a unique pair 
of criteria, the lower criterion and the upper criterion, that will 
hold the rate of type I errors stable at the nominal alpha for the 
entire test. Therefore, an understanding of these terms with re-
spect to the variable-criteria SSR is desirable. Reference 9 provides 
a brief review of the null hypothesis significance testing method 
and the importance of controlling type I errors during sequential 
testing.

Alpha is the proportion of the time that the investigator will 
conclude that an experiment is significant when it is not. This 
is called a type I error, and it can be encountered only if the null 
hypothesis is actually true in the population. A conventional level 
of α is chosen by the investigator at the beginning of the experi-
ment to be small, such as 0.05, so that these errors will be rare. In 
computer simulations, the programmer distinguishes between 
this nominal alpha set by the investigator/programmer and the 
observed alpha. Population parameters are known during the 
simulation, so the programmer knows whether a t test gives a 
correct decision or an error. The observed alpha in these simula-
tions is the actual rate of type I errors after many thousands of 
tests when the population means are equal. Under conditions 
of sequential sampling with a criterion for significance set at the 
nominal level of alpha (for example, 0.05), the observed alpha 
can inflate to more than double that value. These simulations are 
used in the variable-criteria SSR to determine criteria that allow 
the observed alpha for the entire sequential procedure to be equal 
to the nominal alpha after inflation. These criteria vary with the 
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Steps for using the variable-criteria SSR. Selection of the sample 
size model, α, n added, and stopping criteria are all a part of the 
experimental design that is completed before any subjects are 
tested in the experiment. To begin testing subjects, the investi-
gator randomly samples subjects into each group of the experi-
mental design, with the sample size equal to the lower bound of 
the sample size model. For example, if the sample size model is 
7/28 (lower/upper bound), the first test will be conducted with 7 
subjects per group. After the data are collected for these subjects, 
a null hypothesis test such as a t test is conducted, and a P value 
is obtained.

The obtained P value is compared with the lower and upper 
stopping criteria, and there are 3 possible outcomes. In the first 
outcome, P is in the rejection region. If P is less than or equal to 
the lower criterion, the null hypothesis is rejected at the selected 
level of α, and the experiment is stopped with a significant result. 
In the second outcome, P is in the upper stopping region. If P is 
greater than the upper criterion, the experiment is stopped with 
a nonsignificant result, and the null hypothesis is retained. In the 
third outcome, P is in the uncertain region. If P is greater than the 
lower criterion but less than or equal to the upper criterion, the 
decision is uncertain. One can add n added subjects to each group 
by random sampling if the addition of these subjects would not 
exceed the upper bound of the sample size model. Then, data 
are collected on these new subjects and added to those collected 
from the first batch of subjects. A new P is calculated based on 
the augmented sample size and is compared once again with the 
lower and upper criteria. The cycle continues until the experi-
ment is stopped by one of the stopping rules. Whenever P is in 
the uncertain region and the addition of n added subjects would 
exceed the upper bound of the sample size model, the experiment 
is stopped without a significant result (the null hypothesis is re-
tained). Otherwise, n added subjects can be added for another test 
with augmented sample size.

Any time a decision is reached about the null hypothesis (sig-
nificant or not), there is always the possibility that one has made 
an error of inference. If the null hypothesis has been rejected, one 
may be correct or one may have made a type I error. If we fail to 
reject the null hypothesis, one may be correct or one may have 
made a type II error. The only exception to this circumstance is 
when the exact population values are known, such as during a 
computer simulation, and in these circumstances we can count 
type I and type II errors over a large number of tests. With the 
variable-criteria SSR, the rates of both type I and type II errors 
are stable for the entire experiment. The rate of type I errors will 
be close to the nominal alpha. The rate of type II errors, β, will be 
equal to 1 minus the observed level of power in the experiment. 
Thus, if the experiment has 90% power, the rate of type II errors 
will be 10%.

Available sample size models currently range in size from 3/9 
to 10/40 for the lower and upper bounds. The model is best se-
lected by using the power curves7,8 if reliable prior information is 
available. The lower bound must be selected carefully because the 
investigator must abide by the stopping rules after the first test 
of the experiment. If a small lower bound (such as 3) is selected, 
one must be willing to stop the experiment at that point if the 
resulting P value is either less than or equal to the lower criterion 
or greater than the upper criterion. Therefore, one must be will-
ing to submit a sample size of 3 to reviewers for publication if 
the experiment is significant, and one must be willing to stop the 

sizes d or f can be calculated easily by software such as G*Power,6 
given input of means and SD.

When using power calculation tools to assist with the estima-
tion of effect sizes, one should not be misled by effect-size con-
ventions such as ‘small,’ ‘medium,’ and ‘large.’ These conventions 
were intended to apply principally to small effects in the social 
sciences.4 By comparison, many effects in biological sciences are 
‘huge.’

The published power curves for variable-criteria SSR7,8 plot the 
power of 16 separate sample size models at various effect sizes 
that are most relevant to animal research projects in the biomedi-
cal and biobehavioral sciences. Separate curves are available at 
4 levels of α. The investigator first estimates the minimal size of 
effect that would be of interest to the project and then selects the 
level of α to choose the correct set of curves. By inspecting the 
graph with the effect size on the abscissa and the power on the 
ordinate, one can select the nearest sample size model that pro-
vides at least the requisite level of power (for example, 0.80). The 
upper bound should be selected so that it is near the upper limit 
of the number of subjects that one would be willing to invest in 
such a project.

The n added is the number of subjects that the investigator 
adds to each group at each sequential stage of the testing pro-
cess. The sample size for each group on the first test is the lower 
bound of the sample size model. One then adds n added subjects 
at each stage until the experiment is stopped by one of the cri-
teria. The n added will be selected based on its convenience for 
the investigator. Power varies only slightly at various levels of n 
added for a given sample size model, so power is not an impor-
tant consideration. By selecting an n added of 1, the investigator 
can test significance after the addition of each individual animal 
per group. If one has sufficient apparatus to test 4 animals per 
group at a time, then n added can be set at 4. If one desires to use 
n added as a replicate factor (see following), one can set n added 
equal to the lower bound to have equal numbers in each replica-
tion. For example, to use the 6/18 sample size model with an n 
added of 6, one would begin with 6 per group (the lower bound), 
test again with 12 per group, and stop after testing 18 per group 
(the upper bound). Note that some selections of n added may not 
allow the investigator to test all the way to the upper bound; for 
example, for the 6/18 model with an n added of 5, one would be 
able to test with 6, 11, and 16 subjects per group. One would stop 
at that point because the addition of 5 subjects would exceed the 
upper bound of 18.

The stopping criteria are selected from a table (for example, 
Table 2 of Fitts7 for a t test or ANOVA) for the desired α once the 
lower and upper bounds of the sample size model are known 
and the n added has been chosen. These 2 criteria are probability 
values (similar to α), and they are compared with the obtained P 
value to determine whether to stop the experiment. The lower 
criterion determines when to stop the experiment because the ef-
fect is significant, and this criterion will be less than α. When α is 
0.05 for a t test, for example, this lower criterion will range from 
0.013 to 0.034, depending on the sample size model. The upper 
criterion determines when to stop the experiment because it is un-
likely to become significant with the addition of further subjects. 
This upper criterion can range from 0.150 to 0.460 for an α of 0.05. 
Reference 7 explains how these criteria were derived by computer 
simulations and why they are so variable.
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preliminarily in inexpensive fashion (for example, an assay of a 
blood sample) and then again at the end of the experiment if the 
result is significant.

The variable-criteria SSR was designed for relatively small 
experiments in the biological sciences in which the investigator 
expects large effect sizes. Another form of SSR, called CLAST,3,21 
is available for larger studies in areas for which the anticipated ef-
fect size may be much smaller (for example, psychology). CLAST 
is far more efficient than is the fixed stopping rule,3,7 but CLAST 
does not hold the type I error rate constant, as does the variable-
criteria SSR; with CLAST, the observed alpha can become deflated 
and slightly reduce the power of the test.7

When sample sizes are unequal, the t test or ANOVA with the 
fixed stopping rule can be used without affecting the rate of type 
I errors as long as the other assumptions of the ANOVA, such as 
homogeneous variances, have been satisfied. This application is 
also true of the variable-criteria SSR across a range of sample size 
models.8 As with ANOVA with the fixed stopping rule, type I 
errors with the variable-criteria SSR increase when the variances 
are different. This inflation of alpha is worse when sample sizes 
and variances both are unequal. When variances are heteroge-
neous, the investigator should use a test that constructs an error 
term based on separate within-group variance estimates (such 
as the Welch t test20) instead of on pooled within-group variance 
estimates. These tests are commonly available in full-featured 
statistics packages, and they work quite well with the variable-
criteria SSR.8

The variable-criteria SSR can be used with nonparametric tests 
such as the Mann–Whitney–Wilcoxon, Wilcoxon signed-rank, and 
Kruskal–Wallis tests, although one must use different tables of cri-
teria (contact the author). Nonparametric tests do not eliminate 
the problem with unequal variances even though nonparametric 
tests are considered to be ‘distribution free.’ One should not aban-
don parametric tests in favor of nonparametric tests if the only 
problem is heterogeneous variances, because separate-variance 
parametric tests can be effective in this situation.8 In addition, 
parametric tests continue to work well under some conditions of 
nonnormal distribution,2,7 if there are no other violations of the 
assumptions of ANOVA.

As long as the variances are similar, the variable-criteria SSR 
can be used when sample size has been reduced in one group 
because data have been lost for some reason (for example, tech-
nical failure or death). If the variances are markedly different, 
one should use a separate-variance test or make every effort to 
equalize the sample sizes.8,20 Fitts simulated conditions in which 
additional sample size was added in sequential tests in order to 
compensate for lost sample size, and this accommodation had 
a negligible effect on the rate of Type I errors or power with the 
variable-criteria SSR.8 If sample size is lost in one group on one 
test, it can be added back to that group in the next test without 
adversely affecting the process.

Example: t Test Using Variable-Criteria SSR
Suppose an investigator is interested in whether a small mol-

ecule has antipyrogenic activity (that is, will reduce fever) with 
respect to a particular pathogenic bacterium in vivo. Although 
the in vitro tests have yielded promising results, fever is a com-
plicated process that can be studied in detail only in live animals. 
Preliminary tests with the small molecule alone have indicated 
that it is safe to use in large doses, so the investigator plans to 

experiment with a nonsignificant result if the P value exceeds the 
upper criterion. The upper criterion may be as small as 0.150. The 
greatest risk for a type II error during an experiment is when the 
sample size is small with low power. If one would be interested 
even in small effect sizes, it could be best to begin with a larger 
sample size model to increase power and avoid type II errors. Re-
garding the upper bound, one should try to choose a sample-size 
model with an upper bound that is high enough that one would 
not wish to exceed that number of subjects anyway.

The rate of type I errors is inflated by the intention or the will-
ingness of the investigator to add subjects instead of by the ac-
tual addition of subjects to the test.11 If the investigator sets out 
to use the variable-criteria SSR with a lower criterion of 0.02, for 
example, and if the obtained P value on the first test is less than 
0.02, the investigator should indicate in the publication that the P 
value for the overall SSR was P ≤ 0.05 not P ≤ 0.02 (see examples 
of reporting P values that follow).

When to Use the Variable-Criteria SSR
A stopping rule is useful and appropriate for some but not all 

experiments in the biomedical and behavioral sciences. First of all, 
the variable-criteria SSR should be used only when a null hypoth-
esis significance test is appropriate. The null hypothesis test is the 
dominant paradigm for statistical analysis in the biomedical sci-
ences, but many statisticians think it should not be (see the section 
Should We Be Doing It This Way? in reference 7). The procedure 
has many weaknesses, is poorly understood by many who use 
it, and is often abused to draw conclusions that are unwarranted. 
It remains a useful tool for any study where the goal is simply 
to make a decision as to whether a difference between groups or 
conditions exists, and if so, in which direction.10,11 The SSR exten-
sions of the null hypothesis technique allow this decision to be 
made with the fewest number of subjects on average.3,7,11,21

A null hypothesis significance test does not help an investigator 
to determine whether a difference between 2 groups or conditions 
is an important difference. Even very tiny effects can be detected 
with a high level of significance if sufficient sample size is used.15 
The label ‘significant’ does not mean ‘important’—and this is one 
reason that an investigator should use no more sample size than 
is sufficient to detect an effect that would be considered impor-
tant. Arbitrary use of very high levels of power in an experiment 
wastes animals in pursuit of tiny or meaningless effects. The in-
vestigator should communicate the size of a meaningful effect to 
the IACUC and power the experiment accordingly. The variable-
criteria SSR is just an extension of the null hypothesis test, so it 
suffers from the same defect. See the section Estimation of Effect 
Size after Variable-Criteria SSR for additional discussion.

The variable-criteria SSR assumes that one will be able to con-
duct an experiment with a few subjects at a time and that the 
measurements from those subjects will be known before addi-
tional subjects are added to an experiment. For that reason, the 
SSR technique may not be particularly useful in experiments with 
slow-growing tumors, long-term dietary manipulations, or other 
experiments in which the results from the first few subjects may 
not be known for many weeks or months. Even if the subjects 
can be tested a few at a time, some experiments require that all 
of the data be processed together, such as some assays in which 
preserved samples must be compared with a single standard in a 
single procedure. This situation does not work well with the SSR 
unless the sample can be split so that part of it can be analyzed 
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at one time. For that reason, the investigator decides to use the 
6/18 sample size model instead of the 7/21 model.

An initial test is conducted with 3 subjects per group, but the 
data are not analyzed at that point because the method calls for a 
lower bound of 6, not 3. In addition, reviewers of manuscripts or 
grants likely would object that having 3 subjects per group was 
insufficient to establish the efficacy of a new antipyrogenic drug. 
Therefore, the investigator analyzes the first set of data once the 
sample size is 6 per group. After this point, however, the investi-
gator can test after each addition of 3 subjects per group. There-
fore, the n added is established as 3 subjects per group at each 
stage of the experiment after the lower bound. Because the upper 
bound is 18, the investigator should add no additional subjects if 
the group size ever reaches 18 subjects.

With an α of 0.05, a sample size model of 6/18, and an n added 
of 3, Table 2 in reference 7 indicates that the stopping criteria are 
0.0200 and 0.300. Therefore, the experiment will stop with a sig-
nificant result if P ≤ 0.0200 or a nonsignificant result if P > 0.300. 
Otherwise, 3 subjects per group will be added and data retested 
as long as adding 3 subjects per group would not exceed 18 sub-
jects per group.

I simulated this experiment several times as conceived here 
by using normally distributed random numbers drawn from 2 
populations with means and standard deviations of exactly 2.4 ± 
0.9 °C and 1.2 ± 0.9 °C, respectively. The simulated experiments 
were usually powerful, and many rejected the null hypothesis 
with n = 6 per group. I selected for presentation here a less for-
tunate example in which the means were closer than expected, 
such that the experiment would require several stages to achieve 
significance. In this case, after testing with 6 subjects per group, 
the means and standard deviations were 1.99 ± 0.90 and 1.2 ± 
0.78, t(10) = 1.617, P = 0.1369. This P value falls into the uncertain 
region because it is greater than 0.0200 and less than or equal to 
0.300. Because adding n added subjects will not exceed the upper 
bound of 18, one can add 3 subjects per group and repeat the test. 
With a total sample size of 9 per group, the means and standard 
deviations were 2.07 ± 0.81 and 1.31 ± 0.75, t(16) = 2.06, P = 0.0558. 
These values again fall into the uncertain region, although this 
result appears more promising than the result of the first test. 
Even a P value of 0.049 would not be significant at this point, 
because here the criterion for significance is 0.0200, not 0.05. With 
12 subjects per group, the statistics were 2.06 ± 0.78 and 1.18 ± 
0.85, t(22) = 2.65, P = 0.0146. Because this P is less than 0.0200, one 
can reject the null hypothesis that the effect of the drug is 0 in the 
population. By inspecting the direction of the difference, one can 
conclude that the drug reduces fever induced by the bacterium 
at P ≤ 0.05—not P ≤ 0.02. The criterion of 0.02 was used to ensure 
that, after inflation of type I errors from repeated sampling, these 
errors were at most 5%.

In the methods section of the hypothetical manuscript describ-
ing this experiment, the investigator would report that the ex-
perimental design used the variable-criteria SSR (cite reference 7) 
with a 2-tailed α of 0.05, a sample size model of 6/18, 3 subjects 
added per group at each stage of the experiment, and stopping 
criteria of 0.0200 and 0.300. The investigator should indicate here 
that significant results will be reported with both a PSSR, meaning 
the final ‘working P value’ derived from the SSR procedure, and 
an experimentwise P value for the selected level of α (see follow-
ing).

use a single large dose in the first efficacy experiment. The ex-
perimental group will receive an injection of the drug, and the 
control group will receive the vehicle alone. All animals will then 
be challenged by infection with the bacterium, and their core tem-
perature will be monitored continuously by telemetry. Use of the 
variable-criteria SSR will help to ensure that only the minimal 
number of mice will be exposed to the bacterium.

Continuing with the example scenario, previous studies with 
this dose of the bacterium have indicated that the peak pyrogenic 
effect (mean ± 1 SD) is 2.4 ± 0.9 °C above normal body tempera-
ture. This potential drug will be most interesting, from a research 
standpoint, if it reduces the fever by at least 50% of the peak ef-
fect. However at this stage, whether a difference exists at this 
single dose is the focus, not how big the difference is. If a differ-
ence does exist, the next task is to generate a dose-response curve 
that is designed to detail the size of effect at each dose. There-
fore, assuming that the vehicle-treated animals will experience a 
peak fever of 2.4 ± 0.9 °C, the investigator wants to ensure a high 
probability of detecting an absolute effect that is as large as 1.2 °C 
in the treated group. Assuming that the treated group will also 
have a standard deviation of 0.9, our standardized effect size d is 
1.2/0.9 = 1.33 standard deviations. The investigator elects to use 
conventional values of 0.05 for α and 0.80 for power.

The next decision is whether to use a 1- or 2-tailed test (see 
section One-Tailed t Tests using Variable-Criteria SSR), and this ex-
ample experiment could go either way. Because the drug already 
is known to have potential antipyrogenic activity from in vitro 
tests, a 1-tailed test could be used, with a result considered sig-
nificant only if the drug reduces fever. In this case, the null hy-
pothesis would be that the drug does not reduce fever, and the 
alternative hypothesis is that the drug does reduce fever. This 
choice would increase efficiency for detecting an antipyrogenic 
effect, because 1-tailed tests are more powerful than 2-tailed tests. 
Consequently, the investigator may detect a significant effect with 
a smaller sample size. The investigator then would conduct the 
variable-criteria SSR by using the P value from the 1-tailed test 
and consider a result significant only if the fever was reduced. 
On the other hand, if the investigator would be interested in an 
outcome in which the fever was unexpectedly increased instead 
of decreased, a 2-tailed test should be planned. The mechanism of 
the unexpected pyrogenic effect of a drug that was theoretically 
antipyrogenic in an vitro model would be revealed only through 
use of a 2-tailed test, and in the present example that is what the 
investigator decides to do. The null hypothesis is therefore that 
the drug has no effect on the pyrogenic action of the bacterium, 
and the alternative hypothesis is that the drug either increases or 
decreases fever.

The original article on the variable-criteria SSR7 includes a fig-
ure for determining a sample size model from a standardized 
effect size and a desired amount of power in an independent-
groups t test (Figure 6 in reference 7). The figure contains 2 sets 
of curves for an α of 0.05, one for smaller upper bounds and one 
for larger upper bounds. In the example scenario, an inspection 
of both sets for an effect size of approximately 1.33 on the abscissa 
and a value of 0.8 for power on the ordinate reveals that either a 
6/18 or a 7/21 sample size model would provide approximately 
the desired power. From a practical standpoint, because the inves-
tigator in the example scenario has purchased 6 telemeter systems 
for continuous measurement of core body temperature, the ex-
periment can be conducted with 3 subjects in each of the 2 groups 
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reject the null hypothesis with this small number and stop testing. 
This would be most likely to happen if the sampled effect size 
was larger than the actual effect size. Of all possible samples with 
the fixed stopping rule and a true effect size of 1.33, 80% (the level 
of power in this case) would require a sample size of at most 10 
to reject the null hypothesis, and only 20% (type II errors) would 
require a larger sample size. Therefore, the SSR is more likely to 
stop early with a larger effect size than to stop late with a smaller 
effect size. As noted in the preceding example, the author found 
several simulations that stopped early before one was identified 
that stopped late. Thus, when the effect size in the population is 
known, the SSR procedure is more likely to stop with an overesti-
mate than with an underestimate of the true effect size.1

All of this emphasizes the fact that the null hypothesis test in 
general, and the SSR in specific, is not the best procedure if the 
goal is to estimate the size of an effect. A null hypothesis test is 
good for deciding whether a difference exists, and if so, in what 
direction. The P value does not contain any information about 
effect size. Estimation of the actual effect size would require a 
confidence interval approach and generally would require more 
animals, because the width of the confidence interval decreases 
(becomes more precise) as the sample size increases. If it is impor-
tant to the research to know the actual size of an effect with a cer-
tain degree of precision, the investigator should use a confidence 
interval approach and use a greater number of animals.14 If a null 
hypothesis test is not appropriate, the investigator should explain 
this situation to the IACUC and justify the use of additional ani-
mals to achieve greater precision.

If an estimation of the size of the effect is of lesser concern in 
the experiment, the use of an SSR will save subjects, on average, 
compared with the fixed stopping rule. If the null hypothesis is 
false, the variable-criteria SSR will save subjects by stopping early 
if the sampled effect is larger than the average effect. This situa-
tion occurs frequently. The variable-criteria SSR also tends to stop 
experiments early when the null hypothesis is true. In the previ-
ous example, the upper criterion was 0.300, which denotes a 70% 
chance of stopping the experiment early after the first iteration 
with n = 6 if the null hypothesis is true. This outcome also saves 
animals.

Repeated-Measures t Test Using 
Variable-Criteria SSR

When a t test requires a one-sample, matched-samples, or 
dependent-samples design, the procedure is exactly the same 
as described for the 2-sample case, except that the power of the 
test is different and varies with the number of pairs of scores and 
the correlation between the scores. The size of the effect, d, is the 
mean of the difference scores divided by the standard deviation 
of the difference scores,4 where a difference score is the difference 
between a subject’s 2 scores on the dependent variable. Power 
curves for the dependent samples t test are presented in Figure 
8 of reference 7. The best sample size model can be estimated by 
inspecting the graphs with the effect size on the abscissa and the 
desired power on the ordinate and looking for the nearest inter-
secting curve. This case includes only one ‘group,’ so an n added 
of 1 means that one will add a single subject’s pair of scores to the 
single group. The stopping criteria are determined from Table 2 of 
reference 7 exactly the same way as for the independent-samples 
test. The P value from a dependent samples t test is compared 

In the results section of the manuscript describing the example 
experiment, the investigator would give the means, standard de-
viations, and ultimate sample sizes and should report that t(22) = 
2.651. Because the P value of 0.0146 is less than the lower criterion 
of 0.0200 for the 0.05 level with the variable-criteria SSR, the re-
sult should be reported as significant at the 0.05 level. The result 
should not be reported as ‘t(22) = 2.651, P = 0.0146’ without iden-
tifying the P value as resulting from the variable-criteria SSR pro-
cedure because someone who does not read the method section 
may not realize from the presentation that the experiment had 
several chances to succeed. The terminology ‘t(22) = 2.651, PSSR = 
0.0146, P ≤ 0.05’ will alert both the immediate reader and future 
meta-analyst to refer to the methods section to learn what ‘PSSR’ 
means. Additional research likely will identify the meaning of the 
PSSR value with respect to how replicable the experiment is.12

On average, an SSR using the 6/18 sample size model will 
yield a significant result with a smaller sample size than will the 
fixed stopping rule.7 However, that did not occur in this example. 
Given a 2-tailed independent-groups t test with α of 0.05, power 
of 0.80, and effect size of 1.33, a regular power analysis suggests 
a sample size of 10 per group, which is less than our ultimate 12 
per group. As mentioned previously, I selected this example from 
several simulations specifically because it was slow to generate 
a significant result. If one had conducted the experiment using 
the fixed stopping rule, one would have conducted the test on 
all 10 subjects per group before the P value was calculated. If the 
P had been greater than 0.05, the experiment would have been 
stopped without a conclusive result of any kind. Instead, when 
the sample size of 9 per group with the SSR was not significant, 
one could continue testing with 12, 15, or even 18 per group be-
fore stopping. These additional chances to achieve significance 
with smaller-than-expected mean differences are strengths of the 
SSR. Now, with evidence that an effect exists in the example sce-
nario, the investigator can proceed to design a dose–response 
experiment with larger numbers of mice to determine the effect 
at each dose.

Estimation of Effect Size after  
Variable-Criteria SSR

In the example just presented, the observed effect size with 
these sample data was 1.07 instead of 1.33. Because this was a 
simulation, one can know that it is an underestimate of the actual 
effect size, 1.33. Several simulations were necessary to find an ef-
fect this low. However, this result raises the question of whether 
the effect size should be estimated at all after one has used an SSR 
procedure.

If the true treatment effect in the population is unknown, the 
investigator cannot know whether the sample’s observed effect is 
an underestimate, exactly right, or an overestimate. However, the 
true effect size can be known in a simulation or thought experi-
ment. Suppose an investigator conducts the previous example 
experiment using the fixed stopping rule with α = 0.05 and β = 
0.20 (that is, power = 0.80) and a true effect size of 1.33 standard 
deviations. The power analysis suggests using 10 subjects per 
group. With random sampling, the obtained effect size will be 
larger than 1.33 about half the time, and half of the time it will be 
smaller, but the power analysis ensures that the investigator will 
reject the null hypothesis 80% of the time with 10 subjects per 
group. If instead one uses 6 per group as with the SSR, one could 
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ful stimulus in mice. The investigator obtains wildtype mice and 
strains of congenic mice with a knockout of either gene A (KOA), 
gene B (KOB), or both (KOAB). The investigator will test the la-
tency to withdraw a hindlimb when it is placed on a warm plate. 
Although no tissue damage is anticipated, limiting the number of 
animals that are exposed to painful stimuli is desirable. However, 
little prior information is available to use for a power analysis. If 
one guesses wrong about the sample size with a fixed stopping 
rule one could test way too many animals in order to find a very 
large effect or could test an insufficient number of animals and 
concluding nothing. In this situation, the variable-criteria SSR al-
lows the investigator to start with a modest sample size and work 
toward larger sample sizes until significance is achieved. The null 
hypothesis is that all 4 population means are equal. The alterna-
tive hypothesis is that the 4 means are not equal.

In this example, the literature on this standard behavioral test 
indicates that the wildtype strain has a normal latency to with-
draw a hindpaw of 30 s with a standard deviation of 7 s. The 
investigator expects fairly subtle differences, such as 1 standard 
deviation, and wants to detect a difference even if only one of the 
mouse lines showed a change this large. To calculate this effect 
size of interest,6 one could assign means and standard deviations 
of 30 ± 7 to 3 groups and 37 ± 7 to 1 group, that is, a 1 standard de-
viation difference in only 1 group. The power analysis would be 
the same if the effect was in the other direction, that is, 3 groups 
at 30 ± 7 and 1 group at 23 ± 7. Entering these data into the sample 
size calculator reveals that the effect size f is 0.43. (Incidentally, 
the same program indicates that one would need a total sam-
ple size of 16 per group for significance with the fixed stopping 
rule to achieve a power of at least 80%. This is not necessarily 
the sample size that will be used with the variable-criteria SSR.) 
By inspecting Figure 10 of reference 7 for a 4-group ANOVA for 
this approximate effect size one learns that sample size models 
of 9/27 or larger will provide about 80% power at the 0.05 level 
of significance. In this example, testing more than 27 mice would 
not be practical, so the 9/27 model is fine. Because the hot-plate 
test is rapid, the investigator can test for significance after adding 
only 1 subject to each group (an n added of 1). Table 2 of reference 
7 shows that the stopping criteria for the 9/27 model at the 0.05 
level of significance with n added of 1 are 0.013 and 0.450. The 
investigator would report the value of α, the sample size model, 
and the n added in the methods section of the resulting manu-
script.

I simulated this experiment with populations in which 3 groups 
had means and standard deviations of 30 ± 7 and 1 group had 37 
± 7. The first test with 9 mice per group yields F(3, 32) = 2.322, P 
= 0.094. Adding one subject per group to that dataset for 10 per 
group gives F(3, 36) = 3.072, P = 0.040. Adding one more sub-
ject per group to that dataset for 11 per group leads to F(3, 40) = 
4.595, P = 0.007. Therefore, with 11 per group, one finds a working 
pSSR value less than our lower criterion of .013 for the 9/27 model 
and rejects the null hypothesis that all 4 population means are 
equal at the 0.05 level of significance for the entire experiment. 
The investigator would report these findings in the results sec-
tion of the manuscript as F(3, 40) = 4.595, PSSR = 0.007, P ≤ 0.05. 
The variable-criteria SSR in this instance detected significance 
among the means with only 44 total subjects, whereas the fixed 
stopping rule would have required 64 total subjects (16 per group, 
see previous paragraph). This good outcome is representative of 
the average reductions in sample size (approximately 30%) with 

with the lower and upper criteria as usual. If the result is in the 
uncertain region, n added subjects are added as long as the addi-
tion would not exceed the upper bound.

One-Tailed t Tests Using Variable-Criteria SSR
A one-tailed t test is conducted when the investigator is willing 

to make a one-sided null hypothesis. The typical 2-tailed null hy-
pothesis is that there is no difference between 2 groups or condi-
tions in the population. The alternative hypothesis, which may be 
accepted if the null hypothesis is rejected, is that there is a differ-
ence between the groups in the population. This difference could 
be either in a positive or negative direction. To achieve a 2-tailed 
test, one half of α is placed into each tail of the sampling distribu-
tion of the t statistic (for example, 2.5% in each tail for an α of 5%). 
By contrast, a one-tailed test puts all 5% of α in one tail of the sam-
pling distribution so that the investigator is predicting the direc-
tion of difference. The null hypothesis of a one-tailed test might 
be stated as “the treatment does not decrease the mean from the 
control group,” and the corresponding alternative hypothesis 
would be stated as “the treatment decreases the mean from the 
control group.” Placing all of α in a single tail of the sampling 
distribution increases power because a smaller t is necessary for 
significance. However, the t must have a sign that is compatible 
with the null hypothesis to be significant. The investigator must 
be willing to conclude nothing (that is, retain the null hypoth-
esis) if the result is an extreme t value in the opposite direction 
from the predicted direction. If at first an investigator plans to 
use a one-tailed test but then, after collecting data, decides to use 
a 2-tailed test because the results are in the unexpected direction, 
the type I error rate is actually 0.075, not 0.05 (that is, 0.05 from the 
predicted direction and 0.025 from the unpredicted direction).

A one-tailed t test will generate a P value appropriate for com-
paring with the stopping criteria exactly as described in the pre-
ceding sections. This option works fine for either independent- or 
dependent-samples t tests. One-tailed tests are discussed widely 
in statistics textbooks.

Example ANOVA Using Variable-Criteria SSR
The procedure for using a one-way ANOVA for multiple 

groups with the variable-criteria SSR is exactly the same as with 
the t test except that power varies with the number of groups, not 
just the sample size per group, so different power curves may be 
necessary to identify the sample size model that is best to use. 
Power curves have been provided for 4 groups7 and for 6 or 8 
groups.8 The rate of type I errors is stable at the nominal alpha 
for as many as 20 independent groups.8 The effect size is based 
on f4 instead of d because the numerator is not a simple difference 
between 2 means, as was the case in the t test. Easy calculation 
methods are available for f.6,19 Each one-way ANOVA generates 
a single P value, and a significant P indicates that a difference is 
present somewhere among the multiple means in the study. Like 
the usual ANOVA, the variable-criteria SSR does not tell us where 
the difference is. However, once the stopping rule has been used 
to determine that an effect exists somewhere among the groups, 
one can use the usual posthoc tests to examine the differences 
among the means in exactly the same way as customary (that is, 
stopping criteria are not involved in these comparisons).

For example, suppose an investigator wants to test whether a 
knockout of either or both of 2 genes affect the response to a pain-
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even early after the infection. The investigator wants to determine 
whether the gene deletion in group K affects virulence compared 
with the virus given to group V. The intention is to euthanize the 
mice before symptoms of a full-blown infection occur in the viru-
lent group V. However, whether the knockout of the viral gene 
will increase or decrease virulence is unknown, and some mice 
may experience severe symptoms before they can be euthanized. 
Although the investigator includes a frequent monitoring plan 
with clear surrogate endpoints, the experiment is best conducted 
with the fewest number of animals that will give a statistically 
significant effect. If the experiment is successful, it will yield in-
sight into the mechanism of virulence of this strain of virus and 
may lead to an effective vaccine.

As just observed with the omnibus F, the variable-criteria SSR 
will stop the experiment as soon as any difference becomes sig-
nificant. If that strategy is used in the present experiment, the 
SSR will stop the experiment as soon as the positive control be-
comes different from the untreated control. The effect of interest 
is whether group K and differs from group V. Unless this effect is 
larger than the difference between groups V and C, a significant 
difference between groups K and V will not be apparent if the 
experiment is stopped by the SSR based on the P from the omni-
bus F. An alternative is to construct a single-df planned contrast 
between groups K and V and to use that P value to stop the ex-
periment. This approach will allow other effects to become large 
without affecting the stopping rule.

To plan this test, one calculates the effect size from the size of 
difference that one would like to be able to detect between groups 
K and V. In this example, the investigator is hoping for a differ-
ence between the means (either positive or negative) of at least 
half the size of the virulence response of group V. The investiga-
tor is familiar with the response of group V, which is at least 3 
standard deviations above the value of control group C. If the 
response of group K is half that large, it would be 1.5 standard de-
viations. So, the size of the effect in standardized units is d = 1.5.

The effect size has been calculated as d, not f, because the inves-
tigator is interested in the difference between 2 means, K and V, 
as in a t test, and not the differences among all 4 means. A t test 
is a special case of the F test. The numerator df for an F test is the 
number of groups minus one, so with 2 groups, the numerator 
has 1 df. The square root of an F value with 1 df in the numerator 
is identical to a t value for the same data. Therefore, a single-df F 
test is functionally the same as a t test, the P values for the F and 
t will be identical, and an F test with 1 df can be treated the same 
as an independent-groups t test.

Figure 6 in reference 7 for the independent-groups t test can be 
used to determine the sample size model. The 5/19 sample size 
model is the most appropriate for 80% power and an effect size d 
of 1.5 for an α of 0.05. In this example, the investigator decides to 
use an n added value of 5, maybe because mice often are housed 5 
per cage, or perhaps the decision is completely arbitrary. The 5/19 
model with an n added of 5 per group in the Table 2 of reference 7 
gives a lower criterion of 0.026 and an upper criterion of 0.28.

A single-df contrast F-ratio can be constructed by dividing a 
mean square for the intended contrast by the error mean square 
for the one-way ANOVA. The intended contrast is described by 
weighting each of the means with numbers such that the sum of 
the weights for all means equals zero. The sum of squares for the 
numerator is calculated as the square of the sum of the weighted 
means divided by the sum of the ratios of squared weights to cell 

larger sample size models for an effect of known size in many 
simulations using the variable-criteria SSR.7

The obtained means and standard deviations for the 4 groups 
are: wildtype, 33.19 ± 6.41 s; KOA, 29.01 ± 5.07; KOB, 28.33 ± 7.64 
s; and KOAB, 37.13 ± 5.91 s. Posthoc comparisons of all pairs of 
means at the 0.05 level with the Tukey Honestly Significant Differ-
ence test demonstrates that both of the single-knockout groups, 
KOA and KOB, are significantly different from the double-knock-
out group, KOAB.

This random simulation illustrates how a real-world dataset 
obtained by random sampling can achieve a significant result 
that is not always easily interpretable. The variable-criteria SSR 
helps to achieve a significant result with a small sample size in an 
ANOVA. It does not guarantee that the result will be easily inter-
pretable any more than the fixed stopping rule does. Perhaps the 
investigator would have liked at least one of the knockout groups 
to have been significantly different from the WT group. One can 
conclude only that the double knockout group has a longer la-
tency than either of the single knockout groups. Whether any of 
the 3 knockout groups are either increased or decreased relative 
to the wildtype group remains unknown. This experiment used a 
value of 80% for power, which left a 20% chance of a type II error. 
One may have obtained a more interpretable result if one had in-
creased power to 90% and used more subjects. This is exactly the 
same regret that an investigator could face when using the fixed 
stopping rule with such results. Another article discusses cautions 
related to using excessive statistical power.9

This example demonstrates that, when used with a one-way 
ANOVA, the variable-criteria SSR stops the experiment when it 
first detects a significant effect, not when it detects the effect the 
investigator wants to detect. This problem can be addressed with 
ANOVA by using a planned contrast as the focus of the variable-
criteria SSR instead of the P from the omnibus F.

Example Planned Contrast Using  
Variable-Criteria SSR

Any factorial ANOVA can be decomposed into a one-way 
ANOVA. For example, an ANOVA with 3 levels on one factor 
and 2 levels on a second factor could be analyzed as a simple one-
way ANOVA with 6 groups. Effects can then be explored with 
planned contrasts. Any one-way ANOVA with G groups has at 
least one set of G – 1 independent (orthogonal) planned contrasts 
that can be made among the means of those groups with 1 df 
each. Therefore, any between-groups contrast can be used as the 
focus of the stopping rule.8 The importance of this practice will 
become clearer with a specific example.

Suppose an investigator designs an experiment to test whether 
the deletion of a particular gene from a virus affects early vir-
ulence in mice. A well-controlled experiment would include 4 
groups: an untreated control group (group C), a group treated 
with an avirulent virus that still may induce an immune response 
(group G), a positive-control group treated with the fully viru-
lent virus (group V), and a group given a virus that has a dele-
tion of the gene of interest (group K). The outcome measure will 
be a measure of the mobilization of immune cells within a short 
period of time after inoculation prior to progression to severe 
infection in the virulent group. The investigator already knows 
that group C will have no active mobilization, group G will have 
mild mobilization, and group V will have a marked mobilization 
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is less important than for an effect in which the P value is close 
to the α for the experiment. Science is best served if published 
effects are repeatable, and repetition of results with animal sub-
jects should be done with rationality. A result with a P < 0.005 has 
better than an 80% chance of being significant at the 0.05 level in 
an exact replication,12 and such experiments should not waste 
animals on needless repetitions if replication is the only reason 
for the repetition (as compared with technical error, for instance). 
In contrast, a result with a P value close to 0.05 has only a 50% 
chance of being significant at the 0.05 level in an exact replica-
tion,12 and a repetition would probably be wise before publishing 
the result.

When conducted in stages, an experiment designed to use the 
variable-criteria SSR can build ‘repeatability’ and ‘significance’ 
with fewer subjects on average than is possible with the fixed 
stopping rule. If desired, the stages can be conducted indepen-
dently using different batches of drug, cohorts of animals, experi-
mental days or experimenters.

Consider what happens if an investigator uses an α of 0.005 
with the fixed stopping rule in an effort to demonstrate repeat-
ability. This conservative α will require a large t value to achieve 
significance and a large sample size to have acceptable power. 
Because the fixed stopping rule requires that all subjects be test-
ed before examining the data, all of the large sample size must 
be used even to find out that the null hypothesis was true. For 
example, suppose an investigator planned an experiment with 
an anticipated effect size of 1.4 standard deviation units in an 
independent-groups t test. Using a 2-tailed test, an α of 0.005, and 
a power of 90%, the sample-size recommendation for the fixed 
stopping rule is 20 per group. If the null hypothesis is true and the 
fixed stopping rule is applied, the experiment will not be stopped 
until all 40 animals in the 2 groups have been tested.

Now consider the same example with an effect size of 1.4 us-
ing the variable-criteria SSR. Based on Figure 6 of reference 7 for 
90% power and an α of 0.005, the investigator can test using the 
8/32 model with an n added of between 1 and 8. For example, an 
n added of 8 would allow sequential testing of 8, 16, 24, and 32 
subjects. In the original simulations,7 this model rejected the null 
hypothesis 92% of the time on average, so the power is at least 
the same as that for the fixed stopping rule. The stopping criteria 
from Table 2 of reference 7 for the 8/32 model at the 0.005 level 
and n added of 8 are 0.0018 and 0.20. The investigator would test 
first with 8 subjects and compare the P with 0.0018 to determine 
whether it is significant at the 0.005 level. The experiment would 
be stopped at a P value exceeding 0.2. If the null hypothesis is 
true, 80% of experiments will be stopped after this first test with 
only 8 subjects per group (1.00 – 0.2 = 0.8). If the result is sig-
nificant, the investigator would report that the experiment was 
significant at the 0.005 level because P was less than the lower cri-
terion of 0.0018 in the variable-criteria SSR, using a lower bound 
of 8 and an upper bound of 32, and that the probability of a sig-
nificant exact replication is greater than 80%. The number of sub-
jects per group when the effect reached significance also would 
be reported. In the original simulations,7 the average sample size 
at the rejection of the null hypothesis with the 8/32 model with 
an n added of 8 was 16 per group (data not shown). Therefore, on 
average, the example study design saves 4 animals per group for 
an average of 8 total animals for the experiment when compared 
with the sample size of the fixed stopping rule.

frequencies. For example, if each of the means in the example 
virus study is labeled as C, G, V, and K and the respective sample 
sizes as nc, ng, nv, and nk and if only the means for V and K are 
compared, respective weights of 0, 0, 1, and –1 would be used:

SS1df = ((0) × C + (0) × G + (1) × V + (–1) × K)2 / ((02)/nc + (02)/ng 
+ (12)/nv + (–12)/nk)

or, after reducing the formula to delete the zero terms,

SS1df = (V – K)2 / (1/nv + 1/nk),

which in this case is the squared difference between the 2 means 
divided by the sum of the reciprocals of the sample sizes. The 
numerator mean square is the sum of squares divided by the df, 
which is 1.

The author simulated this experiment using population effect 
sizes of 0 for the control group C, 0.3 for group G, 3.0 for group 
V, and 1.5 for group K. As predicted, the omnibus F among the 4 
groups was significant at the first test with 5 per group (P < 0.001) 
because of the large difference between the untreated control 
group C and the positive control group V. However, the effect be-
tween the V and K groups by the planned contrast with 5 subjects 
per group was F(1, 16) = 5.288, P = 0.0353. This result looks prom-
ising, but is in the uncertain range between the stopping criteria 
of 0.026 and 0.28. After adding another 5 subjects per group, the 
result was F(1, 36) = 20.326, P = 0.000067. At this point, one can 
reject the null hypothesis at the 0.05 level of significance, indicat-
ing that group K is different from group V. This planned contrast 
would be reported in the results section of the manuscript as F(1, 
36) = 20.326, PSSR = 0.000067, P ≤ 0.05. Other comparisons can be 
made in the usual way with posthoc tests or additional planned 
contrasts. Because 4 means are tested, 3 (that is, 4 – 1) total or-
thogonal contrasts can be made, and 2 of these are free after the 
contrast that was the focus of the stopping rule. Because these 
other posthoc or planned contrasts were not tested repeatedly to 
find significance in the experiment, they can be tested at the usual 
α instead of using a reduced lower criterion.

The example with the knockout mice in a previous section 
might have used a planned comparison between the WT group 
and the average of all 3 knockout groups. This decision could 
have guaranteed significance between the WT group and at least 
1 of the other 3 knockout groups if the experiment was stopped 
with a significant result. The risk of that strategy is that one of 
the knockout conditions might greatly decrease the mean and 
another knockout group might greatly increase the mean, so that 
the average of the groups is zero. This alternative strategy would 
not detect this interaction.

Planning Simultaneously for Significance and 
Repeatability

A significance test allows an investigator to assert whether a 
difference exists, and if it does, in which direction.10 The investiga-
tor also can state the small probability that a type I or type II error 
has been made. A companion article9 discusses issues relating to 
when an effect probably should or should not be replicated before 
publication to ensure that the effect is repeatable. Experiments 
with extremely small P values are much more likely to be repeat-
able with a significant effect in the same direction, and replication 
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and treatments can proceed. Because these 2 other effects in the 
model were never used in the decision to stop the experiment, 
they can each be tested at the nominal alpha, such as 0.05, instead 
of at the lower criterion demanded by the variable-criteria SSR. 
The P value for these tests will have the usual meaning, so they 
need not be reported as PSSR. If either the replicate factor or the 
interaction between the replicate and treatment factors is signifi-
cant, unknown differences between the replications are causing 
effects that likely will be of concern in future studies. This pro-
cedure is more powerful than conducting 2 separate t tests and 
uses far fewer animals to demonstrate that the phenomenon is 
reproducible.8 It is also logical, because all attempts to reject the 
null hypothesis should be reported in the resulting article. This 
reporting can be done by merging the replicates into a main effect 
of treatment or by displaying the means separately to illustrate 
interactions. An investigator should never conduct several identi-
cal replications and then present in the paper the replicate that is 
most favorable to the aims of the study.

The number of levels on the treatment factor is not limited to 2. 
Any number of groups can be tested by using either the omnibus 
F or a planned contrast as the focus of the stopping rule. This anal-
ysis is valid because the different factors in a multifactor ANOVA 
are completely independent of one another. The variable-criteria 
SSR has no way of being influenced by the fact that there are other 
independent factors in the experiment. If the variable-criteria SSR 
works in a t test without a factorial structure, it will work just as 
well with an F test within a factorial structure.

Whether the groups are a part of a main or interaction effect, the 
number of numerator df should not exceed 19 because the maxi-
mal number of groups that have been tested with simulations to 
assure that the type I error rate is stable is 20.8 The method may 
work with additional groups because a large drift of alpha does 
not occur at 20 groups,8 but further testing would be required to 
confirm this assumption.

The foregoing discussion leads to the question of whether the 
second factor must be a replicate or can be some other factor of 
interest. For example, if a drug effect is one of the treatments 
and a strain of mice (transgenic or wildtype) is the second factor, 
could the investigator use the variable-criteria SSR in this situa-
tion as well? The answer is a qualified ‘yes’—the decision rule 
would have to be limited to a single P value, as in the treatment 
× replicate example. The replicates could be analyzed as a third 
factor or could simply be averaged as with a simple t test. The 
design now includes a 2 × 2 ANOVA with drug compared with 
vehicle on one factor and transgenic compared with wildtype 
on the other factor. The investigator could conduct a test with 8 
animals per group, then 16 animals per group, and so on, until 
a P value for 1 of the 3 F ratios was significant. However, for the 
test to be valid, one must decide before the experiment which 1 
of the 3 F ratios to use to make the stopping decision. The design 
has 3 completely independent effects, and any of these could be 
the focus of the decision rule. A legitimate approach would be 
to add sample size until either the drug effect was significant, or 
until the strain effect was significant, or until the interaction of 
drug and strain was significant. However, adding sample size 
until any 1 of the 3 effects was significant would not be legiti-
mate, nor would adding sample size until all of the 3 effects were 
significant. The observed type I error rate would be inflated by 
an unknown amount.

In this example, an α of 0.005 determined whether the effect 
was replicable, not whether it was significant. Any result that is 
less than the lower criterion at the 0.05 level should be reported 
as significant, and any result that is less than the lower criterion 
at the 0.005 level should be reported as confirmed and likely to 
be replicated with significance at the 0.05 level.12 Results with P 
values between the lower criteria for the 0.05 and 0.005 levels can 
be reported as interesting but unconfirmed. If the experiment is 
designed to demonstrate repeatability at the 0.005 level, the upper 
criterion for the 0.005 level should always be used (not the upper 
criterion for the 0.05 level). The upper criterion has much less ef-
fect on the type I error rate than does the lower criterion.7

Some investigators may be concerned about the independence 
of replications regardless of how small the P value is after the 
first repetition. A particular experiment may result in significance 
because of some error or peculiarity of the testing conditions and 
perhaps should be performed under completely independent 
conditions to demonstrate repeatability. The example in the pre-
ceding section can include completely independent replications 
because the experiment is conducted in stages (replications). In-
stead of conducting the experiment with 20 animals per group all 
at once, the experiment is conducted with 8 per group in the first 
test, another 8 per group in the second test, and so on, until the 
experiment is stopped because one of the stopping conditions is 
satisfied. Investigators who prefer not to merge the results from 
multiple replications into a single mean may consider multifacto-
rial ANOVA.

Multifactorial ANOVA with the  
Variable-Criteria SSR

The preceding experiment can also be organized as a factorial 
ANOVA instead of as a t test.8 One factor is the treatment vari-
able with 2 levels, and the other factor is the replications with the 
number of levels needed to produce significance on the treatment 
factor. This factorial ANOVA will have 2 F ratios, representing the 
main effects of the treatment and replication factors, and a third F 
for the interaction of the treatment and replication factors. To use 
the variable-criteria SSR in this experiment, the replication and 
interaction factors are completely ignored, thereby focusing all 
attention on the treatment factor as data are collected. The previ-
ous example has 2 levels of the treatment factor, a control group 
and a treatment group, and the P value for the main effect of this 
factor will be identical to that of a t test between the 2 groups as 
if the other factor is ignored. One can evaluate this effect after 
the first test with 8 per group, after the second test with 16 per 
group, and so on until a decision is reached according to the rules 
of the variable-criteria SSR. Each test adds a level to the replica-
tion factor. In addition to the means and standard deviations, the 
investigator would report the sample size model used, the value 
of n added, the obtained PSSR, the actual significance level, and 
the sample size per group at which the effect became significant. 
Investigators seeking the extra assurance of ‘repeatability’ can 
use a significance level of 0.005 instead of 0.05, as was done in the 
preceding section.

However, the analysis should not end there. Although the in-
vestigator’s attention was focused on the stopping variable, the 
data have undergone a full 2 × 3 factorial ANOVA. Once the ex-
periment has been stopped by using the treatment variable, test-
ing of the effects of replications and the interaction of replications 
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a considerably larger P value than the other tests. This benefit is 
possible because the variable-criteria SSR includes an upper crite-
rion that stops a large percentage of the experiments after only the 
first test when the null hypothesis is true and this reduces type I 
errors. More complex SSR from the clinical trials literature can 
include both an upper and lower boundary for significance and 
an allowance for testing at unequally spaced intervals, but these 
techniques are more difficult to use than is the variable-criteria 
SSR.18

The reduction in critical P for significance is not a simple func-
tion of the number of tests in the variable-criteria SSR; it also 
depends on the values of the lower bound, upper bound, and n 
added. For an extreme example, at the 0.05 level of significance 
and a constant n added of 1, the lower and upper criteria for the 
3/9 bounds are 0.015 and 0.43 for a maximum of 7 tests; the crite-
ria for the 10/40 bounds are quite similar, 0.015 and 0.250, for 31 
tests (see Table 2 of reference 7). Because the upper criterion has 
only a small, ‘fine-tuning’ influence on the overall obtained type I 
error rate,7 the number of tests is only a minor determinant of the 
critical P value required for significance in these cases (that is, 7 
compared with 31 tests).

Table 1 supports the conclusion that the variable-criteria SSR 
is comparable to other SSR techniques, and even a little better 
within its niche, which is small-sample research. With small-sam-
ple biomedical research, any increase in efficiency reduces the 
number of animal or human subjects that may be subjected to 
invasive procedures. The variable-criteria SSR is not mathemati-
cally rigorous because its criteria are based on simulations (albeit 
very large ones). For this reason, statisticians should try to im-
prove techniques for small experiments with the following goals: 
(1) more rigorous mathematically than is the variable-criteria SSR; 
(2) more powerful in small-sample experiments than are the cur-
rent simple rigorous methods; (3) understandable to the general 
population of biomedical researchers who do not consult statisti-
cians; (4) can include lower bounds and n added that are flexible 
and not always equal;8 and (5) available at low cost.7

Conclusions and Advice for IACUC
This article does not substitute for an education in basic sta-

tistical methods. Decisions about statistics are best made as the 
experiment is being designed and by persons who have training 
in statistical methods and experimental design. The first neces-
sary decision is whether a null hypothesis test is appropriate. If it 
is, the second decision is whether the variable-criteria SSR is ap-
propriate. The IACUC is composed by law of persons in several 
roles, including the chair, veterinarian, practicing scientist, and 
community member, but a statistician is not required. Nonscien-
tist members are unlikely to be able to evaluate the suitability of 
a statistical design presented in an IACUC protocol application, 
and veterinarians rarely have a strong background in statistics. 
Recruitment of a scientist with strength in basic statistical meth-
ods will greatly aid the overall evaluation of the justification of 
animal numbers during the review of a protocol.

If a null hypothesis significance test is appropriate for a study, 
the most efficient way to assure that no more than the necessary 
number of animals will be used is to use a SSR. The variable-
criteria SSR is an improvement over earlier SSR, COAST, and 
CLAST, which also control type I errors to less than α but do not 
hold them constant.3,11,21 SSR that include an upper bound, such 
as CLAST and the variable-criteria SSR, allow the determination 

Why Am I Using More Animals Instead of 
Fewer?

Investigators who have been accustomed to doing sequential 
sampling at the 0.05 level will have more difficulty achieving 
significance with the variable-criteria SSR because they need a 
smaller P to meet the lower criterion. These investigators have be-
come accustomed to the great power of sequential sampling, but 
without knowing it, they have incurred a greatly increased level 
of type I errors. The variable-criteria SSR avoids that by using a 
few extra animals to control the rate of type I errors.

Other Techniques for Sequential or Interim 
Analysis

Techniques for sequential or interim analysis date to the late 
1940s and have been heavily used in various fields but especially 
in clinical trials.1,13 For safety reasons, interim assessment of data 
may be necessary at several points during a long trial. Some of 
these methods are available in proprietary statistics packages, 
and they, like the SSR discussed here, are more efficient in regard 
to sample size than is the fixed stopping rule when applied to 
preclinical research problems as well as clinical trials. The avail-
able methods vary in complexity and may require advanced 
mathematics or special training.3,11 The variable-criteria SSR is 
the only test for interim analysis that was optimized for small-
sample research (that is, 40 or fewer subjects per group), where 
labor-intensive studies with animal or human subjects often exact 
considerable monetary expense or ethical cost for adding sample 
size.

Other SSR used in clinical trials are designed to take a certain 
predetermined number of assessments of the accumulating data, 
and the simplest of these SSR require that all groups added to 
the test must be of the same size (that is, the n added must equal 
the lower bound). Tests that do not make this assumption are 
more difficult to use. Table 1 lists the adjusted critical value of P 
required by several group SSR tests after 1, 2, 5, 10, or 20 interim 
analyses with equal sample sizes. For example, with the Pocock 
method,17 if a trial was designed to test significance after each 
fifth of the data was collected (that is, 5 total tests), a test would 
be considered significant only if the obtained P value was less 
than 0.0158.

The variable-criteria SSR works differently because the inves-
tigator begins with a number of subjects at the lower bound and 
then proceeds adding n added subjects at each test. The n added 
can be less than, equal to, or (in some cases) even greater than 
the lower bound. The number of tests conducted therefore de-
pends on the lower bound, the upper bound, and the n added. 
However, when the lower bound and n added are equal, one can 
select sample size models that provide close comparisons with 
these other SSR listed in the table (see right side of Table 1). For 
example, a maximum of exactly 2 tests each can be added with 
the 4/10, 5/12, 6/12, and 7/14 models with n added of 4, 5, 6, 
and 7, respectively. A maximum of exactly 5 tests is possible if the 
3/15 model is used with an n added of 3. Available sample size 
models do not include 10 or 20 tests unless the lower bound and n 
added are unequal. For 10 tests, the lower criterion is listed for the 
9/36 model with n added of 3. For 20 tests, the lower criterion is 
listed for the 10/30 model with n added of 1 (although the actual 
maximal number of tests is 21). For more than 2 tests, the variable-
criteria SSR would allow the rejection of the null hypothesis with 
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mals used within a range of sample sizes that will detect a range 
of meaningful effects.
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of the absolute maximal number of subjects that will be required 
for a study. This number will be large compared with the actual 
number of animals that are likely to be used in the study because 
experiments rarely reach the upper bound whether or not the 
null hypothesis is true. Nevertheless, the IACUC should assign 
animals to the protocol based on the upper bound as long as 
the investigator commits to the use of the SSR for a study in the 
protocol. If the investigator is using the variable-criteria SSR, the 
method itself will limit the number of animals to the minimum 
necessary to achieve significance. Because of that feature, the 
IACUC does not have to micromanage how many animals are 
assigned to the protocol. The IACUC can be assured that the ex-
periment will be stopped early, on average, before many subjects 
have been used if an effect does not exist and that the investigator 
will add subjects to the experiment only as long as the interim 
data are promising according to an established rule.

This procedure will probably lead to an accumulation of excess 
animals on some protocols over the approval period of 3 y. When 
investigators apply for significant changes to add new experi-
ments to the protocol, they must justify the number of animals in 
the significant change. The investigator can be asked at this point 
if these new animals must actually be added to the protocol. In 
some cases that will not be necessary. If the IACUC requires more 
control of animal purchasing, animals can be released adminis-
tratively in stages based on interim reports16 demonstrating that 
results are in the ‘uncertain’ range.

The use of the variable-criteria SSR simplifies the process of 
predicting a standardized effect size. The lower bound of the 
model selected for the SSR will be a relatively modest sample size 
so that larger-than-expected effects will be discovered early with 
few subjects. The upper bound of the model will allow smaller-
than-expected effects to be pursued as long as they represent 
meaningful effects. For that reason, the upper bound should be 
close to the sample size required to detect the smallest important 
effect. With proper consideration to the selection of the lower and 
upper bounds, the procedure itself regulates the number of ani-

Table 1. Critical P values to maintain α = 0.05 for SSR tests

No. of tests Šidák13
Armitage and  
McPherson13 Pocock17 Variable-criteria SSR

Sample-size models for  
variable-criteria SSRa

1 0.05 0.05 0.05 0.05 not applicable
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5/12 – 5 
6/12 – 6 
7/14 – 7

5 0.01 0.016 0.0158 0.025 3/15 – 3

10 0.005 0.011 0.0106 0.019 9/36 – 3b

20 0.003 0.008 0.0075 0.015 10/30 – 1b

The tests by Šidák, Armitage and McPherson, and Pocock all require that the lower bound is equal to the n added. Direct comparison is difficult because 
the variable-criteria SSR also included an upper criterion. Having an upper criterion means that many tests under the null hypothesis will be stopped 
before they progress to type I errors, thus reducing the overall error rate compared with the other methods and allowing a more generous critical P 
value.
aData given as lower bound / upper bound – n added.
bNote that the lower bound and n added are not equal for 10 and 20 tests.
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