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Abstract
Targeting of radionuclides with antibodies, or radioimmunotherapy, has been an active field of
research spanning nearly 50 years, evolving with advancing technologies in molecular biology and
chemistry, and with many important preclinical and clinical studies illustrating the benefits, but
also the challenges, which all forms of targeted therapies face. There are currently two
radiolabeled antibodies approved for the treatment of non-Hodgkin lymphoma, but
radioimmunotherapy of solid tumors remains a challenge. Novel antibody constructs, focusing on
treatment of localized and minimal disease, and pretargeting are all promising new approaches that
are currently under investigation.
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Antibodies are integral agents of our immune system, primarily used to identify and aid in
the clearing of foreign pathogens. While antibodies have been examined for many years as
possible cancer therapeutics, early trials with murine monoclonal antibodies were
disappointing [1–3]. However, as many as 22 antibodies are now approved for clinical use in
a variety of indications, with many more under investigation [4–6]. While antibody-
dependent cellular cytotoxicity (ADCC) and complement activation play a role in the
success of some unconjugated antibodies, identification of pathways required for cell growth
has opened new possibilities for using antibodies as relatively nontoxic agents that can alter
these processes and control tumor progression. Still, on their own, relatively few antibodies
alter patient survival significantly, but are becoming increasingly important adjuncts, being
administered along with standard chemotherapy to enhance the overall response/survival.
Thus, interest in developing antibody conjugates to enhance efficacy continues. In this
article, we review the use of antibodies conjugated with radionuclides, known as
radioimmunotherapy (RAIT), for the treatment of cancer.

Investigations on the use of antibody- conjugated radionuclides began in the early 1950s [7],
but it took nearly 25 more years before these feasibility studies came to clinical fruition,
demonstrating first that antibodies could selectively localize cancer [8,9], and then
illustrating their therapeutic potential [10]. Clinical studies began with the evaluation
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of 131I-labeled antibodies, but in combination with chemotherapy [11,12]. This effort drew
criticism because the efficacy of the 131I-labeled antibody alone had not been established
and, therefore, future clinical trials focused on monotherapy with radiolabeled antibodies
[13]. The initial clinical trials focused on using radioiodinated antibodies but, over time,
advances in chelation chemistry have allowed many new therapeutic radionuclides to be
explored (Figure 1 & Table 1) [14,15].

Hematological malignancies
The first major advance in RAIT occurred with hematological malignancies, starting with a
report that a fractionated dosing regimen using 131I-labeled anti-HLA-DR antibody (Lym-1)
achieved remarkable regressions of bulky masses, primarily in patients with non-Hodgkin
lymphoma (NHL) [16,17]. Subsequent trials reported success with 131I-labeled anti-CD37
IgG, anti-CD20 IgG, and anti-CD22 IgG in lymphoma [18–22]. In all instances, RAIT was
limited by hematologic toxicity, because the radiolabeled antibody cleared slowly from the
blood, exposing the radiosensitive bone marrow to a continuous source of low-dose
radiation. When the dose was escalated to myeloablative levels with help of bone marrow
grafting, a significant number of patients achieved complete objective responses for
extended durations [22]. Excellent responses were also reported with nonmyeloablative
doses of an 131I-labeled anti-CD20 antibody [21].

These studies claimed that adding unlabeled antibody to the radioimmunoconjugate resulted
in a more ‘favorable biodistribution’ [18,21–23]. At low protein doses, the radiolabeled
antibody cleared into the spleen quickly, where a sizeable number of normal B cells reside,
which also express these antigens, but patients with bulky disease also cleared the antibody
quickly. Predosing with unconjugated antibody blocked the rapid uptake in this antigen sink
and slowed the radiolabeled antibody’s blood clearance, which, in turn, gave the
radioimmunoconjugate more time to localize to more tumor sites. A similar finding was
confirmed in clinical investigations with a 90Y-labeled anti-CD20 antibody [24], selecting
250 mg/m2 as the preferred predose of unlabeled antibody [25]. While examining the
optimal protein dose for an 131I-anti-CD20 IgG, Kaminski et al. noted that some patients
given a predose of 685 mg of anti-B1 (tositumomab) actually experienced tumor shrinkage
after receiving only an imaging dose of the 131I-labeled anti-CD20 antibody [21,26].
Preclinical studies also noted antitumor activity with the unlabeled antibody in xenograft
models [27]. Shortly thereafter, clinical studies confirmed the antitumor effects by another
unlabeled, chimeric anti-CD20 antibody, later known as rituximab [28].

The 90Y- and 131I-labeled anti-CD20 antibodies, now known as 90Y-ibritumomab tiuxetan
(Zevalin™, Spectrum Pharmaceuticals, CA, USA) and 131I-tositumomab (Bexxar®,
GlaxoSmithKline, NC, USA), respectively, are the only radiolabeled antibodies approved
for cancer therapy in the USA, being registered to treat chemotherapy-refractive, follicular
NHL, with or without transformation. 131I-tositumomab requires a pretherapy imaging study
in order to establish the prescribed therapy dose. 90Y-ibritumomab is administered at a fixed
dose of 0.4 mCi/kg, but requires a dose reduction to 0.3 mCi/kg if platelet counts are below
150,000. Neither treatment is recommended for patients with more than 25% bone marrow
involvement, since these patients have an increased risk of more severe hematologic
toxicity.

Antitumor responses in NHL occur at relatively low radiation-absorbed doses (e.g., much
less than 1000 cGy) [29–32]. Although clear evidence for a dose-response relationship is
lacking, recent data using 3D dosimetry and radiobiological modeling have provided
reasonable positive predictive values for response versus mean absorbed dose and equivalent
uniform dose [33]. Radiation dose–response relationships are probably confounded by the
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fact that each of these treatments uses substantial amounts of their respective unconjugated
anti-CD20 IgG, which are therapeutically active, yet the radioimmunoconjugate is able to
enhance the response. For example, a randomized trial comparing the efficacy of rituximab
(Genentech, CA, USA) (375 mg/m2 four-times weekly) to 90Y-ibritumomab tiuxetan (250
mg/m2 chimeric rituximab two-times weekly with the radiolabeled murine anti-CD20) found
superior objective response with RAIT [34]. 131I-tositumomab was also more active than
unlabeled murine anti-B1 antibody [35]. Research also has shown that these antibodies can
enhance a tumor cell’s sensitivity to radiation and chemotherapy [36–40], and thus in these
treatments, responses probably represent a combination of the unconjugated antibody and
targeted radiation. Unfortunately, the data from the randomized trial did not find significant
difference in the duration of response or time to progression for RAIT over the unconjugated
antibody therapy, so clinical acceptance for this treatment has been tempered, even though
durable responses have been reported for patients who achieved a complete response
following RAIT [41,42].

A number of other issues have hindered the acceptance of RAIT. For example, the incidence
of secondary cancers and of myelodysplastic syndrome (MDS) is a concern, but there is
considerable evidence suggesting that the overall risk for RAIT is no higher than
chemotherapy [43–45]. There were concerns that the hematologic toxicity associated with
RAIT would reduce a patient’s tolerance to chemotherapy, yet clinical studies contradicted
this [46]. Kaminski et al. reported encouraging response rates and durations with 131I-
tositumomab given as a front line treatment [47]. In addition, 28 patients were able to
receive a second 131I-tositumomab treatment with no additional toxicity, with all of the 18
patients who responded to the first treatment responding to the second treatment [48,49].
While RAIT as a stand-alone treatment for follicular lymphoma has not garnered much
attention, an increasing number of clinical trials are incorporating RAIT successfully with
chemotherapy or, occasionally, external beam therapy [50–63]. There is also interest in
using RAIT in high-dose therapy regimens with chemotherapy and external beam radiation
(or possibly as a replacement for whole-body radiation) in cytoreductive marrow
conditioning regimens [43,64–76].

Several other radioantibody conjugates have been tested clinically in hematologic
malignancies. A few centers reported success with 131I-rituximab [77,78]. One recent study
administered two doses of 131I-rituximab, given approximately 6 weeks apart, commencing
6 weeks after completion of a standard unconjugated rituximab therapy [78]. They reported
a 90% overall response with a 50% complete response and a median time to progression of
20 months, which was significantly longer than the last chemotherapy regimen the patients
had received prior to qualifying for this study. Lym-1, a murine anti-HLA-DR10 antibody,
was examined as an 131I-labeled (Oncolym, Peregrine Pharmaceuticals, CA, USA) and 90Y-
labeled conjugate with promising activity in initial clinical testing [79,80], but is no longer
being pursued for commercial development. A 131I-labeled anti-CD45 antibody is being
tested in patients who will undergo a myeloablative procedure because CD45 is expressed
on many different types of white blood cells [81]. A Phase I/II trial for 90Y-labeled
epratuzumab (humanized anti-CD22 IgG; Immunomedics, Inc., NJ, USA), administered as
fractionated two- or three-weekly injections, found that 11 out of 12 (92%) of the follicular
lymphoma patients receiving a total dose of more than 30 mCi/m2 had a complete response,
with a median duration of 24.6 months [82]. In addition, ten patients with follicular
lymphomas who were previously refractory to an anti-CD20-containing therapeutic regimen
achieved a median progression-free survival of 21.5 months, with nine of these patients
(90%) obtaining a complete response. Encouraging responses were also noted in patients
with aggressive forms of NHL.
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Preclinical studies suggest that further improvements could be achieved by combining
the 90Y-labeled anti-CD22 IgG with unconjugated anti-CD20 antibody therapy [83]. As
mentioned previously, both of the currently approved anti-CD20 RAIT agents administer a
substantial amount of unlabeled anti-CD20 IgG prior to the radiolabeled anti-CD20 (as
much as 900 mg is administered prior to the therapeutic radioimmunoconjugate) [84]. This
procedure was reported to enhance tumor visualization and tumor dosimetry, derived in
small, separate groups of patients, suggesting that the radiation-absorbed dose was not
affected [23,24]. However, preclinical studies have indicated that unlabeled anti-CD20 can
reduce tumor uptake of radiolabeled IgG [83,85]. By using a radioimmunoconjugate that
binds to a different, yet B-cell-specific, antigen, both agents would have an equal ability to
localize in the tumor without competing for binding sites. If the unconjugated anti-CD20
IgG is administered sometime before the radiolabeled anti-CD22 (e.g., 1–3 weeks), it also
would reduce the normal B-cell sink that could affect the radiolabeled anti-CD22 targeting.
Animal studies have also suggested that a consolidation course of unlabeled anti-CD20
antibody therapy after RAIT could amplify the response and its duration [86].

Radioimmunotherapy with β-emitting radionuclides increases the risk for severe
myelosuppression, because the β-emissions, which can travel several millimeters, cause
collateral damage to nontargeted normal tissues (Table 1). However, shorter-range
radionuclides, such as α-emitters, travel less than 0.1 mm (i.e., a few cells deep) and, thus,
would be a better choice in treating cancer in the blood or bone marrow. Early clinical
investigations focused on 213Bi-labeled anti-CD33 IgG in myeloid leukemia [87–91];
however, even though leukemic cells were rapidly localized, 213Bi’s short physical half-life
(46 min) presents logistical issues for conjugate preparation and is not ideally suited for an
IgG when tumors are less accessible. Investigators have speculated that a more rapid
targeting system might be necessary [92,93]. Longer-lived α-emitters, such as 211At (7.2 h),
and 225Ac, which has a 10-day half-life and emits four daughter α-particles during its decay,
are also being explored as a better match for an IgG. However, issues with renal toxicity
need to be addressed [94–101]. Targeted α-particle therapy is being explored in more easily
accessible settings, such as the peritoneal cavity or the cavity left following primary brain
cancer surgery [102–106], or to the tumor vasculature [107–111], where the radionuclide
would be more quickly localized to the disease.

Auger-emitters, such as 125I, 67Ga and 111In, have such a limited range that they are only
effective when deposited very near or within the nucleus [112]. Therefore, they are active
only against single cells, but could be suitable for micrometastatic disease, even in the bone
marrow, because of the limited potential for collateral damage [113,114]. One of the few
systems where Auger-emitters have been used successfully has been with an anti-CD74
antibody [115]. In this system, even though there are a small number of antigen sites on the
cell surface, the antigen is constantly recycling, thereby transporting and emptying the
antibody with its radioactive payload inside the cell and then returning to cell surface, where
it is available to bind additional antibody. Activity was also reported for 111In-labeled
antibodies to the EGF receptor (EGFR) and HER-2 [116].

Nonhematologic malignancies
Clinical trials in advanced solid tumors rarely progress beyond Phase I/II because, even
though there is occasional evidence for tumor shrinkage, most fail to meet accepted criteria
of an objective response [117–121]. However, two agents did proceed to more advanced
clinical testing in solid tumors. The first was pemtumomab (R1549; Antisoma PLC, UK),
a 90Y-labeled murine anti-HMFG1 (MUC-1) murine antibody that was administered
intraperitoneally to ovarian cancer patients with measurable and occult disease. Promising
data were first reported from a Phase II trial, where this agent (18 mCi/m2) was administered
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to 21 women with stage Ic–IV ovarian cancer, who had no detectable disease after
completing surgery and a platinum-based chemotherapy regimen [122]. Unfortunately, this
experience was not confirmed in a large, Phase III, randomized study [123]. A pivotal trial
performed in China showed more promising results in 107 lung cancer patients that were
given an 131I-labeled chimeric antitumor necrosis therapy IgG (Shanghai MediPharm
Biotech Co. Ltd, China) [124]. A total of 62 patients received two intravenous injections
spaced 2–4 weeks apart (0.8 mCi/kg), while another 45 patients received an intratumoral
injection of 0.8 mCi/kg. Not surprisingly, patients receiving the intratumoral administration
had less hematologic toxicity than the systemically administered group. However, the
overall response rates were similar (~35%), with most having partial responses. Because the
trial was designed to evaluate response only at 10 weeks post-treatment, the full duration of
these responses, and the impact on survival, are not known. This agent is not approved for
this indication in the USA, but early clinical trials in the USA using this antibody labeled
with 131I (Cotara, Peregrine Pharmaceuticals Inc., CA, USA) for the treatment of brain and
colorectal cancers have been reported [125–127].

Perhaps one of the more obvious issues with RAIT in solid tumors is that, unlike lymphoma,
most of the antibodies used, are themselves, unable to affect tumor growth. Preclinical and
clinical studies have been examining the possibility of using trastuzumab, cetuximab or
panitumumab [95,128–138], but their binding specificity might limit their utility. For
example, imaging studies have indicated that trastuzumab has enhanced uptake in the heart
wall, but dosimetry estimates suggested this might not be dose limiting [137]. Encouraging
clinical responses, using a trastuzumab–drug conjugate, may provide additional incentive to
evaluate the radioimmunoconjugate [139]. Improved responses with 90Y-labeled
panitumumab in a head and neck cancer model was also reported recently [140]. In addition
to ensuring tumors express antigen, cetuximab or panitumumab radioimmunoconjugates
should also require patient selection based on wild-type KRAS status in order to enhance the
prospects that the unconjugated antibody will provide additional therapeutic response [141].

Owing to a lack of evidence for significant benefit in patients with advanced and
disseminated solid tumors, efforts are being undertaken to find ways to: improve antibody
uptake (both quantitatively and in a more uniform distribution); enhance the tumor’s
sensitization to radiation; or administer RAIT when less disease is present.

Meredith et al. combined an 131I-labeled anti-carcinoembryonic antigen (CEA) antibody
(COL-1) with 131I-CC49 anti-tumor-associated glycoprotein (TAG)-72 IgG, because
immunohistology demonstrated that the combination gave a more homogeneous distribution
within the tumor than either antibody alone [142]. In addition, patients received IFN-α,
which had been reported to enhance CEA and TAG-72 expression in gastrointestinal tumors.
Tumor imaging was judged to be excellent in most cases, and in comparison with other trials
that used only 131I-CC49, the combination of anti-CEA and anti-TAG-72 antibodies,
together with interferon, appeared to result in a modest increase in the absorbed dose to the
tumor; however, no objective responses were reported. When using antibody combinations,
one needs to be cognizant that while this might enhance the uniformity of distribution, the
absolute uptake of the antibody combination may be less than that of the single antibody
with the highest uptake, which was illustrated well by Pagel et al. using three non-cross-
reactive antilymphoma antibodies [143].

Enhancing uptake by modifying the tumor’s vascular properties through hyperthermia,
radiation, or biologically active compounds has been widely investigated [144–150], but
these manipulations usually have only a modest effect on antibody uptake. Locoregional
administration, such as intraperitoneal and intracranial, is another example of modifying the
route of administration in order to give an antibody a ‘first-pass’ opportunity to bind to the
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tumor, enhancing uptake [151]. Early preclinical data demonstrated an advantage for
intraperitoneal injection, particularly, but not conditionally, when there is malignant ascites
[152,153]. One of the earliest clinical studies to examine route of administration
coinjected 131I/125I-B72.3 anti-TAG-72 IgG intraperitoneally and intravenously. It was
concluded that peritoneal implants were more likely to benefit from the intraperitoneal
injection, whereas nonimplants (i.e., those metastases in the peritoneal cavity derived from
hematogeneous spread) were more likely to have higher uptake by intravenous injection
[154]. A clinical trial using only intraperitoneally administered 177Lu-CC49 anti-TAG-72
IgG in ovarian cancer noted a trend for improved responses only in patients with minimal
disease, which is expected based on the short-range β-emission of 177Lu [155]. This group
also examined the combination of intraperitoneally administered 90Y-CC49 with IFN-α and
paxlitaxel (for upregulation of TAG-72 and radiosensitization, respectively) [156]. Two
partial responses were noted in patients who had measurable disease at the time of treatment,
while four out of of 11 patients who had no measurable disease were disease-free from 9 to
24 months following therapy.

As mentioned previously, a Phase III trial of intraperitoneal RAIT for ovarian cancer with
a 90Y-antibody failed to improve survival in patients who had been surgically debulked and
had received primary chemotherapy [123]. Whether this failure was related to using the
long-range-emitting 90Y in a potentially suboptimal setting of minimal or microscopic
disease could be debated, particularly because a retrospective analysis showed relapse was
less likely to occur in the peritoneal cavity in the RAIT-treated patients, and primarily in a
subgroup of patients who had residual disease following surgery [157]. These results are
very important since they reflect a very common finding for regional therapies of all kinds;
namely, cancer is a systemic disease that, when treated locally, can lead to impressive local
responses, but often needs to be coupled with a potent systemic treatment to affect survival.
Thus, while a number of investigators are considering shorter-ranged β-emitters or even α-
emitters for less toxic and more directed localized treatment [158–162], improved survival
may be achieved only when the treatment includes an effective systemic counterpart.

In contrast to peritoneal involvement, brain cancer does not usually spread to other organs,
making localized treatment ideal, particularly when there is a solitary lesion at diagnosis.
Clinical studies have examined treatments where RAIT is injected directly into the tumor,
but more often treatment is administered to eradicate locally advanced disease after a
solitary mass is surgically removed [104]. A real advantage for the latter approach is that,
unlike the peritoneal cavity, radiolabeled antibodies placed directly in the surgical cavity
reside almost entirely in this cavity, sparing exposure of other organs. Clinical studies with
an 131I-labeled antitenascin antibody for the treatment of glioblastoma multiforme (GBM;
Neuradiab, Bradmer Pharmaceuticals, Inc., ON, Canada) have been encouraging, with the
median survival rivaling that of brachytherapy or steriotactic radiosurgery, but with a lower
rate of radionecrosis [163–166]. A correlation between the radiation-absorbed dose
delivered to the rim of the cavity, where the radioantibody was deposited, and tumor
recurrence or radionecrosis was also reported, including various parameters that reflected a
positive outcome for the patient [167]. Encouraging survival results were also reported for
the same agent when administered locally in newly diagnosed patients, so as to boost
radiation exposure to the surgical margins in combination with conventional external beam
radiation and chemotherapy [168]. Early clinical testing of 188Re-labeled humanized anti-
EGFR antibody (nimotuzumab, Biocon, Bangalore, India) and an 211At-antitenascin
antibody has also been reported [106,169,170]. In addition to intracranial RAIT,
radiolabeled antibodies are being administered intrathecally to treat disease in the CNS
[138,171–175]. Although not given compartmentally, Quang et al. reported positive
outcomes using intravenous or intra-arterial injections of 125I-labeled 425, an anti-EGFR
antibody, to patients following surgical resection of their primary brain cancer and in
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concert with external beam therapy [176]. In a recent overview of a Phase II experience of
patients who received three weekly intravenous treatments of 125I-anti-EGFR (~50 mCi/
dose) following surgery and radiation therapy or with temozolomide therapy, the median
survival was 15.7 months, which was improved over a contemporaneous control group that
did not receive RAIT, but since the study was not randomized, the control group was not
well balanced [177]. Indeed, the median survival for GBM patients following surgical
resection with subsequent radiotherapy and temozolomide is 14.6 months [178]. With
additional improvements being reported for the standard treatment of recurrent GBM by the
addition of bevacizumab [179], and with new clinical trials now examining this combination
in first-line therapy, RAIT will need to do better if it is to be integrated in these currently
approved regimens. However, because of its good safety profile, it may still become an
important part of GBM treatment, particularly when administered compartmentally.

Early preclinical studies had demonstrated that RAIT rarely eradicated large tumors, but
cures could be achieved when tumors of minimal or microscopic size were treated, and, just
as importantly, effective treatment against microscopic metastatic disease could be erased if
the animals also had bulky tumors at the time of treatment [180,181]. Thus, it is reasonable
for clinical trials to turn to indications where the extent of disease is minimal or microscopic
(i.e., adjuvant). Liersch et al. reported trial results using an 131I-humanized anti-CEACAM5
IgG in 23 patients who had undergone liver resection for metastatic colorectal cancer [182].
At the median follow-up time of 91 months, 19 assessable patients had a median survival of
58 months, while in a contemporaneous group of similar patients who had not received
RAIT after liver resection, the median survival was only 31 months [183].

Radioimmunotherapy is also being combined with other agents to enhance therapeutic
prospects in solid tumors. Most efforts in solid tumors have focused on adding a sub-
therapeutic, rather than a therapeutic dose of drugs, such as paclitaxel, docetaxel, topotecan
and gemcitabine, as demonstrated in models for breast, colorectal, pancreatic and prostate
cancers, enhancing responses to RAIT [184–189]. As with any combination modality, there
are numerous dosing and scheduling issues required to optimize the therapy [190,191].
Panijdeh et al. showed the feasibility of cotargeting RAIT with chemotherapy through
antibody-directed enzyme-prodrug therapy (ADEPT), using an engineered single chain
(scFv) of the A33 anti-gpA33 antigen fused with cytosine deaminase, a prodrug-converting
enzyme [192]. We recently reported enhanced antitumor activity by combining an effective
antibody–drug conjugate with RAIT [193]. In this approach, the targeting was performed
with antibodies identifying different antigens coexpressed in pancreatic cancer xenografts,
but effective therapy could also be achieve using antibodies against the same target.
Interestingly, the antibody–drug conjugate (IgG-SN-38) could be administered at a dose that
was effective alone, but also with the maximum tolerated dose of RAIT without appreciably
altering toxicity. Clinically, a number of feasibility trials combining RAIT with
chemotherapy have been reported [120,194–196]. Most recently, a Phase Ib clinical trial was
reported to have promising results with a 90Y-labeled antibody (clivatuzumab tetraxetan;
Immunomedics, NJ, USA) directed against a pancreatic cancer mucin used in combination
with low-dose gem-citabine as a front line treatment for patients with metastatic pancreatic
cancer [197,198]. In this protocol, patients are administered three weekly doses of the 90Y-
antibody, each dose followed by 200 mg/m2 of gemcitabine. Interestingly, the fractionated
dosing regimen has been tolerated at a cumulative dose of 45 mCi/m2 (3 × 15 mCi/m2),
whereas as single-dose treatment, the maximum tolerated dose was just 20 mCi/m2 [199].
Investigators reported that 68% of the patients had disease control (i.e., stable and partial
responses) across all dose levels, starting with 3 × 6.5 mCi/m2 of the 90Y-antibody [198].
While this and other reports have demonstrated the safety of these combinations, it is too
early to determine if any of these approaches will provide the benefit necessary for RAIT to
become an acceptable treatment for solid tumors.
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Most therapy trials have used whole IgG, not only because it can be easily manufactured and
handled, but preclinical models found that IgG has the highest tumor uptake when compared
to other forms, such as enzymatically cleaved F(ab′)2 or Fab′ fragments or various
engineered forms (Table 2) [200–202]. IgG’s slow blood clearance encourages high tumor
uptake, but this also exposes the highly radiation-sensitive red marrow to a continuous
source of low-dose radiation, causing myelosuppression well before a tumoricidal dose is
achieved (except in radiosensitive hematopoietic diseases). Tumor uptake is also affected by
others factors. For example, tumors have an abnormal vascular system that is ‘leaky’,
allowing macromolecules to pass more easily, which is why even a nonspecific antibody
will have a higher concentration in the tumor than in most normal tissues [203–205].
However, tumors can have reduced lymphatics, and so internal pressure builds within the
tumor, which impedes the free flow of molecules throughout the tumor mass, with larger
molecules being affected more than smaller ones. Movement of targeted molecules (i.e., not
just antibodies) is also affected most significantly by the ‘binding-site barrier’ (i.e., when a
molecule binds to its target, it will be retained at this location, usually being concentrated in
the perivascular space) [206–208]. Movement of molecules with higher affinity within the
tumor is more affected than ones with lower affinity, albeit higher-affinity antibody may
have enhanced uptake [206,208,209]. This restricted localization can be overcome to some
degree by increasing the protein dose [210,211], but excessive unlabeled product could
compete and reduce the amount of radiolabeled product in the tumor. Nevertheless,
concentrating radiation in the perivascular space may cause the local destruction of the
blood vessels, which, in turn, could affect tumor progression.

Reducing bone marrow exposure by hastening the clearance of the antibody from the blood,
but with the same tumor retention as the IgG, has been attempted using anti-antibodies or
extracorporeal adsorption procedures [212,213]. The extracorporeal method avoids the
formation of immune complexes in the body that will inevitably redirect the
radioimmunoconjugate to the liver and spleen, greatly increasing their radiation exposure.
This method has been promising in preclinical testing, but whether sufficient escalation in
the administered dose will bring about a significant improvement in responses, clinically, is
still to be determined.

Single chains (~25,000 Da) and diabodies (~50,000 Da), which are smaller monovalent and
divalent binding proteins, respectively, and a variety of other types of constructs, are gaining
interest as possible alternatives to intact IgG. Constructs with divalent binding are generally
preferred over monovalent ones, because they usually have a longer retention time in the
tumor [208,214,215]. These constructs invariably have a faster clearance from the blood
than intact IgG, because of their physical size, but also because most lack the Fc portion of
the IgG that has regions capable of binding the neonatal Fc receptor, which is used by an
intact IgG to traverse vascular endothelium, allowing it to stay in the blood for long periods
[216]. Smaller antibody forms are better able to traverse the vascular channels, yielding a
more rapid tumor uptake, superior tumor/nontumor ratios and potentially more uniform
distribution as compared with IgG, but they too are susceptible to the binding-site barrier
effect. In addition, the faster a protein clears from the blood, the less time is allotted for
target interaction; therefore, tumor uptake for these constructs is lower than an IgG. Faster
clearance reduces red marrow exposure, allowing the total administered activity to be
increased. While this increase does not often permit higher doses to the tumor, rapid tumor
uptake delivers the radiation at a higher dose rate, which is more cytocidal than a low dose
rate [217]. With the advent of molecular engineering, a variety of constructs with more
favorable pharmacokinetics and tumor uptake, such as CH2-deleted antibodies and point-
mutated scFv–Fc fusion proteins that avoid neonatal Fc receptor binding, have been
described [216,218].
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The primary deterrent for using molecules less than 50,000 Da is that they are cleared
through the kidneys, which raises concern for renal toxicity, particularly when a
radionuclide that is reabsorbed and retained by the kidney, such as radiometals, is used. Behr
et al. reported that a high predose of cationic amino acids could significantly reduce renal
tubular reabsorption of radiometal-labeled Fab′, and demonstrated that higher doses could be
administered to mice with less renal toxicity [219]. This, and other approaches, have been
used to reduce the risk for renal toxicity [220], but since renal uptake often far exceeds
tumor uptake, the compensation afforded by these methods, which can be as much as a
twofold reduction, may not be sufficient to yield positive tumor:kidney ratios. Because
indications of renal toxicity are not manifested for many months, or even years, after
treatment, careful monitoring is required for extended periods.

With all the different antibody forms made possible through molecular engineering, it is
important to keep in mind that radionuclide selection may vary based on the antibody’s
biodistribution, tumor retention and blood clearance properties [221,222]. For example, 131I
remains an isotope of interest for compounds that clear quickly with elimination primarily
through the kidneys, since it does not have as long a residence time as a radiometal
conjugated to an antibody. However, smaller antibody constructs that have a shorter
retention time in the tumor than an IgG (e.g., ≤1 day vs >3 days, respectively) would not
benefit from the longer physical half-life of 131I, namely approximately 8 days. The long
physical half-life of 131I is also of little use for antibodies that rapidly internalize, with the
cells not retaining the radionuclide sufficiently to take advantage of the longer half-life. In
this situation, 177Lu seems to be a reasonable replacement for 131I, since it has similar half-
life and β-energy, albeit 131I can be coupled to antibodies that would allow it to be retained
in cells [223]. Some conjugation processes can affect antibody binding, which can affect
radionuclide selection, and even after radiolabeling, stability and retention of binding must
be diligently tested. Thus, there are a number of factors that contribute to the selection of the
most appropriate radionuclide for a radioimmunoconjugate, and while there are many
radionuclides in nature to choose from, availability and cost have limited the choices for
clinical use.

Pretargeted radioimmunotherapy
In the mid-1980s, pretargeting was introduced as a way to improve tumor:blood ratios
(Figure 2). The initial concept envisioned a bispecific (bs) monoclonal antibody (mAb)
capable of binding a tumor antigen and a chelate [224]. The bs mAb would not be
radiolabeled, and thus no exposure would occur while it localized to the tumor. Since there
was ample clinical experience with radiolabeled chelates, such as diethylene triamine
pentaacetic acid (DTPA) or ethylene-diaminetetraacetic acid (EDTA), demonstrating these
agents cleared very quickly from the blood and tissues with minimal residual activity
remaining in the body, the radioactivity would be carried by the chelate loaded with a
radionuclide. Thus, the antichelate binding arm of the bs mAb that had been pretargeted to
the tumor would serve as a receptor for the radiolabeled chelate. The small size and inert
properties of the radiolabeled chelate allowed it to traverse blood vessels and distribute in
the fluidic volume within minutes, and then just as quickly be eliminated, thereby
minimizing nontarget tissue exposure. A significant improvement to bs mAb pretargeting
was made by Le Doussal et al., who determined that radiolabeled compounds bearing two
haptens were more stably bound in the tumor than a monovalent compound, since they can
cross-link two adjacent bs mAbs on the tumor cell surface (Figure 2). This is a concept
known as the affinity enhancement system (AES) [225].

Several other pretargeting methods have been investigated, but they all strive to overcome
the limitation of the slow blood clearance of a directly radiolabeled IgG by separating
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antibody targeting from the delivery of the radionuclide [226]. The first was based on avidin
(mammalian) or streptavidin (bacterial) in conjunction with biotin in a variety of
configurations [227]. This system appeared to be ideally suited for pretargeting, since the
avidins could bind as many as four biotin molecules with an exceptionally high binding
constant (10−15 M), the reagents could be produced in plentiful amounts, were nontoxic and
amenable to chemical modification for coupling to antibodies or radiolabeling. Two avidin/
biotin-based pretargeting configurations were examined clinically. One system consisted of
three agents, starting with a streptavidin-conjugated antibody (later replaced with a
recombinant streptavidin–scFv) that was administered for 1–3 days to localize the tumor
[228–231]. A clearing agent then was given to remove residual streptavidin antibody from
the blood. The clearing step was essential because the ultrahigh affinity of biotin for avidin
would have caused the subsequently administered radiolabeled biotin to bind primarily to
the conjugate in the blood, reducing its ability to reach the tumor. The other approach uses
four agents, beginning with a biotinylated antibody [232]. Avidin, a glycosylated protein, is
used as a clearing agent, but it is administered along with streptavidin, a nonglycosylated
bacterial protein. The avidins will bind to the tumor-localized biotinylated antibody, serving
as a bridge to link it to radiolabeled biotin that is administered 1 day later. The primary issue
with pretargeting methods that rely on avidin/streptavidin is the immunogenicity of these
foreign proteins [233,234]. A third type of pretargeting system is also under development,
which uses complementary synthetic DNA analogs, known as morpholinos, as bridging
agents [235,236]. These morpholino compounds should have a low immunogenicity and
therefore, when this system is fully optimized, it could also lead to further improvements in
radionuclide targeting.

Since the pretargeting agent acts as a surrogate receptor that will bind the radiolabeled
compound, it must remain accessible, either on the cell surface or within the interstitial
space of the tumor. Therefore, antigens known to internalize might not be best for
pretargeting [237]. However, we have evaluated an anti-Trop-2 bs mAb that can be used
effectively in pretargeting even though the bs mAb internalizes [238]. Thus, antigens that
internalize should not be dismissed as potential agents for pretargeting.

The initial antihapten antibodies used in a bs mAb pretargeting approach bound with high
specificity to metal-binding chelates, but chelates are often so specific for certain metals that
an antibody raised against one chelate–metal complex might not bind as well when loaded
with a different radiometal. To avoid this complication, the chelate would first need to be
loaded with its appropriate metal so it would bind well to the antichelate–metal complex,
and then the peptide portion of the divalent hapten complex could be radiolabeled. For
example, tyrosine in the peptide core can be radioiodinated. A different ligand capable of
binding 99mTc/188Re has been coupled to a di(In)DTPA-peptide [225,239,240]. However, a
more practical approach is to use an antibody against a synthetic compound that is not
involved in the binding of the radionuclide, allowing radionuclide binding to be controlled
by another constituent within the hapten–peptide complex. The approach has been
successfully used with an antibody to histamine-succinyl-glycine (HSG) [241]. Di-HSG-
peptide structures have been developed for binding
radioiodine, 90Y, 177Lu, 111In, 67/68Ga, 18F, 99mTc and 188Re [242–245].

Regardless of the pretargeting approach taken, data have consistently shown that pre-
targeting delivers as much, or more, radioactivity to a tumor as a directly radiolabeled
antibody, but with much less exposure to the red marrow [228,246]. In addition,
radiolabeled biotin or hapten/peptide localizes in the tumor very quickly, maximizing the
number of decays occurring in the tumor rather than elsewhere in the body. Thus,
pretargeting increases the dose rate to the tumor as compared with a directly radiolabeled
IgG that can take 1–2 days to reach maximum accretion. Radiolabeled biotin and hapten/
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peptides also have far less renal accretion than a radiometal-labeled antibody fragment,
providing favorable tumor:kidney ratios. Pretargeting systems might also avoid problems
when circulating antigen is present. With a directly radiolabeled antibody, the antibody–
antigen complexes formed in the blood are processed primarily by the liver, increasing
hepatic exposure. In pretargeting, if the complexes are cleared and processed before the
radiolabeled compound is administered, hepatic uptake would be minimized. Pretargeting
approaches might be more amenable to combination therapies, particularly with agents that
cause severe hematologic toxicities. Several studies have shown combinations with
chemotherapeutic radiosensitizing agents and antiangiogenic agents improve responses
[149,247–249].

Most clinical experience has been limited to Phase I trials designed to determine optimal
targeting conditions, with subsequent accrual to determine the maximum tolerated dose. One
Phase II trial examined a dose of 110 mCi/m2 of 90Y-DOTA-biotin pretargeted with a NR-
LU-10, an anti-EpCam (or EGP-2) IgG–streptavidin conjugate in advanced colorectal cancer
[230]. Disappointingly, no significant responses were observed and radiation-absorbed
tumor doses reported in just two patients were only approximately 500 and 2900 cGy,
respectively. Hematologic toxicity was mostly mild to moderate, but because the anti-
EpCam antibody bound to the normal colon, a substantial fraction of the radiation was
delivered to the intestine, causing severe diarrhea that was dose-limiting. With most of the
radioactivity being removed from the body by renal filtration, it was not surprising that some
evidence of renal toxicity was observed in this trial. More recently, a recombinant protein of
streptavidin with four CC49 (anti-TAG-72) single chains has been tested in patients [250].
Dosimetry from this study suggests that if 110 mCi/m2 of 90Y-biotin was tolerated,
colorectal tumors could receive 5000 cGy or more in some patients.

Hematologic toxicity was dose limiting in clinical trials using a bs mAb pretargeting
approach [251], as well as avidin/biotin approach [252,253]. Investigators found medullary
thyroid cancer patients developed hematologic toxicity at lower doses than other cancer
patients. Other studies revealed that these patients often have tumor involvement in the bone
and bone marrow that is not appreciated at the time of enrollment, and this might explain the
lower tolerance [254]. Despite this limitation, a retrospective analysis of the efficacy of the
pretargeting procedure in medullary thyroid cancer patients found a statistically significant
increase in the survival of a subset of patients who had a calcitonin doubling time of 2 years
or less [255]. Investigators speculated that enhanced survival might have been attributed by
the control of micrometastatic bone marrow disease by the pretargeted therapy that used
an 131I-labeled hapten-peptide.

Pretargeting will also most likely have its greatest impact in patients with more
radiosensitive tumors, with minimal disease, or in locoregional applications. In one trial,
previously treated glioblastoma (n = 16) or astrocytoma (n = 8) patients, who, after having a
second debulking, were given two intracranial treatments of a biotinylated antitenascin
antibody followed by 90Y-DOTA-biotin. Two patients had a partial response and four had a
mixed response (25% overall response rate) [256]. In another trial, 37 patients with grade III
gliomas or glioblastoma (grade IV) were divided into two groups. All had no radiological
evidence of disease following surgical debulking and radiotherapy with or without
chemotherapy, but one group of 19 patients also received an intravenous adjuvant
pretargeted therapy. The median survival of the glioblastoma patients who did not receive
the additional pretargeting procedure was 8 months (n = 12), while the median survival in
the group given pretargeted therapy was 33.5 months (n = 8). The median survival for six
patients with grade III glioma was 33 months, but the median survival for the 11 grade III
glioma patients who received adjuvant-pretargeted therapy could not be estimated, since
only two had died at the time the report was filed [253].
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Encouraging preclinical studies using a streptavidin- or a bs mAb-pretargeting procedure,
targeting CD20 in NHL xenografts, have been reported [257]. It appears that an anti-CD45–
streptavidin fusion protein is also being developed, primarily in a transplant setting, since
this antigen is more broadly expressed in blood cells than CD20s restricted presence on B
cells [258]. Our group has also demonstrated that administering an anti-CD20 antibody
therapy after RAIT, or pretargeted RAIT, improves responses [86]. Thus, with its ability to
exert better responses with much less hematologic toxicity, pretargeting could represent a
significant improvement over the existing approved, directly radiolabeled, anti-CD20 IgG
agents.

We are now embarking on clinical studies with newly engineered, humanized, recombinant
tri-Fab bs mAbs that bind divalently to a tumor antigen, and with the added specificity for
binding the HSG hapten (Figure 3) [259]. Preclinical studies have found that these
recombinant bs mAbs, prepared using a unique dock and lock technique, to be excellent
pretargeting agents. For example, for imaging, small animal imaging studies showed
pretargeting with an 124I-labeled di-HSG-peptide revealed very small (0.3 mm) nodules of a
human colonic tumor disseminated in the lungs of nude mice, while 18F-fluor-deoxyglucose
(18F-FDG) failed to disclose these lesions [245]. Specificity is also improved, with animal
studies showing a bs mAb pretargeting procedure does not localize an inflammatory lesion,
but will target a tumor in the same animal, while 18F-FDG shows uptake in both lesions
[243]. Pretargeting’s low background activity is also better suited for specific detection of
tumors in the peritoneal cavity [260]. As previously mentioned, therapeutically we found
pretargeting has an advantage over direct targeting in models of colorectal and pancreatic
cancers, as well as NHL [246,249,261]. Initial clinical studies found that these novel tri-Fab
bs mAbs are cleared very quickly from the blood, despite their similar molecular size to an
IgG [262]. Data suggested the bs mAb was stable in vivo, so their rapid clearance is
probably related to lacking the Fc portion of the antibody. The bs mAb localized in the
tumor, and initial clinical results with the radiolabeled hapten-peptide have shown targeting
of known tumor masses even though the procedure has not yet been optimized.

Conclusion & future perspective
Radioimmunotherapy is a promising modality, with well-documented preclinical studies
attesting to its clinical prospects in numerous indications. Clinical studies have been
encouraging in NHL, but the slow adoption of the first RAIT products is disconcerting,
although there are encouraging studies from Europe indicating that RAIT can be effectively
integrated in a multimodality approach. There are also encouraging developments with new
therapeutics for lymphoma that combine RAIT and effective antibody therapy in a manner
that could enhance the overall response and duration without affecting toxicity. New
therapies with α-emitters may still provide greatly needed improvement in the treatment of
leukemias.

Integrating RAIT into the treatment of solid tumors will be more challenging, but there are a
number of promising developments. Using antibodies that have therapeutic activity could
improve efficacy, but preclinical data have emphasized that RAIT would be best utilized in
situations where the extent of disease is minimal, even micrometastatic, or localized. RAIT
is well suited for these situations since, except for manageable hematologic toxicity, it is
well tolerated, and the treatment is not given over a protracted period of time, as are most
chemotherapy regimens. Programs evaluating localized treatment of brain cancers are well
advanced and have shown encouraging results. However, there have been equally
encouraging results in using RAIT as an adjuvant treatment following surgical resection of
hepatic metastases in colorectal cancer, but early results from clinical studies with
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fractionated RAIT combined with gemcitabine have shown surprising responses even in
patients with advanced pancreatic cancer.

While there continues to be some questions concerning long-term safety issues for RAIT,
data in NHL patients have upheld the view that RAIT has no higher risks than currently used
chemotherapy regimens. Thus, in our view, RAIT remains a viable treatment option for
cancer, and there are even interesting new developments for treating various forms of
infectious disease that should be considered [263–269].

Radioimmunotherapy is one of the few treatment modalities where the deposition of the
therapeutic can be readily detected and measured in tumors and tissues. Thus, molecular
imaging to select and monitor patients can be adapted for most agents. While tumors are
often readily detected, there are still difficulties in predicting responses based on dosimetry
and radiobiological models. Improving these basic understandings would provide RAIT with
an essential advantage if these models could better predict toxicity and efficacy. We need to
develop a better understanding of how to best administer these treatments (single or
fractionated), how often they can be administered (multiple cycles) and how can they be best
integrated with other agents to enhance the overall response. This undertaking is formidable,
requiring considerable preclinical and clinical testing to refine these models, which would
probably vary for different cancers and treatments.

New molecularly engineered antibodies may provide a better balance in achieving high
tumor accretion with reduced tissue exposure. Currently, preclinical studies have indicated
that pretargeting strategies can boost efficacy by optimizing tumor uptake, while greatly
minimizing normal tissue exposure, which could enhance responses in hematologic and
nonhematologic malignancies. By reducing radiation exposure to the normal tissues,
pretargeting may be better poised to be combined with other treatment modalities. Whether
the added complexity will be worth the effort is an issue resolved only by additional clinical
testing.

Radioimmunotherapy is truly a multidisciplinary technology, requiring the skills of medical,
surgical and radiation oncologists, nuclear medicine physicians and physicists to coordinate
and manage patients undergoing these treatments. While the experience in building a user
base for the approved radiolabeled therapeutics in lymphoma has highlighted some
difficulties, particularly in the USA, these hurdles can be overcome as treatment outcomes
improve. Thus, even though RAIT might be considered the grandfather of many of the
advances in molecularly targeted therapeutics over the past 10 years, it remains a promising
technology with new opportunities to advance cancer treatment.
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Executive summary

Background

• The targeting of therapeutic radionuclides conjugated to antibody
(radioimmunotherapy) has a 50-year history for enhancing response over
unconjugated antibodies.

• Therapeutic radionuclides have different properties that can be used to optimize
the response in various clinical situations.

Hematologic malignancies

• High sensitivity to radiation has allowed for maximum therapeutic benefit in
patients with follicular non-Hodgkin lymphoma.

• Therapeutically active unconjugated antibodies probably enhance overall
response.

• Two radiolabeled antibody products are approved for human use; several other
agents are under investigation.

• New trials are finding additional advantages when radioimmunotherapy is given
for consolidation therapy.

Nonhematologic malignancies

• Nonhematologic malignancies are more challenging to treat owing to higher
resistance to radiation.

• Localized delivery (e.g., intracranial for localized brain cancer or intraperitoneal
for ovarian cancer), treatment of residual disease and combination with
radiosensitizing chemotherapeutics are promising areas of investigation.

• Engineered antibodies are providing new opportunities.

Pretargeted radioimmunotherapy

• Pretargeting is a multistep process that separates antibody targeting from the
radionuclide targeting.

• Tumor uptake that can sometimes rival that of an IgG but is capable of reaching
maximum accretion within 1 h, while substantially minimizing tissue and red
marrow exposure, is a hallmark of all pretargeting procedures.

• Bispecific antibodies with radiolabeled peptides and streptavidin conjugates/
fusion proteins with radiolabeled biotin have been examined clinically with
promising initial results.
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Figure 1. Radionuclides are attached to antibodies principally by two methods
Radioiodine is bound to aromatic rings, primarily to tyrosine, in the presence of a mild
oxidative agent, such as iodogen or chloramine-T. The ε amino group of lysine can be
modified to accept a metal-binding chelate, which is then loaded with a radiometal.
Exposing IgG to a mild reducing agent can split disulfide bonds, allowing the coupling of
chelate or other compounds to the reactive sulfhydryl. To ensure amino acids within the
antigen-binding sites of the antibody are not altered, carbohydrates, commonly found on the
IgG’s CH2 domain, can be modified to accept a chelate.
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Figure 2. Comparison of bispecific pretargeting with direct targeting
For pretargeting, an unlabeled bs mAb is used (shown is a tri-Fab recombinant structure
described in Figure 3). In patients, 90% of this antibody is cleared from the blood, and
animal studies have demonstrated that maximum tumor uptake occurs within approximately
6 h. The radioactivity is introduced on a small peptide (~four amino acids) that contains two
haptens to help stabilize binding within the tumor (affinity enhancement). The peptide also
contains structures that will bind the radionuclide. The radiolabeled hapten–peptide is
administered when the bs mAb is sufficiently cleared from the blood, and clears
exceptionally fast from the blood and body by urinary excretion, reaching peak tumor
uptake within 1 h. Tumor:blood ratios are highly favorable within a few hours. In direct
targeting, the isotope is on the antibody. Shown here is an IgG that will clear very slowly
from the blood, gradually building its concentration in the tumor, so tumor:blood ratios
remain relatively low over the first few days.
bs mAb: Bispecific monoclonal antibody.
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Figure 3. A humanized recombinant bispecific antibody formed by the ‘dock and lock’ method
The bs mAb consists of two proteins. The first is a Fab, specific for a tumor antigen,
modified with a peptide structure known as the DDD, which was modified to introduce a
cysteine residue in a strategic location (DDD2). The DDD2 residues have a natural affinity
for binding to each other to form homodimers, resulting in a divalent Fab structure. The
second protein is the Fab modified with an anchoring domain (AD) that will specifically
dock within the dimerized DDD2 structure. The AD segment also had cysteine residues
strategically placed so that when the docking occurs, the cysteine residues on the DDD2 and
AD2 will lock into place.
bs mAb: Bispecific monoclonal antibody; DDD: Dimerization docking domain. Adapted
from [259].
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Table 1

Therapeutic radionuclides for radioimmunotherapy.

Radionuclide Energy (MeVmax)† Range† Half-life

β

90Yttrium 2.28 11.3 mm 2.7 days

131Iodine 0.61 2.3 mm 8.0 days

177Lutetium 0.50 1.8 mm 6.7 days

188Rhenium 2.12 10.4 mm 0.7 days

67Copper 0.58 2.1 mm 2.6 days

α

213Bismuth 8.3 60–85 μm 0.8 h

211Astatine 6.8 7.2 h

225Actinium 6.8 10 days

Auger-electron

125Iodine 2–500 nm 60.5 days

†
As reported by Kassis [270].

MeVmax: Maximum range of particulate energy in tissue.
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Table 2

Targeting properties of various antibody forms.

IgG F(ab′)2 Fab′ scFv

Physical properties

Estimated molecular weight (kDa) 150 100 50 25

Biological properties

Relative biological half-life in blood† 1 day 2 days 3 h 4 min

Target organ Liver Liver Kidneys Kidneys

Tumor-binding properties

Relative uptake‡ 1 2 3 4

Relative duration‡ 1 2 3 4

Time to optimum accretion Day(s) Day(s) Hour(s) Hour(s)

†
Antibody half-life in blood.

‡
Highest = 1; lowest = 4.

scFv: Single-chain Fv fragment.
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