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An important challenge in prostate cancer research is
to develop effective predictors of tumor recurrence
following surgery to determine whether immediate
adjuvant therapy is warranted. To identify biomark-
ers predictive of biochemical recurrence, we isolated
the RNA from 70 formalin-fixed, paraffin-embedded
radical prostatectomy specimens with known long-
term outcomes to perform DASL expression profiling
with a custom panel that we designed of 522 prostate
cancer–relevant genes. We identified a panel of 10
protein-coding genes and two miRNA genes (RAD23B,
FBP1, TNFRSF1A, CCNG2, NOTCH3, ETV1, BID, SIM2,
LETMD1, ANXA1, miR-519d, and miR-647) that could
be used to separate patients with and without bio-
chemical recurrence (P < 0.001), as well as for the
subset of 42 Gleason score 7 patients (P < 0.001).
We performed an independent validation analysis
on 40 samples and found that the biomarker panel
was also significant at prediction of biochemical
recurrence for all cases (P � 0.013) and for a subset
of 19 Gleason score 7 cases (P � 0.010), both of

which were adjusted for relevant clinical information

46
including T-stage, prostate-specific antigen, and Glea-
son score. Importantly, these biomarkers could sig-
nificantly predict clinical recurrence for Gleason
score 7 patients. These biomarkers may increase the
accuracy of prognostication following radical prosta-
tectomy using formalin-fixed specimens. (Am J

Pathol 2011, 179:46–54; DOI: 10.1016/j.ajpath.2011.03.008)

Prostate cancer remains the most common noncutane-
ous cancer diagnosed for U.S. males, and ranks second
among tumor site–specific mortality, with estimates for
2009 at over 192,000 new cases and 27,000 deaths.1 The
majority of patients with prostate cancer are clinically
asymptomatic with early-stage, organ-confined disease,
and in fact, more than 50% of men who reach the age of
80 develop clinically insignificant prostate cancer. How-
ever, a subpopulation of prostate cancer patients prog-
ress to highly aggressive, androgen-independent meta-
static disease, which is inevitably fatal. One of the
important challenges in current prostate cancer research
is to develop effective methods to determine whether a
patient is likely to progress to aggressive, metastatic
disease, to aid clinicians in deciding on the appropriate
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course of treatment. Biomarker assays that could predict
progression and metastasis for prostate cancer patients
would be of great utility in aiding clinical management of
this large patient population. An important challenge in
prostate cancer research is to develop effective predic-
tors of tumor recurrence following surgery to determine
whether immediate adjuvant therapy is warranted. Thus,
biomarkers that could predict the likelihood of success
for surgical therapies would be of great clinical signifi-
cance.

In the past few years, enormous progress has been
made in developing technologies to exploit formalin-
fixed, paraffin-embedded (FFPE) tumor tissue samples
for gene expression analysis. The DASL (cDNA-mediated
Annealing, Selection, extension and Ligation) assay is a
unique expression profiling platform that is based on
massively multiplexed RT-PCR applied in a microarray
format, that allows for the determination of expression of
RNA isolated from 96 FFPE tumor tissue samples in a
high throughput format.2,3

Here, we have identified biomarkers predictive of re-
currence by expression profiling archived FFPE tumor
samples using both a custom panel of prostate cancer–
associated mRNA genes and a panel of microRNA
(miRNA) genes. These biomarkers were developed on a
training set of 70 patients (29 with biochemical recur-
rence and 41 controls) and validated on an independent
set of 40 samples (13 with biochemical recurrence and
27 controls) and were able to significantly discriminate
between patients with and without biochemical recur-
rence following radical prostatectomy. Moreover, these
biomarkers were able to discriminate biochemical recur-
rence in patients with Gleason score 7, for whom out-
come is particularly difficult to predict.

Materials and Methods

Patient Samples

In the initial training set, 70 prostate cancer cases were
used (29 with biochemical recurrence and 41 controls
without recurrence), 45 patients from Sunnybrook Health
Science Center (Toronto, ON), and 25 patients from Em-
ory University (Atlanta, GA). The 45 cases of paraffin-
embedded tissue samples from Toronto were drawn from
men who underwent radical prostatectomy as the sole
treatment for clinically localized prostate cancer between
1998 and 2006. The clinical data include multiple clini-
copathological variables such as prostate-specific anti-
gen (PSA) levels, histological grade (Gleason score), tu-
mor stage (pathological stage category, for example;
organ confined, pT2; or with extra-prostatic extension,
pT3a; or with seminal vesicle invasion, pT3b), and bio-
chemical recurrence rates. For the cases from Emory
University, both the training set (25 cases) and validation
set (40 cases) FFPE samples were also selected from a
screen of over a thousand patients through an institu-
tional review board–approved retrospective study at Em-
ory University of men who had undergone radical pros-

tatectomy between 1990 and 1994. Those who were
included met specific inclusion criteria, had available
tissue specimens, had documented long-term follow-up,
and consented to participate or were included by institu-
tional review board waiver. The cases were assigned
prostate identification numbers to protect their identities.
These patients did not receive neoadjuvant or concomi-
tant hormonal therapy. Their demographic, treatment,
and long-term clinical outcome data have been collected
and recorded in an electronic database. Clinical data
recorded include PSA measurements, radiological stud-
ies and findings, clinical findings, tissue biopsies, and
additional therapies that the subjects may have received.
Clinical data associated with the samples used in this
study are given in Supplemental Table S1 (available at
http://ajp.amjpathol.org).

RNA Preparation

Tissue cores (1 mm) were used for RNA preparation
rather than sections because of the heterogeneity of sam-
ples and the opportunity for obtaining cores with a very
high percentage tumor content. H&E-stained slides were
reviewed by a board-certified urologic pathologist
(A.O.O.) to identify regions of cancer to select corre-
sponding areas for cutting of cores from paraffin blocks.
Total RNA was prepared at the Emory Biomarker Service
Center from FFPE cores as previously described,4 using
the Ambion Recoverall MagMax methodology in 96-well
format on a MagMax 96 Liquid Handler Robot (Life Tech-
nologies, Carlsbad, CA). FFPE RNA was quantitated us-
ing a NanoDrop spectrophotometer (NanoDrop, Wilming-
ton, DE), and tested for RNA integrity and quality by
TaqMan analysis of the RPL13a ribosomal protein on a
HT7900 real-time PCR instrument (Applied Biosystems,
Foster City, CA). Samples with sufficient yield (�500 ng),
A260/A280 ratio �1.8, and RPL13a CT values less than 30
cycles were used for miRNA and DASL profiling.

Custom Prostate Cancer DASL Assay Pool

The DASL assay enables quantitation of expression of up
to 1536 probes using RNA isolated from archived FFPE
tumor tissue samples in a high throughput format.2,3 Data
from multiple publicly available gene expression data-
sets,5–8 along with genes involved in prostate cancer
progression based on current understanding of the dis-
ease,6,9 were distilled to develop a highly predictive set
of 522 genes for use in the DASL assay. Due to specific
probe design considerations, this panel had three
probes for 497 genes, two probes for 20 genes, and a
single probe for five genes, two of which were specific
to TMPRSS2-ERG and TMPRSS2-ETV1 fusion tran-
scripts. The unique combination of genes was optimized
for performance in the DASL assay using stringent crite-
ria that predicts excellent performance of the primer sets.
The panel includes genes found to be correlated with
Gleason score in Liu et al,10 Bibikova et al,11 True et al,12

Lapointe et al,7 and/or Singh et al.13 It also includes
prognostic markers from Dhanasekaran et al5 and Yu et
al,14 and genes associated with metastasis in Varambally

et al.6 In addition, a number of genes known from other
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studies to be critical in prostate cancer such as NKX3.1,
PTEN, and the androgen receptor are all included in the
panel. Other genes that play important roles in the Wnt,
Hedgehog, TGF�, Notch, MAPK, and PI3K pathways are
also present in this gene set. Finally, primer sets that
detect chromosomal translocations in ERG,9 ETV1,15 and
ETV416 are also included in this panel. The custom pros-
tate cancer panel list of 522 candidate genes (see Sup-
plemental Table S2 at http://ajp.amjpathol.org) was sub-
mitted to Illumina for synthesis (Illumina, San Diego, CA).
The optimal oligonucleotide sequence for each of the
1536 gene probes was determined using an oligonucle-
otide scoring algorithm. The oligonucleotide pool or
DASL Assay Pool was synthesized by Illumina for use
with the 96-well Universal Array Matrix.

The DASL Assay

The DASL assay was performed with our 522-gene cus-
tom-designed human prostate cancer panel using 200
ng of input RNA at the Emory Biomarker Service Center,
Emory University, according to the manufacturer’s proto-
cols. Samples, including technical replicates (two, three,
or four) were hybridized on Universal Array Matrices, and
scanned using the BeadStation 500 Instrument (Illumina).
For miRNA DASL assays, the human miRNA v2 DASL
panel (Illumina), which allows for the determination of
expression of 1146 human miRNAs (�97% coverage of
miRBase release 12), was used. These data are available
in the Gene Expression Omnibus (GEO) database under
accession number GSE26367.

Data Analysis

DASL fluorescent intensities were interpreted in Ge-
nomeStudio, quantile normalized, and exported for meta-
analysis. Average signal intensity, genes detected (P
value � 0.01), background, and noise (SD of back-
ground) were analyzed for trends by plate, row, and
column. The two endpoints of interest were postoperative
biochemical recurrence, defined as two detectable PSA
readings (�0.2 ng/mL), and clinical recurrence, defined
as evidence of local or metastatic disease. The primary
outcome of interest was time to biochemical recurrence
following surgery. A local recurrence was defined as
recurrence of cancer in the prostatic bed that was de-
tected by either a palpable nodule on digital rectal ex-
amination and subsequently verified by a positive biopsy,
and/or a positive imaging study [ProstaScint (EUSA
Pharma, Langhorne, PA) or computed tomography scan]
accompanied by a detectable postoperative PSA result
and lack of evidence for metastases. Also, patients
whose PSA levels decreased following adjuvant pelvic
radiation therapy for elevated postoperative PSA were
considered as local recurrence cases. A recurrence with
metastases was defined as a positive imaging study in-
dicating presence of a tumor outside of the prostatic bed.

To identify important biomarkers and build and evalu-
ate prediction models for prostate cancer recurrence, we
adopted the following strategy. In the training step, the

prediction model was built based on the time to biochem-
ical recurrence. Specifically, we first fit a univariate Cox
proportional hazard (PH) model for each individual oligo-
nucleotide probe using the training dataset, and a set of
important mRNA and miRNA probes were then prese-
lected based on a false discovery rate threshold of 0.30.
Next, to identify the optimal prediction score based on
the preselected probes, we fit a lasso Cox PH model17,18

using the training dataset, where the tuning parameter for
lasso was selected using a leave-one-out cross-valida-
tion technique.18 The lasso Cox PH model was fitted first
using the set of preselected mRNA probes only and then
using the complete set of preselected mRNA and miRNA
probes, resulting in an optimal mRNA panel and an op-
timal combined mRNA/miRNA panel, respectively. Based
on each biomarker panel, a final prediction model for
recurrence was built to also incorporate relevant clinical
biomarkers, namely, T-stage, PSA, and Gleason score,
through fitting Cox PH models. For comparison, we also
built a prediction model using only clinical information,
namely, T-stage, PSA, and Gleason score, through fitting
a Cox PH model.

To evaluate and validate the final prediction models
obtained from the training phase, 79 samples from 40
patients were used, and replicate samples from the same
patient were again averaged to generate a single aver-
age signal for each patient. Each prediction model from
the training phase was used to generate a predictive
score for each subject in the validation dataset, and
subjects were subsequently divided into high and low
scoring groups using the median predictive score. Ka-
plan-Meier analysis was performed to compare the time
to biochemical recurrence, between high (poor score)
and low (good score) risk groups, and the statistical
significance was determined using the log-rank test. Sim-
ilarly, we also evaluated the final model that uses the
combined mRNA/miRNA panel for predicting time to clin-
ical recurrence in both training and validation datasets.

Missing data are present in this study, in particular, for
clinical recurrence, PSA, and T-stage data. We adopted
the available-case approach19 in our analyses, and the
sample sizes used in each step of building and evaluat-
ing prediction models may be less than the total sample
size.

Results

Custom Prostate DASL Profiling

We performed DASL expression profiling with our cus-
tom-designed prostate cancer panel (see the Materials
and Methods section) and the Illumina DASL microRNA
panel on 70 prostatectomy patient samples to identify
biomarkers predictive of recurrence. An independent val-
idation profiling experiment was performed on 40 addi-
tional samples. miRNA probes were filtered to retain only
those that were present on the miRNA microarrays used
for both the training and validation sets, reducing the total
number of probes examined to 403 miRNA probes. The
training set included 29 cases with observed biochemical

PSA recurrence (median time to recurrence � 19
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months), and 41 cases censored, ie, without observed
recurrence during follow-up (median follow-up time �
83.0 months). A summary of the clinical characteristics of
the training and validation sets of samples is provided in
Table 1. The complete dataset for the combined mRNA
and miRNA data are provided in Supplemental Table S3
for the training set and Supplemental Table S4 for the
validation set (available at http://ajp.amjpathol.org).

Integrated DASL Biomarker Analysis

After fitting a univariate Cox proportional hazard model
for each individual probe using the training data, a set of
27 important probes were preselected based on a false
discovery rate threshold of 0.30 (see Supplemental Table
S5 at http://ajp.amjpathol.org). Next, to identify the optimal
prediction score based on the preselected probes, we fit
a lasso Cox proportional hazard model17,18 first using the
set of 25 preselected mRNA probes only, resulting in a
panel of nine protein-coding genes shown in Table 2
(RAD23B, FBP1, TNFRSF1A, NOTCH3, ETV1, BID, SIM2,
ANXA1, and BCL2). A final prediction model was then
built to include the predictive score based on this panel
of nine mRNA biomarkers as well as the relevant clinical
biomarkers including T-stage, PSA, and Gleason score,
which could be used to predict recurrence following rad-
ical prostatectomy. Kaplan-Meier analysis (Figure 1A)
demonstrated that these probes could significantly dis-
criminate patients at higher and lower risk of recurrence
by the log-rank test (P � 0.001). We next applied the final
predictive model developed on the training set to the

Table 1. A Summary of the Clinical Characteristics of the Trainin

Training
set (total)

Trainin
set (no
BCR)

Number cases 70 41
Clinical recurrence 8 0
No clinical recurrence 57 41
Median time F/U (months) 84 83
Median time to BCR (months) 19 NA
Median time no BCR (months) 48 83
Gleason score (avg � SD) 6.9 � 0.6 6.7 � 0
PSA (avg � SD) 9.2 � 5.4 8.7 � 6
Age (avg � SD) 61.9 � 7.7 61.2 � 7

BCR, biochemical recurrence; F/U, follow up; NA, not applicable; PSA

Table 2. Nine-Gene Predictor of Prostate Cancer Recurrence Fol

Symbol Description

RAD23B RAD23 homolog B
FBP1 Fructose-1,6-bisphosphatase 1
TNFRSF1A Tumor necrosis factor receptor superf
NOTCH3 Notch homolog 3
ETV1 Ets variant gene 1 (ETV1)
BID BH3 interacting domain death agonist
SIM2 Single-minded homolog 2
ANXA1 Annexin A1
BCL2 B-cell CLL/lymphoma 2
Coefficient is derived from the lasso Cox proportion hazards model and was
positive association with recurrence, and negative coefficients indicate a negati
validation set, a separate, independent DASL profiling
experiment performed on a different day. Kaplan-Meier
analysis (Figure 1B) on this validation set determined that
the model could discriminate patients at higher and lower
risk of recurrence (P � 0.010).

Subsequently, we repeated the above training proce-
dure using the complete set of 27 preselected mRNA and
miRNA probes, and we identified an optimal panel of 10
mRNAs and two microRNAs (Table 3) and built a final
prediction model for prostate cancer biochemical recur-
rence, which again included relevant clinical biomarkers.
Kaplan-Meier analysis and the log-rank test determined
that this panel could also significantly discriminate pa-
tients at higher and lower risk of recurrence both in the
training set (P � 0.001, Figure 1C) and in the validation
set (P � 0.013, Figure 1D).

Prediction of Cases with a Gleason Score 7

Prediction of recurrence for patients with a Gleason score
7 is particularly difficult. To address this issue, we applied
the biomarker panels to the subset of cases in the training
and validation sets that had a Gleason score 7. The
prediction model based on the nine-mRNA panel was
significant at discriminating biochemical recurrence in
Gleason score 7 cases in both the training set (P � 0.001,
Figure 2A) and the validation set (P � 0.027, Figure 2B).
For the prediction model based on the combined panel of
10 mRNAs and two miRNAs in Table 3, the predictive
value was again significant for both the training set (P � �
0.001, Figure 2C) and the validation set (P � 0.010,

Validation Sets of Patient Samples

Training
set (BCR)

Validation
set (total)

Validation
set (no
BCR)

Validation
set (BCR)

29 40 27 13
8 11 0 11

16 29 27 2
81 74 75 73
19 14 NA 14
19 34.5 56 14

7.0 � 0.6 7.0 � 0.8 6.8 � 0.7 7.4 � 1
9.9 � 3.8 12.7 � 8.4 12.4 � 9.9 13.1 � 5.3

62.9 � 7.8 63.6 � 8.4 63.5 � 8.3 64 � 8.9

ate specific antigen; SD, standard deviation.

Surgery

Coefficient References

0.152 20, 21
0.310 7, 10, 33

member 1A �0.560 23, 24
0.426 25, 26
0.157 9, 15
0.248 27, 28
0.043 29–32

�0.185 33–36
0.028 37–38
g and

g

.6

.4

.7
lowing

amily,

(BID)
used for computing the predictive score. Positive coefficients indicate a
ve association with recurrence.
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Figure 2D). A summary of the P values for predicting
biochemical recurrence is given in Table 4. In all cases,
the prediction models that use one of the two gene bio-
marker panels plus clinical information outperforms the
prediction model using only clinical information.

Analysis of Clinical Recurrence

Although most patients who have clinical recurrence fol-
lowing prostatectomy also have biochemical recurrence,
there is a significant population of patients with biochem-
ical recurrence who do not have clinically significant re-
currences observed during their follow-ups. To evaluate
our biomarker panel of biochemical recurrence for pre-
dicting the clinical recurrence, we tested the prediction
model based on the combined mRNA/miRNA panel in the

Figure 1. Prediction of biochemical recurrence in all prostate cancer pa-
tients using two biomarker panels, adjusted for clinical information. A: Ka-
plan-Meier analysis of the training set patients that were separated based on
the mRNA panel described in Table 2. B: Kaplan-Meier analysis on the
validation cases using the mRNA panel. C: Kaplan-Meier analysis of the
training set using the combined mRNA and miRNA panel described in Table
3. D: Kaplan-Meier analysis of the validation set using the combined mRNA
and miRNA panel.

Table 3. Twelve-Gene Predictor of Prostate Cancer Recurrence F

Symbol Descriptio

RAD23B RAD23 homolog B
FBP1 Fructose-1,6-bisphosphatase 1
TNFRSF1A Tumor necrosis factor receptor s
CCNG2 Cyclin G2
hsa-miR-647 hsa-miR-647
LETMD1 LETM1 domain containing 1
NOTCH3 Notch homolog 3
ETV1 ETS variant gene 1 (ETV1)
hsa-miR-519 days hsa-miR-519 days
BID BH3 interacting domain death ag
SIM2 Single-minded homolog 2
ANXA1 Annexin A1
Coefficient is derived from the lasso Cox proportion hazards model and was
positive association with recurrence, and negative coefficients a negative assoc
same training and validation samples using their clinical
recurrence outcome data. Unfortunately, clinical recur-
rence data were lacking on some of the samples, and the
total number of samples used in the training set was
reduced. In the training data, the combined mRNA/
miRNA panel was highly significant for predicting clinical
recurrence in all patients (P � 0.002) as well as in the
subset of patients with a Gleason score 7 (P � 0.004); in
the validation data, it was also significant for predicting
recurrence in patients with a Gleason score 7 (P � 0.023)
and trended toward significance in all patients (P �
0.078). A summary of the P values for predicting clinical
recurrence is given in Table 5. In all cases, the prediction
model that uses the combined mRNA and miRNA panel
plus the clinical information, again, outperforms the pre-
diction model that uses only the clinical information.

ng Surgery Using 10 mRNAs and Two microRNAs

Coefficient References

0.070 20, 21
0.251 7, 10, 22

mily, member 1A �0.588 23, 24
0.008 39–41

�0.318
0.063 42–44, 45
0.367 25, 26
0.179 9, 15
0.551 46

BID) 0.128 27, 28
0.124 29–32

�0.143 33–36

Figure 2. Prediction of biochemical recurrence in prostate cancer patients
with a Gleason score 7 using two biomarker panels, adjusted for clinical
information. A: Kaplan-Meier analysis of the training set of Gleason score 7
cases using the mRNA panel described in Table 2. B: Kaplan-Meier analysis
of the Gleason score 7 cases in the validation set using the mRNA panel. C:
Kaplan-Meier analysis of the Gleason score 7 cases in the training set using
the combined mRNA and miRNA panel described in Table 3. D: Kaplan-
Meier analysis of the Gleason score 7 cases in the validation set using the
combined mRNA and miRNA panel.
ollowi

n

uperfa

onist (
used for computing the predictive score. Positive coefficients indicate a
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We also performed an analysis to construct a predic-
tive set of biomarkers based on the clinical recurrence
data instead of biochemical recurrence. Only three
probes passed the initial preselection step for the univar-
iate Cox PH modeling, all corresponding to the ETV1
gene, which is likely due to the considerably fewer num-
ber of clinical recurrences in the training set as well as the
smaller total sample size. Furthermore, the prediction
model built on this set of gene biomarkers did not perform
as well as the models built on biochemical recurrence
(data not shown).

Discussion

In the past few years, enormous progress has been made
in developing technologies to exploit FFPE tumor tissue
samples for gene expression and proteomic analysis.
The use of FFPE tissues as a starting material is attractive
because this approach should make biomarkers identi-
fied in this way much easier to translate into widespread
clinical practice. DASL profiling makes it possible to de-
fine gene sets using FFPE prostate cancer tissues that
could have potential prognostic and predictive value. For
example, the DASL assay has been used recently to
identify a 16-gene set that correlates with prostate cancer
relapse.11 There was no overlap between our panel of 10
mRNA and two miRNA biomarkers described here and
the previously described 16-gene panel even though 10
of the genes in the 16-gene panel previously reported

Table 4. Summary of P Values (Log-Rank Test) of Prediction of

Dataset mRNA panel

Training
All cases (n � 61) �0.001
Gleason score 7 (n � 42) �0.001

Validation
All cases (n � 35) 0.010
Gleason score 7 (n � 19) 0.027

Prediction of biochemical recurrence for the entire dataset and the su
for T-stage, PSA, and Gleason score, or using clinical information only. S

Table 5. Summary of P Values (Log-Rank Test) of Prediction of
Clinical Recurrence on Training and Validation Sets

Dataset
Combined mRNA/

miRNA panel

Clinical
information

only

Training
All cases (n � 56) 0.002 0.262
Gleason score 7

(n � 37)
0.004 0.136

Validation
All cases (n � 35) 0.078 0.193
Gleason score 7

(n � 19)
0.023 0.080

Prediction of clinical recurrence for the entire dataset and the subset
of Gleason score 7 cases was made using the combined mRNA/miRNA

panel, adjusted for T-stage, PSA, and Gleason score, or using clinical
information only. Significant P values are indicated in bold.
were included in our 522 custom prostate DASL panel.
When we analyzed the performance of the probes corre-
sponding to those 10 mRNAs in our dataset, we found
that they were not able to significantly discriminate pa-
tients at higher or lower risk of recurrence. In this previous
study, the gene signature selection and prediction model
building were performed in separate steps, and the sig-
nature selection was based on the correlation between
the gene expression and Gleason score rather than be-
tween the gene expression and time to biochemical re-
currence; our analytic approach overcomes these limita-
tions. Specifically, our approach of building (training)
prediction models takes advantage of recent advance-
ment in regularized regression models for survival out-
comes17,18; regularized regression models can achieve
simultaneous feature selection and model estimation and
avoid model overfitting, leading to better prediction per-
formance. Our use of a preselection step is similar to the
recently proposed sure independence screening meth-
ods,47,48 which have been shown to achieve better per-
formance in the presence of high-dimensional data for
survival analysis compared to regularized regression
without a preselection step.49

Two other recent studies have used DASL profiling to
prostate cancer, but have not detected any signature that
improved on clinical models in validation sets.50,51 Al-
though these studies used large cohorts with long-term
follow-up, they examined different panels of mRNA tran-
scripts and did not include probes corresponding to
miRNA genes. Moreover, these earlier studies suggested
that tumor heterogeneity may play an important role in
confounding signature identification. For our study of
prostatectomy specimens, we identified the most promi-
nent tumor lesion, and used a tissue core sample from
that region to minimize stromal contributions and tumor
heterogeneity.

In our 12-gene predictive biomarker panel, nine of the
genes are positively associated with recurrence, and
three are negatively associated with recurrence. The nine
genes positively associated with recurrence included
miR-519d, Notch homolog 3 (Notch3), Fructose-1,6-bis-
phosphatase 1 (FBP1), ETS variant gene 1 (ETV1), BH3
interacting domain death agonist (BID), Single-Minded
homolog 2 (SIM2), RAD23 homolog B (RAD23B), LETM1
domain containing 1 (LETMD1), and Cyclin G2 (CCNG2).
Little is known about miR-519d other than it may be as-

mical Recurrence on Training and Validation Sets

ined

Clinical information onlymRNA/miRNA panel

�0.001 0.096
�0.001 0.641

0.013 0.020
0.010 0.028

Gleason score 7 cases was made using two biomarker panels adjusted
nt P values are indicated in bold.
Bioche

Comb
sociated with obesity.46 NOTCH3 is one of four Notch
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family receptors in humans, and Notch signaling has
been shown to be important for prostate cancer cell
growth, migration, and invasion,25,26 as well as normal
prostate development.52,53 FBP1 is expressed in the
prostate and is involved in gluconeogenesis.22 The iden-
tification of this metabolic enzyme as a biomarker of
recurrence is initially surprising, but given the recent
identification of isocitrate dehydrogenase 1 (IDH1) muta-
tions in glioblastoma,54 and the fact that FBP1 was over-
expressed in independent microarray analyses of pros-
tate cancers,7,10 the potential of FBP1 as a biomarker
should not be underestimated. ETV1 is well established
as one of the commonly recurrent translocations found in
prostate cancers,9,15 and has been used in clinical mod-
els of recurrence following prostatectomy.55 BID is a pro-
apoptotic protein that binds to BCL2 and potentiates
apoptotic responses on cleavage in response to tumor
necrosis factor � (TNF�) and other death receptors.27,28

SIM2 was identified as a potential biomarker of prostate
cancer in 200229 and later independently confirmed by
Halvorsen et al30 and Arredouani et al.31 SIM2 functions
as a transcription factor that represses the proapop-
totic gene BNIP3.56 RAD23B plays a critical role in
DNA damage recognition and nucleotide excision re-
pair,20 as well as inhibiting MDM2-mediated degrada-
tion of the p53 tumor suppressor.21 LETMD1 (also
known as HCCR) is an oncogene that is induced by
Wnt42 and PI3K/AKT signaling,43 inhibits p53 func-
tion,44 and is a biomarker for hepatocellular57 and
breast45 cancers. Cyclin G2 is an atypical cyclin that is
induced by DNA damage39 in a p53-independent man-
ner, as well as by PI3K/AKT/FOXO signals,40 and in-
duces p53-dependent cell cycle arrest.41

The three genes in the predictive biomarker panel neg-
atively associated with recurrence were miR-647, the
TNF� receptor (TNFRSF1A), and annexin A1 (ANXA1).
Although little is known about miR-647, TNFRSF1A (also
known as TNFR1) mediates proapoptotic responses to
TNF� ligand.23,24 Annexin A1 expression is reduced in
early onset prostate cancer33 and high-grade prostatic
intraepithelial neoplasia.34 ANXA1 plays important roles
in vesicle trafficking and reduced ANXA1 promotes EMT
and metastasis,35 and up-regulates autocrine IL-6 signal-
ing.36 Thus, as a whole, this panel of biomarkers appears
to reflect changes in DNA stability, PI3K signaling, p53
activity, apoptosis, and differentiation consistent with
more aggressive disease.

Although this study goes beyond a pilot study, en-
hanced by selection of samples from multiple institutions,
the number of specimens tested is still relatively small.
Re-analysis of our data using only the Emory samples for
the training set did not identify any significant probes,
likely due to the substantially smaller sample size. Thus,
although the performance of our panel of biomarkers is
significant, even for Gleason score 7 patients, future
studies beyond the scope of this work will be necessary
to perform independent validation on much larger sample
sets with greater statistical power. Moreover, it is now
feasible to perform DASL assays on virtually the entire
genome, in an assay that queries 24,526 transcripts de-

rived from the RefSeq database. Future studies will test
combined mRNA and miRNA biomarker panels, and
query the entire genome to determine whether other bio-
marker panels can achieve even greater success in pre-
diction of biochemical and clinical recurrence of prostate
cancer. Planned larger scale validation studies will de-
termine whether these biomarkers are predictive for
Gleason score 7 cases, and their utility at predicting
clinical as well as biochemical recurrence.
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