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Preeclampsia is associated with increased circulat-
ing levels of proinflammatory molecules, such as
soluble fms-like tyrosine kinase 1 (sFlt-1) and solu-
ble endoglin (sEng). On release by an inadequately
perfused placenta into the maternal circulation,
these molecules cause systemic endothelial dys-
function and the associated hypertension and pro-
teinuria that characterize preeclampsia. We previ-
ously showed that glyceryl trinitrate (GTN) inhibits
hypoxia/reoxygenation-induced apoptosis in the
syncytiotrophoblast of term chorionic villi ex-
plants. Herein, we demonstrate that GTN inhibits
the release of sFlt-1 and sEng from term chorionic
villi explants exposed to hypoxia. Although tran-
script levels and secretion of sFlt-1 and sEng in-
creased in explants exposed to hypoxia, low con-
centrations of GTN significantly inhibited the
hypoxia-induced expression of these molecules at
the mRNA and protein levels. Treatment of explants
with GTN also prevented the hypoxia-induced accu-
mulation of hypoxia-inducible factor-1�, a key me-
diator of cellular adaptations to hypoxia. Further-
more, knockdown of hypoxia-inducible factor-1�
inhibited the hypoxia-induced secretion of sFlt-1
and sEng. This study provides evidence that hypoxia
induces the release of sFlt-1 and sEng in the placenta via
a mechanism that is inhibited by low concentrations of
GTN. Our findings indicate that GTN may have potential
applications in the treatment and/or prevention of
preeclampsia. (Am J Pathol 2011, 178:2888–2896; DOI:

10.1016/j.ajpath.2011.02.013)

Preeclampsia is a leading cause of perinatal and maternal
morbidity and mortality, affecting 3% to 7% of pregnant

women worldwide.1 It is characterized by the development
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of maternal hypertension, proteinuria, edema, and systemic
coagulopathies. Although the etiology of preeclampsia is
not well understood, there is evidence that high levels of
antiangiogenic molecules [ie, soluble fms-like tyrosine ki-
nase-1 (sFlt-1) and soluble endoglin (sEng)] in the maternal
circulation are linked to the endothelial dysfunction associ-
ated with this pregnancy complication.2–5

Secreted sFlt-1, usually a splice variant of Flt-1, is the
soluble form of vascular endothelial growth factor recep-
tor-1 (VEGFR-1). Soluble Flt-1 binds to angiogenic mole-
cules (ie, placental growth factor and VEGF) and pre-
vents them from interacting with VEGFR-1 and VEGFR-2
on the surface of endothelial cells.5,6 Consequently, any
increase in blood sFlt-1 levels causes a decrease in
bioavailable VEGF and placental growth factor, with cor-
responding inhibition of angiogenesis and vascular func-
tion. There is evidence that the placenta is a primary
source of sFlt-1 in human pregnancy,7 and clinical stud-
ies have revealed that normal circulating sFlt-1 levels
increase during gestation. However, compared with nor-
mal pregnancies, blood sFlt-1 levels are substantially
higher in preeclamptic pregnancies.2 Clinical signs of
preeclampsia may be a direct outcome of high concen-
trations of serum sFlt-1.5,8 Furthermore, animal experi-
mentation has revealed that abnormally high circulating
levels of sFlt-1 lead to hypertension, proteinuria, and en-
dothelial damage.5,9

Eng is a cell membrane glycoprotein that functions as
a coreceptor for transforming growth factor (TGF)-� sig-
naling.10 sEng competes with the binding of TGF-�1 to its
corresponding cell surface receptors and, consequently,
interferes with downstream TGF-� signaling in the vascula-
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ture.4 Similar to signaling by VEGF and placental
growth factor, TGF-� signaling plays an important role
in the maintenance of vascular function and homeosta-
sis. In preeclampsia, high levels of sEng in the maternal
circulation correlate with increased expression of Eng in
the placenta.4,11 Circulating sEng levels were markedly
increased 2 to 3 months before the clinical onset of pre-
eclampsia.12

Placental hypoxia may play a major role in the patho-
physiological characteristics of preeclampsia9,13,14;
hypoxia increases the secretion of sFlt-1 and sEng from
first- and second-trimester chorionic villi explants.9,15–17

Although hypoxia also increases the secretion of sFlt-1
by third-trimester explants,18 its effect on sEng secretion by
third-trimester explants has not been determined. Because
the clinical signs of preeclampsia only appear in the second
half of pregnancy, it is possible that a hypoxia-induced
increase in sFlt-1 and sEng secretion in the second and
third trimesters of gestation contributes to the pathophys-
iological characteristics of preeclampsia.

The hypoxia response pathway represents a potential
therapeutic target for inhibiting placental secretion of
sFlt-1 and sEng. A key player that mediates many adap-
tive responses to hypoxia is the transcriptional activator
hypoxia-inducible factor (HIF)-1. This transcription factor
is a basic helix-loop-helix-PAS domain protein composed
of � and � subunits. Although the HIF-1� subunit is con-
stitutively expressed, the levels of HIF-1� increase in
response to hypoxia.19 The stability of HIF-1� is regu-
lated by hydroxylation of proline residues 402, 564, or
both in an oxygen-dependent reaction.20 Proline hy-
droxylation of HIF-1� promotes the binding of the von
Hippel–Lindau protein, leading to ubiquitination and pro-
teasomal degradation of HIF-1�.20,21

There is evidence that relatively low concentrations of
nitric oxide (NO) inhibit the accumulation of HIF-1� under
hypoxia, thereby interfering with HIF-1–mediated adap-
tive responses.22,23 Low concentrations (lower than mi-
cromolar) of NO mimetics [eg, glyceryl trinitrate (GTN)]
inhibit the hypoxia-induced acquisition of malignant phe-
notypes in cancer cells, such as invasiveness, metasta-
sis, and drug resistance.24,25 Although the precise role of
endogenous NO in normal and pathological pregnancy is
unclear, there is evidence that decreased endogenous NO
availability contributes to the pathophysiological character-
istics of preeclampsia.26 A previous study27 demonstrated
that low concentrations of GTN inhibit apoptosis of the syn-
cytiotrophoblast in chorionic villi explants exposed to hyp-
oxia/reoxygenation (H/R). In the present study, we deter-
mined the effect of administration of low concentrations of
GTN on the secretion of sFlt-1 and sEng from term chorionic
villi explants exposed to hypoxia.

Materials and Methods

Collection and Culture of Chorionic Villi Explants

Human term placentas (n � 22) were obtained from un-
complicated pregnancies immediately after caesarean

deliveries at Kingston General Hospital, Kingston, ON.
Placentas were collected with the approval of the
Queen’s University Research Ethics Board. Explants of
chorionic villi were prepared as previously described27

and incubated in 1.3 mL of serum-free RPMI 1640 me-
dium (Invitrogen, Burlington, ON). For exposures to hyp-
oxia, explants (approximately 60 per experiment) treated
with or without GTN (10 nmol/L or 1 �mol/L; Sabex,
Boucherville, QC) were incubated at 37°C for 24 hours in
a humidified Plexiglas chamber flushed with a gas mix-
ture of 5% CO2 and 95% N2. Oxygen concentrations
within the chamber were maintained at 0.5% (PO2 � 3.8
mm Hg) by oxygen regulators (ProOx 110; Biospherix
Inc., Lacona, NY). Controls consisted of explants incu-
bated in either 8% O2 (PO2 � 60 mm Hg, physiological
concentrations) or 20% O2 (PO2 � 152 mm Hg) and 5%
CO2 for 24 hours. Explants were then collected or ex-
posed to conditions of reoxygenation (20% O2) for 3
additional hours. At the end of all incubations, placental
tissues were either flash frozen for molecular analysis or
fixed in 4% paraformaldehyde for histological analysis.
Media of cultured explants were collected, centrifuged
for 10 minutes at 8000 � g, divided into small tubes, and
stored at -80°C until further analysis.

Immunohistochemistry

Randomly selected paraffin-embedded sections of cho-
rionic villi were deparaffinized and subjected to antigen
retrieval by heating them in a microwave oven for 22
minutes in citrate buffer (0.1 mol/L sodium citrate, pH
6.0). Primary antibodies used were goat polyclonal anti-
human Eng or Flt-1 antibody (1 �g/mL; R&D Systems,
Minneapolis, MN), mixed with mouse anti–human pan-
cytokeratin antibody (1:100; Sigma-Aldrich, St Louis, MO)
and incubated at 4°C overnight. Secondary antibodies
were a mix of donkey anti-mouse (Alexa Fluor 568) and
donkey anti-goat (Alexa Fluor 488) antibodies (1:500 each;
Invitrogen, Carlsbad, CA). Slides were mounted with me-
dium (VECTASHIELD Mounting Medium) containing DAPI
(Vector Laboratories, Inc., Burlingame, CA). Micrographs
were taken using a microscope (Zeiss Imager A1 Micro-
scope; Carl Zeiss Canada Ltd, Toronto, ON) and software
(Axiovision v 4.7.1.0; Carl Zeiss Canada Ltd).

Western Blot Analysis of HIF-1�

To assess the ability of chorionic villi to respond to hyp-
oxia, the levels of HIF-1� were determined by Western
blot analysis of flash-frozen chorionic villi preexposed to
0.5%, 8%, or 20% O2 for 24 hours (n � 3 to 6 placentas).
Primary antibodies used were mouse monoclonal anti-
body against HIF-1� (1:250; BD Biosciences, San Diego,
CA), goat polyclonal anti–TGF-�1 (1:1000, R&D Sys-
tems), and monoclonal anti–�-actin antibody (clone AC-
15, 1:8000; Bio-Rad Laboratories Ltd, Mississauga, ON,
Canada). Goat anti-mouse antibody (1:5000, Vector Lab-
oratories Inc.) labeled with horseradish peroxidase was
used as a secondary antibody. The relative intensities of
bands were determined by densitometry using software

(AlphaErase; � Innotech Corp, San Leandro, CA).
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Knockdown of HIF-1� in Chorionic Villi Explants

To down-regulate HIF-1� expression in chorionic villi,
HIF-1� small-interfering RNA (siRNA) was introduced into
explants using a transfection reagent (siPORT NeoFX;
Ambion Inc., Austin, TX). This HIF-1� siRNA was vali-
dated and targets exon 5 of the human HIF-1� gene
(number 42840; Ambion Inc.). Explants were transfected
with 200 nmol/L HIF-1� siRNA or negative control siRNA
2 (Silencer; Ambion Inc.) and then incubated in a stan-
dard incubator at 5% CO2 and 20% O2 (151 mm Hg) for
24 hours. After this incubation, the culture medium was
replaced with fresh RPMI 1640 medium (Invitrogen, Bur-
lington, ON, Canada) and explants were further incu-
bated for 24 hours in either 20% or 0.5% O2, as previ-
ously described.

Determination of sFlt-1 and sEng Levels in the
Culture Media

To determine the levels of sFlt-1 or sEng in the culture
media, kits (DuoSet ELISA Development System kits; R&D
Systems) were used according to the manufacturer’s
instructions.

Real-Time PCR

Total RNA was isolated using a kit (High Pure RNA Iso-
lation Kit; Qiagen, Valencia, CA), according to the man-
ufacturer’s protocol. Total RNA, 1 �g, was reverse tran-
scribed with a kit (Omniscript RT Kit; Qiagen) using a
random hexamer (Cortex, Kingston). Real-time PCR was
performed with a system (LightCycler 480 Real-Time PCR
System; Roche, Mississauga, ON) using a mix (SYBR
Green PCR Master Mix; Roche) and primers, as follows:
�-actin, 5=-TGGGACGACATGGAGAAAAT-3= (sense) and
5=-GAGGCGTACAGGGATAGCAC-3= (antisense); Flt-1,
5=-GCACCTTGGTTGTGGCTGAC-3= (sense) and 5=-TG-
GAATTCGTGCTGCTTCCTGGTCC-3= (antisense); sFlt-1,
5=-GCACTGCAACAAAAAGGC-3= (sense) and 5=-CCAG-
GAATGTATACACAGG-3= (antisense); Eng, 5=-GCTGGAT-
GAGCCGGGAGCTCCCTGCTG-3= (sense) and 5=-CA-
CAGGCTGAAGGTCACAATGGACTG-3= (antisense); and
HIF-1�, 5=-TGCTTGGTGCTGATTTGTGA-3= (sense) and 5=-
GGTCAGATGATCAGAGTCCA-3= (antisense). Real-time
reaction conditions for all sets of primers were as follows:
94°C for 5 minutes, followed by 60 cycles at 94°C for 20
seconds, 55°C for 20 seconds, and 72°C for 30 seconds.
The intensity of dye (FastStart SYBR Green) was analyzed
using software (LightCycler 480; Roche). Transcript levels
were normalized against �-actin mRNA levels.

Statistical Analysis

For statistical analysis of enzyme-linked immunosorbent as-
say and quantitative PCR results, one-way analysis of vari-
ance was performed and significant differences between
groups were determined using Tukey’s multiple compari-
sons post hoc test. All statistical tests were two sided, and

differences were considered significant at P � 0.05.
Results

Immunolocalization of Flt-1 and Eng in Chorionic
Villi Explants

To determine the potential source of secreted Flt-1 and
Eng, immunofluorescence using polyclonal antibodies
against Flt-1 and Eng was performed on sections of cho-
rionic villi explants incubated in 20% O2 (see Supplemen-
tal Figure S1, A and E, at http://ajp.amjpathol.org). Cyto-
keratin was used as a marker for trophoblast (see
Supplemental Figure S1, B and F, at http://ajp.amjpathol.
org). Both Flt-1 and Eng colocalized with cytokeratin pri-
marily to the syncytiotrophoblast layer (see Supplemental
Figure S1, D and H, at http://ajp.amjpathol.org), indicating
that this tissue is a potential source of the secreted mol-
ecules. We also observed that Flt-1, but not Eng, is ex-
pressed in the fetal vessels within the villous stroma,
indicating that fetal vessels are another potential source
of sFlt-1 but not of sEng (see Supplemental Figure S1, D
versus H, respectively, at http://ajp.amjpathol.org).

Effect of Hypoxia on the Levels of sFlt-1 and
Eng mRNA and Secreted Protein

Previous studies14,15,17,28 reported hypoxia-induced
sFlt-1 and sEng secretion by trophoblast cell lines and
first-trimester chorionic villi explants. Given that pre-
eclampsia is mostly a disease of the second half of preg-
nancy, we examined the effect of hypoxia on the mRNA
levels of Flt-1 variants and Eng by term chorionic villi
explants. The secreted form of Flt-1 either can be en-
coded by a spliced variant of the Flt-1 (spliced Flt-1) gene
or, less frequently, is the product of the cleaved ectodo-
main of the Flt-1 receptor (receptor Flt-1).29,30 To deter-
mine whether a specific variant of Flt-1 is responsive to
hypoxia in term villous explants, we examined both spe-
cies of Flt-1 mRNA using real-time PCR. Exposure to
0.5% O2 increased the expression of both the spliced
Flt-1 and receptor Flt-1 mRNA species compared with
exposure to either 20% or 8% O2 (Figure 1A). However,
although the expression of the spliced Flt-1 variant in-
creased several thousandfold, the levels of transcript en-
coding the receptor Flt-1 variant increased by only ap-
proximately twofold. Consequently, the ratio of spliced
Flt-1/receptor Flt-1 significantly increased in chorionic villi
exposed to hypoxia compared with chorionic villi ex-
posed to either 20% or 8% O2 (Figure 1A: P � 0.001 for
both). This ratio is an indication of increased bioavailabil-
ity of the spliced (secreted) Flt-1 variant compared with
nonspliced Flt-1 receptor in chorionic villi exposed to
hypoxia. Exposure of chorionic villi to hypoxia (0.5% O2)
resulted in a fivefold and a threefold increase in Eng
mRNA levels compared with exposure to 20% and 8%
O2, respectively (Figure 1B: P � 0.001 for both). Com-
pared with exposure to 20% O2, exposure to 8% O2 did
not result in statistically significant increases in the levels
of sFlt-1 and sEng mRNA.

To further characterize the effect of hypoxia on the

secretion of sFlt-1 and sEng, we performed an enzyme-

http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org


GTN Inhibits Placental sFlt-1 and sEng 2891
AJP June 2011, Vol. 178, No. 6
linked immunosorbent assay on the media of explant
cultures. Explants exposed to 0.5% O2 for 24 hours se-
creted significantly higher levels of sFlt-1 and sEng than
explants incubated in 20% or 8% O2 (Figure 2, A and B).
Although the data shown in Figure 2 are expressed as
pictograms of sFlt-1 or sEng per microgram of protein in
the media, differences in the reported concentrations of
these molecules were not the result of differences in the
total amount of protein secreted by chorionic villi; the
latter was similar across the different treatment groups
(see Supplemental Figure S2 at http://ajp.amjpathol.org).
Compared with exposure to 20% O alone, exposure of

Figure 1. Effect of GTN on hypoxia-induced increases in sFlt-1 and sEng
mRNA levels in chorionic villi explants. (minimum of three placentas per
treatment) A: Quantitative PCR (qPCR) analysis of Flt-1 mRNA levels (ex-
pressed as the ratio of spliced Flt-1/receptor Flt-1 mRNA forms). Transcript
levels were normalized against �-actin mRNA levels. B: qPCR analysis of
sEng; mRNA levels were quantified relative to �-actin transcript levels. Error
bars represent SEM. ***P � 0.001. Transverse lines link two groups to indicate
statistical significance.
2

chorionic villi to H/R (24 hours in 0.5% O2, followed by 3
hours in 20% O2) did not significantly increase the de-
tectable levels of sFlt-1 and sEng in the culture medium
(see Supplemental Figure S3, A and B, at http://ajp.
amjpathol.org). Accordingly, compared with exposure to
hypoxia for 24 hours, subsequent reoxygenation of cho-
rionic villi explants (3 hours in 20% O2) resulted in a
significant decrease in the levels of detectable sFlt-1 and
sEng (see Supplemental Figure S4, A and B, at http://ajp.
amjpathol.org; P � 0.05 for both).

Effect of GTN on the Hypoxia-Induced
Increases in sFlt-1 and sEng mRNA
Levels and Secretion

The hypoxia-mediated increases in sFlt-1 and sEng
mRNA accumulation and protein secretion were signifi-
cantly inhibited by GTN at concentrations of 10 nmol/L or
1 �mol/L (Figure 1, A and B, and Figure 2, A and B). The
inhibitory effect of GTN at 1 �mol/L was confirmed by
immunofluorescence microscopy of explants using poly-
clonal antibodies against Flt-1 or Eng. Compared with
exposure to hypoxia alone, Flt-1 and Eng immunofluo-
rescence intensity under hypoxic conditions was sub-
stantially decreased after treatment with 1 �mol/L GTN
(Figure 2, C and D).

Effect of Hypoxia and GTN on HIF-1�

Accumulation

To elucidate the mechanism by which GTN inhibits hy-
poxia-induced secretion of sFlt-1 and sEng, we examined
the effect of GTN on the accumulation of HIF-1� in ex-
plants incubated in 0.5% O2. HIF-1� levels were signifi-
cantly increased in explants exposed to 0.5% O2 compared
with HIF-1� levels in explants exposed to 20% O2 (Figure 3,
A and B: P � 0.01) or 8% O2 (Figure 3, A and B: P � 0.05).
Treatment with GTN at a concentration of 1 �mol/L or 10
nmol/L significantly inhibited the accumulation of HIF-1� in
explants exposed to 0.5% O2 (Figure 3, A and B: P � 0.001
and P � 0.01, respectively). Consistent with the inhibitory
effects of GTN on sFlt-1 and sEng secretion, the most pro-
nounced suppression of HIF-1� accumulation was
achieved with GTN at a concentration of 1 �mol/L.

Effect of HIF-1� Knockdown on the Secretion of
sFlt-1 and sEng

To determine whether HIF-1 mediates the hypoxia-in-
duced secretion of sFlt-1 and sEng, we knocked down
HIF-1� mRNA in chorionic villi explants. Villi exposed to
0.5% O2 significantly expressed higher levels of HIF-1�
mRNA compared with villi exposed to 20% O2 or villi
exposed to 0.5% O2 and transfected with HIF-1� siRNA
(Figure 4A: P � 0.001 for both). Chorionic villi with higher
HIF-1� expression levels (ie, exposed to 0.5% O2) se-
creted more sFlt-1 and sEng than those with lower HIF-1�
mRNA levels (ie, exposed to 20% O2; Figure 4, B and C:
P � 0.05 and P � 0.01, respectively). Knockdown of
HIF-1� with siRNA inhibited the hypoxia-induced secre-

tion of sFlt-1 and sEng (Figure 4, B and C: P � 0.001 for

http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org


2892 Barsoum et al
AJP June 2011, Vol. 178, No. 6
Cytokeratin DAPI Merged  Endoglin 

H
yp

ox
ia

 +
 G

TN
 

 H
yp

ox
ia

  
A B

Cytokeratin DAPI Merged  FLT-1 (VEGFR1) 

H
yp

ox
ia

  
H

yp
ox

ia
 +

 G
TN

 

C

D

sFlt-1 ELISA

2

20
% O

mol/L
 G

TN 

µµ

 + 
1 

2

20
% O

2

8%
 O

mol/L
 G

TN 

µ

 + 
1 

2

8%
 O

2

0.5
% O

 + 
10

 nmol/L
 G

TN

2

0.5
% O

mol/L
 G

TN

µ

 + 
1 

2

0.5
% O

1

2

3

4

5
sF

lt-
1 

(p
g/
µ

g 
of

 to
ta

l p
ro

te
in

)

sEng (ELISA)

2

20
% O

mol/L
 G

TN

µ
+ 1

 
2 

20
% O

2 

8%
 O

mol/L
 G

TN 

µ
+ 1

 
2 

8%
 O

2

0.5
% O

 + 
10

 nmol/L
 G

TN

2

0.5
% O

mol/L
 G

TN

µ

 + 
1 

2

0.5
% O

1.0

1.5

2.0

2.5

sE
ng

(p
g/
µ

g 
of

 to
ta

l p
ro

te
in

)

µ

Figure 2. Effect of GTN on the secretion and expression of sFlt-1 and sEng by chorionic villi explants exposed to hypoxia. A and B: Relative sFlt-1 and sEng levels,
respectively, in the medium of explant cultures (six explants per placenta, with a minimum of three placentas per treatment). Concentrations (in ng/mL) were
divided by the total amount of protein (in �g/mL) in the media. Error bars represent SEM. The lines in A and B identify the comparison groups by the vertical
lines pointing to the corresponding bars. C and D: Localization of Flt-1, Eng, cytokeratin (trophoblast marker), and nuclei (DAPI) by fluorescence microscopy.
Far right: The merged images with all three markers combined, with yellow representing areas of colocalization of sFlt-1 or Eng with cytokeratin, are shown.

Top: Explants exposed to hypoxia (0.5% O2). Bottom: Explants exposed to hypoxia in the presence of 1 �mol/L GTN. *P � 0.05, **P � 0.01, and ***P � 0.001.
Transverse lines link two groups to indicate statistical significance. Scale bars � 10 �m. ELISA indicates enzyme-linked immunosorbent assay.
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both). Furthermore, explants transfected with HIF-1�
siRNA secreted significantly lower levels of sFlt-1 and
sEng than explants transfected with scrambled negative
control siRNA (Figure 4, B and C: P � 0.05 and P � 0.01,

Figure 3. Effect of GTN on the hypoxia-induced accumulation of HIF-1� in
chorionic villi explants. A: Western blot analysis of HIF-1� protein in ex-
plants cultured in 20%, 8%, or 0.5% O2. The administration of GTN (1 �mol/L
or 10 nmol/L) inhibited the accumulation of HIF-1� in explants incubated in
0.5% O2. Incubation of explants in 8% O2 did not lead to accumulation of
HIF-1�. B: Densitometric quantification of pooled Western blots from three
independent experiments. The lines in A and B identify the comparison
groups by the vertical lines pointing to the corresponding bars. *P � 0.05,
**P � 0.01, and ***P � 0.001. (Minimum of three placentas per treatment).

Figure 4. Effect of HIF-1� knockdown on the hypoxia-induced increase in m
(minimum of three placentas per treatment). A: Expression of HIF-1� transc
PCR (qPCR). B and C: Relative levels of sFlt-1 and sEng protein in the tissu

�g/mL) in the media. The lines in A and B identify the comparison groups by the v
***P � 0.001. Lines with asterisks denote the comparison groups. ELISA indicates
respectively). These results indicate that HIF-1� is a key
mediator of the hypoxia-induced secretion of sFlt-1 and
sEng. These findings also indicate a hypoxia-induced
up-regulation of HIF-1� at the mRNA level, which was
previously reported.31 However, our findings do not ex-
clude the possibility that hypoxia may also increase
HIF-1� levels by increasing protein stability.23,32

Discussion

The main novel finding that we report herein is that hy-
poxia-induced secretion of sFlt-1 and sEng by chorionic
villi explants can be inhibited by low concentrations of
GTN. Given that hypoxia and increased circulating levels
of sFlt-1 and sEng contribute to the pathophysiological
characteristics of preeclampsia, the results of this study
indicate that administration of low doses of NO mimetics
to women with preeclampsia or at a high risk of develop-
ing this complication may be a useful therapeutic or pre-
ventative strategy.

Other studies14,17,28 have focused primarily on de-
termining the effect of hypoxia on placental sFlt-1 se-
cretion; increased sFlt-1 secretion during preeclamp-
sia may be part of a placental response to hypoxia,
whereby sFlt-1 increases maternal blood pressure to
improve placental perfusion. Hypoxia-mediated stimu-
lation of sFlt-1 and sEng secretion by first-trimester
chorionic villi explants was previously reported.15,17,28

However, the role of hypoxia in the regulation of sEng
secretion is controversial. Although some studies28,33

have described a lack of effect of hypoxia on sEng
secretion, others15,34 have found a stimulatory effect in
first-trimester explants and preeclamptic term placen-
tas but not in normal-term placentas. In light of our
results, it is possible that sEng secretion is dependent
on gestational age and length of exposure to hypoxia.

els and secretion of sFlt-1 and sEng by third-trimester chorionic villi explants.
ls relative to �-actin transcript levels as determined by real-time quantitative
media. Values (in ng/mL) were divided by the total amount of protein (in
RNA lev
ript leve
e culture
ertical lines pointing to the corresponding bars. *P � 0.05, **P � 0.01, and
enzyme-linked immunosorbent assay.
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In women who later develop preeclampsia, increased
circulating sFlt-1 and sEng levels are first detected in
the late second and early third trimesters, respectively,
before the clinical onset of disease.12,35 Thus, cultures
of third-trimester explants may represent a more accu-
rate model to study the effects of hypoxia on placental
sFlt-1 and sEng secretion.

In our study, only hypoxia, and not H/R, resulted in
increased detection of sFlt-1 and sEng in the culture
medium. Although the effect of H/R on the secretion of
sFlt-1 and sEng by chorionic villi was not previously ex-
amined, Cindrova-Davies36 reported a significant in-
crease in tissue-associated sFlt-1 levels in chorionic villi
after exposure to H/R. In our study, compared with expo-
sure to hypoxia alone, exposure to conditions of reoxy-
genation resulted in decreased detectable levels of sFlt-1
and sEng. We cannot exclude that H/R increased the
secretion of sFlt-1 and sEng by chorionic villi explants. It
is possible that the decreased detection of these mole-
cules after H/R was the result of sequestration by high
levels of secreted VEGF and TGF-�, which can potentially
interfere with the detection assay. In support of this con-
cept, Western blot analysis revealed substantial in-
creases in the levels of TGF-�1 in the culture medium of
explants exposed to H/R compared with media from ex-
plants incubated in 20% or 0.5% O2 alone (see Supple-
mental Figure S4C at http://ajp.amjpathol.org).

Although exposure of chorionic villi to hypoxia alone
can lead to apoptosis,27,37 thereby resulting in the re-
lease of vasoactive molecules, we showed herein that the
hypoxia-induced release of sFlt-1 and sEng can also be
transcriptionally regulated. This conclusion is based on
the observation that the hypoxia-induced expression and
release of these molecules was mediated by HIF-1�. In
our study, both HIF-1� protein and mRNA levels in-
creased in chorionic villi exposed to hypoxia. Although
HIF-1� levels are mostly regulated at the level of protein
stabilization, there is evidence that hypoxia can increase
the levels of HIF-1� mRNA in chorionic villi exposed to
hypoxia.31

Our results also revealed that the increased ratio of
spliced Flt-1/receptor Flt-1 mRNA and the increase in Eng
mRNA levels were much higher than the secreted protein
levels. To our knowledge, this is the first report on the
ratio of spliced Flt-1/receptor Flt-1 mRNA in the placenta
and may, in part, explain the observed large increase in
sFlt-1 mRNA levels. Differences between secreted pro-
tein and mRNA levels may be explained at the level of
RNA stability and efficiency of the translational machin-
ery.

Our findings support the results of previous stud-
ies34,38 showing that the syncytiotrophoblast is a major
source of Flt-1 and Eng. We have demonstrated that the
expression and secretion of Flt-1 and Eng from syncy-
tiotrophoblast exposed to hypoxia can be inhibited by
GTN. The rationale for testing the effect of GTN on the
expression and release of these molecules was based on
a previous study27 in which H/R-mediated apoptosis of
term chorionic villi was significantly attenuated by low
concentrations of GTN. It is possible that the effects of

GTN, as an NO mimetic, reflect the well-known actions of
NO. At lower concentrations, such as those used in our
study, NO activates soluble guanylyl cyclase to generate
cGMP. Under certain conditions involving low oxygen-
ation, NO can also inhibit mitochondrial respiration so
that oxygen becomes available for the activation of prolyl
hydroxylases and the degradation of HIF-1�.23,32 Herein,
we showed that GTN was able to inhibit HIF-1� protein
accumulation. The precise mechanism by which GTN
inhibited HIF-1� accumulation requires further investiga-
tion. However, based on this observation, together with
the finding that siRNA-mediated knockdown of HIF-1�

prevented the hypoxia-induced release of sFlt-1 and
sEng, we conclude that the inhibitory effect of GTN on the
hypoxia-induced secretion of sFlt-1 and sEng was likely
the result of inhibition of HIF-1 activity.

The pathophysiological characteristics of preeclampsia
and other complications of pregnancy have been linked to
a maternal immune imbalance with greater secretion of
proinflammatory cytokines and a relative decrease in the
levels of anti-inflammatory molecules, such as IL-10.39,40

Although the administration of IL-10 to chorionic villi ex-
plants did not affect the secretion of sFlt-1,41 treatment of
explants with exogenous sFlt-1 increased IL-10 and tumor
necrosis factor-� secretion.42 It is possible that, by increas-
ing the secretion of tumor necrosis factor-� in the placenta,
sFlt-1 contributes to the maternal inflammatory state char-
acteristic of severe preeclampsia.

Women who have had preeclampsia are at increased
risk of recurrence in a subsequent pregnancy.43,44 De-
spite the fact that the cause of preeclampsia is largely
unknown, the increase in sFlt-1 and sEng levels in the
maternal circulation is tightly linked to the pathophysio-
logical characteristics of preeclampsia. Current thera-
peutic strategies have relied primarily on managing
symptoms, with little evidence that any intervention alters
the underlying pathophysiological characteristics.43 For
example, antihypertensive and antiplatelet drugs have
been used to treat severe hypertension and coagulopa-
thies associated with preeclampsia.43 However, it is un-
clear that such approaches have an impact on other
maternal and fetal comorbidities. Furthermore, a recent
study45 revealed that antihypertensive drugs had no ef-
fect on placental secretion of sFlt-1 and sEng. There are
few published studies on the use of GTN for the treatment
of preeclampsia. Some studies46–48 have reported ben-
eficial effects of GTN in preeclamptic patients with defi-
cient uteroplacental blood flow. Other studies49 did not
reveal the beneficial effects of this drug. In those studies,
it is possible that patients developed tolerance to GTN
because of continuous use of relatively high doses of this
drug. It is also possible that only a subset of patients with
preeclampsia benefit from GTN therapy (specifically, pa-
tients with hypoxic placentas and elevated serum levels
of sFlt-1 and/or sEng).

In summary, our current study reveals a novel strategy
to inhibit the secretion of sFlt-1 and sEng from placental
tissues exposed to hypoxia and, therefore, has the po-
tential of leading to novel modalities for the management

and prevention of preeclampsia.

http://ajp.amjpathol.org
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