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In this study, we elucidated the mechanism by which
adiponectin modulates hepatic stellate cell activation
and fibrogenesis. Adiponectin-overexpressing trans-
genic mice receiving thioacetamide were resistant to
fibrosis, compared with controls. In contrast, adi-
ponectin-null animals developed severe fibrosis. Ex-
pression of collagen �1(I) and �-smooth muscle actin
(�-SMA) mRNAs were significantly lower in adiponec-
tin-overexpressing mice, compared with controls. In
wild-type stellate cells exposed to a lentivirus encod-
ing adiponectin, expression of peroxisome prolif-
erator-activated receptor-� (PPAR�), SREBP1c, and
CEBP� mRNAs was significantly increased (3.2-, 4.1-,
and 2.2-fold, respectively; n � 3; P < 0.05, adiponectin
virus versus control), consistent with possible activa-
tion of an adipogenic transcriptional program. Tro-
glitazone, a PPAR� agonist, strongly suppressed up-
regulation of collagen �1(I) and �-SMA mRNA in
stellate cells isolated from wild-type mice; however,
stellate cells from adiponectin-null animals failed to
respond to troglitazone. Furthermore, in isolated stel-
late cells in which PPAR� was depleted using an ade-
novirus-Cre-recombinase system and in which adi-
ponectin was also overexpressed, collagen �1(I) and
�-SMA were significantly inhibited. We conclude that
the PPAR� effect on stellate cell activation and the fibro-
genic cascade appears to be adiponectin-dependent;
however, the inhibitory effect of adiponectin on stellate
cell activation was not dependent on PPAR�, suggest-
ing the presence of PPAR�-dependent as well as inde-
pendent pathways in stellate cells. (Am J Pathol 2011,

178:2690–2699; DOI: 10.1016/j.ajpath.2011.02.035)

Altered hepatic pathology, function, or both are among the
most common sequelae of the metabolic syndrome.1,2 Ste-

atosis is generally the first step in this process, which may
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progress to development of inflammation, fibrosis, and even
end-stage liver failure.3 The determinants of liver disease in
metabolic syndrome are under intense investigation. A
number of factors likely contribute significantly to the pro-
cess, including dysregulated metabolic pathways, oxida-
tive stress, and chronic inflammation.3

Activated stellate cells (myofibroblasts) are key effec-
tors of the fibrogenic response in the liver.4 Recent evi-
dence has emphasized an adipogenic transcriptional
program in stellate cells that is regulated by typical tran-
scription factors in this pathway, including peroxisome
proliferator-activated receptor-� (PPAR�), SREBP1c, and
CEBP�; this program appears to promote maintenance of
stellate cells in a quiescent state.5,6 During activation,
stellate cells lose retinoids and transform into a myofibro-
blast-like appearance.5,6 A critical corollary to the mor-
phological transition is a set of remarkable functional
changes that include production of extracellular matrix,
as well as profibrotic mediators such as tissue inhibitors
of matrix metalloproteinases (TIMPs).4

Adiponectin has been suggested to play an important
role in the pathogenesis of liver fibrosis.7–15 Notably, in
addition to adipose tissue, adiponectin is expressed in stel-
late cells.16 Previous studies have shown that adiponectin
has important effects specifically on stellate cells, and the
mechanism of these effects remains an area of active in-
vestigation.6,17 Here, we have hypothesized that the rela-
tionship between adiponectin and adipogenic signaling
partners, and in particular the classic transcription factor
PPAR�, is critical in modulating hepatic stellate cell activa-
tion and fibrogenesis. We examined the role of adiponec-
tin in modulating hepatic stellate cell function in isolated
primary cells and in genetic models that lack or overex-
press adiponectin. Our findings highlight a complicated
relationship between PPAR� and adiponectin in stellate
cell activation.
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Materials and Methods

Animals and Models of Liver Injury

Homozygous adiponectin-deficient and heterozygous adi-
ponectin-overexpressing mice (using aP2 as a promoter)
and corresponding controls on FVB background were gen-
erated as described previously.18,19 Male mice between the
ages of 12 and 16 weeks were used for this study. All animals
were maintained under temperature-controlled conditions
(22 � 2°C) in 12-hour light/dark cycles with unlimited access
to food and water. All animals received humane care in
compliance with University of Texas Southwestern Medical
Center Institutional Animal Care and Use Guidelines. To
induce liver fibrosis, the mice were given i.p. injections of
0.2 g/kg body weight of thioacetamide (TAA) dissolved in
saline two times per week for 8 weeks as described previ-
ously.20 At the end of the experimental period, liver samples
were collected for histological and biochemical examina-
tions. Animal protocols used to induce injury and fibrogenesis
were approved by the University of Texas Southwestern Med-
ical Center Animal Care and Use Committee. Mice containing
PPAR� LoxP sites on a C57BL/6J mixed background (4 to 5
weeks of age) were kindly provided by Dr. Bruce Spiegelman
(Dana Farber Cancer Institute, Boston, MA).21

Cell Isolation and Culture

Hepatic stellate cells were isolated by digestion of the liver
with pronase (Roche Applied Science, Indianapolis, IN) fol-
lowed by collagenase (Crescent Chemical, Hauppauge,
NY). In brief, stellate cells were separated from other liver
nonparenchymal cells by ultracentrifugation over gradients

Figure 1. Characterization of stellate cells derived from adiponectin-defi
adiponectin-knockout (KO), and adiponectin-transgenic (Tg) mice and were

shown (n � 10). Scale bar � 10 �m. B and D: mRNA levels of �-SMA (B) and collag
WT; **P � 0.05 versus KO. C: Immunoblotting was performed to detect �-SMA and
of 8.2% and 15.6% cell separation medium (Accident me-
dium; Accurate Chemical & Scientific, Westbury, NY). The
resulting upper layer consisted of �95% stellate cells. Cells
were placed on uncoated plastic and were maintained in
standard stellate cell growth medium (modified 199OR con-
taining 10% fetal bovine serum and 10% calf serum) as
described previously.22 Isolated stellate cells were seeded
at a density of 3 � 102 cells/mm2. Cultures were incubated
at 37°C in a humidified incubator (containing 95% O2 and
2.5% CO2), and the medium was changed every 24 hours.
Cell viability was �90% in all cultures used. The cells were
considered to be quiescent at 24 hours after plating (day 1).
Cells at day 7 were considered activated, with �95% stain-
ing positive for �-SMA.

Adenovirus

Recombinant adenovirus expressing green fluorescent pro-
tein (Ad-GFP) was prepared as described previously.23 Ad-
enovirus encoding Cre recombinase (Ad-Cre) was pur-
chased from Vector Biolabs (Philadelphia, PA). Viruses
were amplified and titered according to the manufacturer’s
instructions (BD Biosciences, San Jose, CA). Stellate cells
were isolated as described above, plated on 35-mm dishes
at approximately 85% confluency and at the specified stage
of culture were routinely infected as described previously.23

Infection efficiency was monitored by the expression of GFP
and typically reached 80% to 90% within 48 hours.

Lentivirus

Lentivirus vectors were kindly provided by Dr. Zhao
Wang (UT Southwestern Medical Center, Dallas, TX).

d transgenic mice. A: Stellate cells were isolated from wild type (WT),
n 20% serum-containing medium for up to 2 days. Representative images are
cient an
grown i
en �1(I) (D) were measured after 7 days in culture (n � 4). *P � 0.05 versus
data were quantitated (means � SE; n � 4). *P � 0.05 versus WT.
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Stellate cells were isolated as above, plated on 35-mm
dishes at approximately 85% confluency, and at the spec-
ified stage of culture, were routinely infected with lentivirus
at a multiplicity of infection (MOI) of 100 or 350.

RT-PCR

Total RNA was extracted using TRIZOL reagent ac-
cording to the manufacturer’s instructions (Invitrogen,
Carlsbad, CA). The reverse-transcription reaction was
performed by using 1 �g of RNA that was reverse tran-
scribed using oligo(dt) primers and SuperScript (Invitro-
gen) reverse transcriptase. Amplification reactions were
performed using SYBR Green PCR master mix (Applied
Biosystems, Foster City, CA). Five microliters of diluted
cDNA samples (1:5 dilution) were used for quantitative
two-step PCR (a 10-minute step at 95°C followed by 50
cycles of 15 seconds of 95°C and 1 second at 65°C) in
the presence of 400 nmol/L specific forward and reverse
primers and SYBR Green PCR master mix. Each sample
was analyzed in triplicate. As negative controls, water was
used as a template for each reaction. Primer sequences
were as follows: type I collagen (COL1�1) forward, 5=-TTC-
CCTGGACCTAAGGGTACT-3= and reverse, 5=-TT-
GAGCTCCAGCTTCGCC-3=; �-SMA forward, 5=-GTGGAT-
CACCAAGCAGGAGT-3= and reverse, 5=-CATAGCAC-
GATGGTCGAT-3=; glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) forward, 5=-ACCCAGAAGACTGTGGA-
TGG-3= and reverse, 5=-CATCGAAGGTGGAAGAGTGG-3=;
CEBP� forward, 5=-AAGAAGTCGGTGGATAAGAACAG-3=

WT         KO                    
A

Figure 2. Liver morphology and inflammation in adiponectin-deficient and tra
g/kg body weight of thioacetamide. At the end of the experimental period, liver s

Table 1. Body Weight and Serum ALT and ALP Levels in Contro

Variable WT KO

Body weight (g) 32.9 � 2.9 30.4 � 1.5
Serum ALT (IU/L) 45 � 8 54 � 8*
Serum ALP (IU/L) 34 � 7 37 � 5

Data are reported as means � SE . n � 5 to 7 per group.
ALT, alanine transaminase; ALP, alkaline phosphatase; KO, adiponectin k
*P � 0.05 versus WT or Tg; †P � 0.05 versus untreated animals; ‡P �
of liver sections stained with H&E. Areas in insets are shown in higher magnification in
and relative abundance of F4/80 mRNA levels was measured by RT-PCR (means � SE;
and reverse, 5=-GTTGCGCTGTTTGGCTTTATCTC-3=; PPAR�
forward, 5=-CCTGAAGCTCCAAGAATACCAAA-3= and re-
verse, 5=-AGAGTTTTTCAGAATAATAAGG-3=; and SREBP1c
forward, 5=-AGCTGTCGGGGTAGCGTCTG-3= and reverse,
5=-GAGAGTTGGCACCTGGGCTG-3=.

Immunoblotting

Cell lysates were prepared in buffer containing 1% Triton
X-100, 150 mmol/L NaCl, 20 mmol/L Tris pH 7.5, 1
mmol/L EDTA, 50 mmol/L NaF, 50 mmol/L sodium-2-
glycerophosphate, 0.05 mmol/L Na3VO4, 10 �g leupep-
tin, 10% glycerol, and 100 mmol/L phenylmethylsulfonyl
fluoride. Samples containing 50 g of total protein were
subjected to SDS-PAGE, after which proteins were trans-
ferred to nitrocellulose membranes (Schleicher & Schuell
Bioscience, Keene, NH). Membranes were incubated for
1 hour at room temperature in blocking buffer (10 mmol/L
sodium phosphate, 0.5 mol/L NaCl, 0.05% Tween 20, and
2.5% dried milk) and then with primary antibody (1:1000)
overnight at 4°C. Next, membranes were washed of ex-
cess primary antibody at room temperature in a phos-
phate-buffered saline Tween buffer (TBST: 10 mol/L
0.05% Tris pH 8, 0.9% sodium chloride, and Tween 20
0.05%) and then incubated for 1 hour at room tempera-
ture with secondary antibody. After the washing, specific
signals were visualized using enhanced chemilumines-
cence detection according to the manufacturer’s instruc-
tions (Thermo Fisher Scientific, Rockford. IL). Specific
bands were scanned and data were collected over a

F4
/8

0 
m

R
N

A

0
    2
   4

    6

     

     14

 (r
el

at
iv

e 
ab

un
da

nc
e)

    8
    10
    12

B

**

*

WT

KO

Tg

mice. Liver fibrosis was induced with repetitive intraperitoneal injection of 0.2
were collected for histological and biochemical assays. A: Representative images

AA-Injected Mice

g WT�TAA KO�TAA Tg�TAA

� 3.2 32.7 � 2.3 29.8 � 1.7 32.5 � 1.5
� 9 62 � 12† 77 � 14†‡ 58 � 9†

� 7 37 � 6 45 � 7 36 � 8

t mice; TAA, thioacetamide; Tg, adiponectin transgenic mice; WT, wild type.
versus WT�TAA or Tg�TAA mice.
    Tg

nsgenic
amples
l and T

T

32.7
43
32
the bottom row. Scale bars � 50 �m. B: mRNA was isolated from liver tissue,
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narrow range of X-ray film (Eastman Kodak Co., Roches-
ter, NY) linearity and then were quantitated by scanning
densitometry.

Morphometry

Livers were fixed in 10% phosphate-buffered formalin for
48 hours at 4°C, washed twice with water, stored in 70%
ethanol at 4°C for 24 hours, and then embedded in par-
affin. Sections 5-�m thick were then dehydrated and
stained with 0.1% Sirius Red F3B in saturated picric acid
and counterstained with Fast Green FCF (all from Sigma-
Aldrich, St. Louis, MO). The proportion of tissue stained
with picrosirus red was assessed by morphometric anal-
ysis using MetaView software (Universal Imaging, Down-
ingtown, PA) as described previously.22

Statistical Analysis

Data are reported as means � SE. Significance was
established using the Student’s t-test and analysis of
variance when appropriate. Differences were considered
significant at P � 0.05.

Results

Stellate Cells from Adiponectin-Deficient Mice
Exhibit an Accelerated Activation Phenotype

We initially characterized stellate cells from adiponectin-
deficient and adiponectin-overexpressing mice. At early
time points in culture, hepatic stellate cells from wild-type
mice exhibited typical characteristics of quiescent cells,
including abundant perinuclear retinoid, and a relatively
rounded appearance (Figure 1A). Cells from adiponec-
tin-deficient mice tended to spread more rapidly and had
comparatively reduced amounts of retinoid droplets, con-
sistent with the morphological appearance of activated
stellate cells, whereas those from adiponectin-overex-
pressing mice retained features of quiescence. The dif-
ferences were readily visible at 12, 24, and 48 hours
(Figure 1A). At day 3 in culture, we quantified expression
of activation and fibrosis markers in wild-type and adi-
ponectin-null stellate cells (Figure 1, B–D) and found that
both mRNA and protein levels of these indicators were
significantly higher in stellate cells from adiponectin-null
animals, compared with controls. These results suggest
that lack of adiponectin accelerates the activation pro-

Table 2. Liver Histological Findings

Variable WT�TAA KO�TAA Tg�TAA

Periportal–bridge
necrosis

0.3 � 0.2 0.4 � 0.2 0.2 � 0.1

Intralobular degeneration
and focal necrosis

2 � 0.3 3 � 0.5 1 � 0.2

Portal inflammation 0.2 � 0.1 0.3 � 0.2 0.1 � 0.1

n � 5 to 7 per group.

KO, adiponectin knockout mice; TAA, thioacetamide; Tg, adiponectin

transgenic mice; WT, wild type.
cess and could explain the susceptibility of adiponectin-
null mice to hepatic fibrosis.

Mice Lacking Adiponectin Have Low-Grade
Fibrosis and Are More Susceptible to
TAA-Induced Fibrogenesis

Next, we induced liver fibrosis in mice with TAA. Adi-
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Figure 3. Mice lacking adiponectin are susceptible to fibrosis and mice over-
expressing adiponectin are resistant to fibrosis. Liver fibrosis was induced by
repetitive intraperitoneal injection of 0.2 g/kg body weight of thioacetamide
(TAA). At the end of the experimental period, liver samples were collected for
histological and biochemical examinations. A: Liver sections were stained
with picrosirius red. Scale bar � 50 �m. B: Histomorphometric analysis was
performed on random picrosirius red-stained liver sections (means � SE; n �
10 fields/liver and 10 livers/group). *P � 0.05 versus WT alone; **P � 0.05
versus TAA alone. C and D: Livers were harvested, total RNA was extracted,
and real-time PCR was performed to detect mRNA expression of �-SMA (C)
and collagen �1(I) (D) (means � SE; n � 6). *P � 0.05 versus WT control;
**P � 0.05 versus WT and TAA.
ponectin-deficient animals weighed less than either wild-
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type or adiponectin-overexpressing mice, although the
differences were not statistically significant (Table 1). Af-
ter TAA administration, all mice lost weight, and the loss
in weight was greatest in adiponectin-deficient mice. The
exposure to TAA led to injury and inflammation, as ex-
pected. There were increases in alanine transaminase
levels in each of the groups of mice; relative increases in
alanine transaminase were similar among all groups (Ta-
ble 1). After 8 weeks of exposure to TAA, liver sections
stained with H&E revealed hepatocellular necrosis, which
was focused predominantly in pericentral and intralobu-
lar areas and was associated with a mixed inflammatory
infiltrate (Figure 2 and Table 2). When inflammatory
changes were quantitated using the Knodell scoring sys-
tem,24 there was slightly more necrosis in the knockout
mice and slightly less necrosis in the transgenic mice,
compared with wild-type mice. These data suggest that
there was no biochemical evidence of differential injury to
hepatocytes caused by TAA among the different groups,
but that there were small differences in the degree of
inflammation among the groups.

Notably, adiponectin-deficient mice exhibited greater
fibrosis at baseline than did controls (Figure 3, A and B).
Additionally, after exposure to TAA, adiponectin-deficient
mice exhibited greater fibrosis than did matched controls
(Figure 3, A and B). We further measured collagen �1(I)
and �-SMA mRNA levels in these animals, and found that
each was significantly up-regulated, compared with con-

Figure 4. PPAR expression in adiponectin-deficient and transgenic mice.
Liver fibrosis was induced by repetitive intraperitoneal injection of 0.2 g/kg
body weight of thioacetamide (TAA). Livers were harvested, total RNA was
extracted, and real-time PCR was performed to detect mRNA expression of

PPAR� (A) or PPAR� (B) (means � SE; n � 6). *P � 0.05 versus WT; **P �
0.05 versus WT and TAA.
trols (Figure 3, C and D). We also explored a gain-of-
function model in which adiponectin overexpression is
driven by the aP2 promoter.19 After TAA-induced injury,
collagen production in adiponectin-overexpressing mice
was reduced, compared with controls (Figure 3, C and
D). Additionally, expression of collagen �1(I) and �-SMA
mRNA was significantly lower in adiponectin-overexpress-
ing animals (Figure 3, C and D). Finally, we evaluated
PPAR expression in the in vivo injury models (Figure 4).
PPAR� was down-regulated in adiponectin-deficient and
up-regulated in adiponectin-overexpressing mice. TAA
appeared to blunt expression of PPAR�, which remained
reduced in knockout mice and increased in overexpress-
ing mice. The changes in PPAR� mRNA expression were
similar in their trends (Figure 4B).

Adiponectin Overexpression Decreases Stellate
Cell Activation and Stimulates an Adipokine
Phenotype in Culture

Given that earlier studies showed that activation of stel-
late cells in culture is associated with a decline in expres-
sion of adiponectin,25 we asked whether activation could
be reversed by re-expression of adiponectin in cultured
cells. First, we demonstrated that infection of stellate cells
with a lentivirus containing an adiponectin construct led
to increased production of adiponectin (Figure 5A); ad-
ditionally, a time-course experiment revealed that expres-
sion of adiponectin increased from 12 to 48 hours after

Figure 5. Quantification of adiponectin protein expression in hepatic stel-
late cells. Stellate cells from WT mice on FVB background were isolated,
cultured for up to 48 hours, and then infected with a lentivirus expressing
GFP, or adiponectin at 50 and 100 MOI. Cell lysates were harvested at 48
hours (A) or at 12, 24, and 48 hours (B) and were subjected to immunoblotting.
A representative immunoblot is shown (A). Subsequently, specific bands from
repeated experiments were quantified and normalized to the signal for �-actin
(A and B) (means � SE; n � 3). *P � 0.05 versus control GFP.
infection (Figure 5B). Next, we found that exposure of
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stellate cells to this virus led to a reduction in �-SMA and
collagen �1(I) mRNA, compared with control (Figure 6, A
and B), consistent with retaining a more quiescent phe-
notype relative to controls.

Activation of hepatic stellate cells is associated with
enhanced expression of the nuclear receptor PPAR�/�,
recognized for its role in energy homeostasis, particularly
lipid oxidation,26 and with reduced expression of PPAR�,
known for its role in regulation of adipocyte differentia-
tion.6,27 We next examined whether adiponectin overex-
pression modulated the expression of specific members
of the adipogenic program in stellate cells. PPAR�,
SREBP1c, and CEBP� were all up-regulated after over-
expression of adiponectin in stellate cells (Figure 6, C–E).

PPAR� Ligands Are Ineffective in Reversing
Stellate Cell Activation in the Absence of
Adiponectin

Given that stellate cell activation is associated with sig-
nificant decline in PPAR� and that forced expression of
PPAR� leads to reversal of stellate cell activation,27,28 we
asked whether the effect of PPAR� is dependent on adi-
ponectin. Primary stellate cells from adiponectin-deficient
animals and controls were exposed to the PPAR� ligand
troglitazone (5 �g/mL) for 5 days. Troglitazone strongly
suppressed the up-regulation of �-SMA and collagen
�1(I) mRNA levels in stellate cells isolated from wild-type
mice (Figure 7, A and B); however, stellate cells from
adiponectin-null animals did not respond to troglitazone.

Additionally, CEBP�, SREBP1c, and PPAR� mRNAs were
each reduced in stellate cells from adiponectin knockout
animals, and their response to troglitazone was blunted
(Figure 7, C–E). These results suggest that abrogation of
stellate cell fibrogenesis and activation, as well as tran-
scriptional activation of adipogenic partners mediated by
PPAR� ligands, may be adiponectin dependent.

Antifibrotic Actions of Adiponectin Are Not
Dependent on PPAR�

PPAR� ligands are known to prevent stellate cell activa-
tion27 (Figure 7, A and B). Furthermore, our data suggest
that the effect of PPAR� ligands on stellate cells is adi-
ponectin dependent. We therefore asked whether the
effect of adiponectin on stellate cells might be PPAR�
ligand dependent. To this end, we developed a system in
which PPAR� could be conditionally deleted, using
PPAR� Cre/Lox conditional knockout mice and a Cre-
expressing adenovirus. We isolated primary stellate cells
from these knockout mice, and on day 2 we transduced
these cells with a Cre-expressing adenovirus (to knock
down PPAR�) and/or the lentivirus encoding adiponectin
(to overexpress adiponectin). We initially demonstrated
that, using this system, PPAR� expression could be sig-
nificantly, although not altogether, reduced (Figure 8).
Deletion of PPAR� significantly enhanced the stellate cell
activation and fibrogenesis, as evidenced by the in-
creased expression of the respective activation markers,
�-SMA and collagen �1(I) (Figure 9, A and B). This find-
ing was consistent with the finding that troglitazone inhib-

Figure 6. Effects of adiponectin overexpression on
stellate cell activation. Stellate cells from normal rats
were isolated, plated at equivalent density, and al-
lowed to undergo culture-induced activation for 3
days. Cells were transduced with a control lentivirus
expressing GFP or lentivirus overexpressing adi-
ponectin at 50 and 100 MOI (n � 3/group). Total
RNA was harvested 72 hours later and was subjected
to RT-PCR to detect mRNA expression of �-SMA (A),
collagen �1(I) (B), PPAR� (C), SREBP1c (D), and
CEBP� (E) (means � SE; n � 3). White bars indi-
cate control GFP; gray bars indicate adiponectin
(50 MOI); black bars indicate adiponectin (100
MOI). *P � 0.05 versus control GFP.
ited expression of �-SMA and collagen �1(I) in activated
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stellate cells (Figure 7, A and B). Notably, adiponectin
overexpression in PPAR�-null cells suppressed the ex-
pression of �-SMA and collagen �1(I) even in the ab-
sence of PPAR� (Figure 9, A and B). Furthermore, CEBP�
and SREBP1c mRNAs were each reduced in PPAR�-null
stellate cells, but these mRNAs were stimulated after
exposure to adiponectin (Figure 9, C and D).

Figure 8. Deletion of PPAR� with a Cre-expressing adenovirus. Stellate cells
were isolated from WT and PPAR� Cre/Lox mice and grown in culture. After
48 hours, cells were infected with adenovirus expressing Cre and/or lentivi-
rus encoding adiponectin or corresponding control for 4 days. Total cellular
RNA was isolated and mRNA expression of PPAR� was quantified by RT-PCR
(means � SE; n � 3). *P � 0.05 versus WT cells exposed to adenovirus

expressing GFP alone; **P � 0.05 versus Lox/Lox cells exposed to adenovirus
expressing GFP alone.
Discussion

This work further highlights the importance of adiponectin
in hepatic fibrosis. In the genetic models used, we dem-
onstrated that adiponectin-overexpressing animals were
significantly less susceptible to chemically induced fibro-
sis. Conversely, adiponectin-deficient animals were more
sensitive to fibrosis than were littermate controls. Perhaps
the most important advance emerging from this work is
the idea that the antifibrotic effect of adiponectin may be
based on the ability to prevent stellate cell activation.
Indeed, it appeared that stellate cells isolated from adi-
ponectin knockout mice were significantly more acti-
vated, compared with control. On the other hand, in-
creasing the expression of adiponectin in primary stellate
cells prevented and/or reversed the myofibroblastic
transformation of stellate cells in culture. A highly novel
finding was that the inhibitory effect of adiponectin on
stellate cell activation was not dependent on PPAR�.
However, the PPAR� ligand troglitazone was unable to
halt stellate cell activation in primary stellate cells genet-
ically lacking adiponectin, suggesting that PPAR� ago-
nist-mediated antifibrotic actions may be dependent on
adiponectin.

A noteworthy and important finding in this study was
that the PPAR� agonist troglitazone did not maintain stel-
late cell quiescence in the absence of adiponectin. Ad-
ditionally, adiponectin promoted stellate cell quiescence
independent of PPAR�. Consistent with these data is the
finding that PPAR� ligands are less effective in improving
the metabolic syndrome in adiponectin-null mice.18

Figure 7. Adiponectin is required for PPAR�
ligands to be effective in inhibiting stellate cell
activation. Stellate cells isolated from WT and
adiponectin knockout (ADNKO) mice were
cultured in the presence of serum-containing
medium for 24 hours. Cells were exposed to 5
�g/mL of the PPAR� ligand troglitazone, or an
equivalent volume of dimethyl sulfoxide (ve-
hicle) for 4 days, after which total RNA was
extracted from lysates and mRNA expression
of �-SMA (A), collagen �1(I) (B), CEBP� (C),
SREBP1c (D), and PPAR� (E) was quantified
by real-time PCR (means � SE; n � 3). White
bars indicate WT; black bars indicate
ADNKO. *P � 0.05 versus WT cells exposed to
vehicle alone; **P � 0.05 versus WT cells ex-
posed to troglitazone.
Given the similarities between PPAR� and adiponectin
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effects, we think that adiponectin may have acted in a
PPAR�-dependent manner. We have clearly shown that
adiponectin is a major effector for PPAR� actions, but the
reverse is not true. Further work will be needed to help
elucidate the mechanism underlying the pathways re-
sponsible for these observations.

The mechanism underlying the effects of adiponectin
on stellate cells remains to be determined. Certainly, the
data presented here suggest a direct affect of adiponec-
tin on stellate cells. For example, adiponectin appears to
signal through adenosine monophosphate-activated pro-
tein kinase,29 which in turn may suppress reactive oxy-
gen species and AKT activation. Another possibility is
that the antisteatotic and/or anti-inflammatory activity of
adiponectin could be important in regulation of stellate
cell function. Recent studies in our laboratory suggest
that adiponectin tightly limits systemic availability of free
fatty acids, presumably by enhancing glyceroneogenesis
and re-esterification of free fatty acids in the subcutane-
ous adipose depot.30 Such a lowering effect on plasma
free fatty acids not only protects the liver from steatosis
and subsequent degeneration, but also reduces free fatty
acid-mediated inflammation. Thus, the antifibrotic actions
of adiponectin may be a combination of the direct effects
of adiponectin on stellate cells but may also be a result of
reduction of other systemic stimuli and risk factors that
initiate or mediate liver injury.

One potential mechanism underlying the effect of adi-
ponectin in the liver in vivo could be related to the effects
on mitochondrial integrity and oxidative stress. One study
revealed that genetic loss of adiponectin led to reduced
activity of the respiratory chain, which in turn could set
the stage for oxidative stress and generation of lipid
peroxides, perhaps facilitating liver injury; the authors
further attributed mitochondrial dysfunction to decreased
expression of UCP-2 and increased steatosis.31 In con-
trast, adiponectin overexpression results in significantly
higher cellular levels of mitochondria.30 Another study
suggested an antioxidant role for adiponectin during liver
injury, in addition to its effect on Kupffer cell recruit-
ment.11 We recognize that the detailed mechanism of
action by which adiponectin exerts its potent protective
effects on stellate cells remains to be determined.

Another compound important in metabolism and fibro-
genesis is leptin. Although we did not study leptin in the
current study, abundant evidence indicates that leptin
has an important role in the fibrogenic response. Indeed,
it appears to enhance expression of inflammatory medi-
ators and to contribute to hepatic fibrogenesis.32 Nota-
bly, there appears to be an antagonistic interaction be-
tween leptin and adiponectin; for example, based on our

Figure 9. The antiactivating and antifibrotic actions of adiponectin are in-
dependent of PPAR�. Stellate cells were isolated from WT and PPAR� Cre/
Lox mice and grown in culture. After 48 hours, cells were infected with
Cre-expressing adenovirus and/or lentivirus encoding adiponectin or corre-
sponding control for four days. Total cellular RNA was isolated and mRNA
expression of �-SMA (A), collagen �1(I) (B), CEBP� (C), and SREBP1c (D)
was quantified by RT-PCR (means � SE; n � 3). *P � 0.05 versus WT cells

exposed to adenovirus expressing GFP alone; **P � 0.05 versus Lox/Lox cells
exposed to adenovirus expressing GFP alone.
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data and those of others, adiponectin and leptin play
opposite roles in modulating liver fibrosis.16 Additionally,
loss of leptin increases metabolic risk, manifested as
obesity and diabetes. Studies from our laboratory have
shown that overexpression of adiponectin in a leptin-
deficient mouse model improves the metabolic pheno-
type but at the expense of a twofold increase in body
weight and massive enlargement of the subcutaneous
adipose mass.33 Although it is very likely that adiponectin
inhibits the profibrotic effects of leptin, the mechanisms
underlying this process are not clear.

An intriguing notion that emerges from the finding that
adiponectin is important in the fibrogenic response con-
cerns the putative role of adipose tissue in modulating
susceptibility to liver fibrosis. In one study, fibroblast
growth factor-treated stromal cells derived from adipose
tissue had the potential to reverse fibrotic liver injury.34

Although this is an exciting finding, the biology underly-
ing this phenomenon is not completely understood. One
possible mechanistic link between adipose tissue and
stellate cells is their exclusive ability to store retinoids,
which appear to play a pivotal role in maintaining stellate
cell quiescence and modulation of fibrosis.35 Many stud-
ies, including work in our own laboratory, have shown that
the metabolic syndrome is associated with extensive in-
flammation (and fibrosis) of adipose tissue.36–38 Al-
though stellate cells in the liver and pancreas and in
related cells in other tissues clearly regulate fibrosis in
these organs, the cellular drivers of fibrosis in adipose
tissue are unknown, even though adipocytes may con-
tribute to the phenomenon.39 A particularly intriguing
possibility is that a stellate cell-like cell type may exist in
adipose tissue. A final important question related to adi-
pose tissue and adiponectin is whether healthy adipose
tissue that expresses and releases high levels of adi-
ponectin may have antifibrotic therapeutic potential.
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