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Abstract
Irritable bowel syndrome (IBS) is characterized by chronic, recurrent abdominal pain and altered
bowel habits and is currently defined by symptom criteria and the absence of detectable organic
disease. The underlying pathophysiology remains incompletely understood. Despite considerable
efforts by the scientific community and the pharmaceutical industry to develop novel
pharmacological treatments aimed at chronic visceral pain, the traditional approach to identifying
and evaluating novel drugs for this target have largely failed to translate into effective IBS
treatments. However, several novel drugs aimed at normalizing bowel movements have produced
clinical effects, not only on the primary target, but also on pain and discomfort. While some of the
commonly used experimental animal models for the pain dimension of IBS have some face and
construct validity, the predictive validity of most of the models is either unknown, or has been
disappointing. A reverse translational approach is proposed, which is based on identification and
characterization of brain endophenotypes in patients, followed by translation of these
endophenotypes for pharmacological studies in rodent models.
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Functional gastrointestinal disorders (FGID), including irritable bowel syndrome (IBS), are
complex, polygenic, symptom-based disorders that frequently overlap with other complex
conditions, including persistent generalized pain disorders such as interstitial cystitis/painful
bladder syndrome, fibromyalgia and psychiatric disorders, all sharing a poorly defined
pathophysiology. Even though the pathophysiology of IBS in humans remains incompletely
understood, various animal models have been proposed that claim to model either the entire
disease process or cardinal features of the disorder (e.g., chronic visceral hyperalgesia, stress
hyperresponsiveness, intestinal transit, altered fecal pellet output). For example, various
interventions have been used to produce either acute or chronic visceral hyperalgesia in
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animals, as assessed by the response to an acute pain stimulus. The most commonly used
interventions include acute and chronic visceral inflammation, mucosal irritation and various
types of stressors, including perinatal stress and acute and chronic stress in the adult animal
[1]. More recently, transgenic mouse models have been proposed (such as the serotonin
transporter knockout mouse) that are thought to mimic some aspects of the human syndrome
[2]. There are multiple ways to measure the outcome in a model, including physiologic and
reflex responses (e.g., gastrointestinal [GI] transit time, frequency and consistency of stool,
visceromotor reflex), spontaneous behaviors (licking, posturing and so on), operant
behaviors (learned escape, place aversion, and so on), pain-directed complex behaviors
(anxiety, attention, social avoidance, and so on), or brain responses (functional brain
imaging). These various animal models have helped to identify an increasing number of
possible molecular targets on visceral afferent neurons, epithelial cells, immune cells,
enterochromaffin cells, enteric neurons and central stress circuits [3], which have been used
to develop highly selective candidate compounds. If shown to be effective and safe in the
animal models, these compounds are then tested in Phase I studies for their
pharmacokinetics and safety, and in Phase IIa clinical trials for their ability to normalize
visceral hypersensitivity or altered colonic function. Eventually, the assessment of
symptoms and their improvement with therapeutic interventions in Phase III in patients
depends on subjective patient reports, requiring a large number of patients in different
participating centers. Even though this approach to drug development for FGIDs appears to
be rational at first glance, it is expensive and has generally produced disappointing results.
Similar frustrations have been experienced in drug development for other symptom-based
disorders, such as chronic pain and many psychiatric conditions [4–6].

In this article, we will first critically review evidence related to the correlation between
readouts for intestinal transit and visceral pain obtained in preclinical and clinical models,
and the limited predictive validity of existing models for IBS drug effectiveness. We will
then focus on experimental models for visceral pain, propose a reverse translational strategy
and address the potential benefit of new rodent models using functional brain imaging.

Transit time as a readout in experimental human & animal models
The measurement of gut transit is a clinically relevant readout to assess GI function
primarily related to motility and secretion [7,8]. Although the identification of IBS
subgroups (IBS diarrhea predominant or constipation predominant) is not based on gut
transit measurements, there is some correlation between transit times and predominant
bowel habit [9,10]. However, similar to visceral sensitivity testing assessed by barostat,
transit time does not appear to be a strong predictor of overall IBS symptom severity [11].
Similarly, symptoms associated with stool frequency or ease of stool passage have been
shown to be poor predictors of IBS symptoms or health-related quality of life (HRQoL)
measures [11]. Thus, gut transit is a good surrogate marker for stool form and, therefore,
may be a useful tool to evaluate drugs that affect primarily bowel habit in IBS (in particular
in the subset of patients with demonstrated abnormalities in GI transit), but is not a
satisfactory surrogate marker for overall IBS severity, abdominal pain and HRQoL.

Changes in GI transit or fecal pellet output in rodent models are often observed in response
to stressors, and many drug effects (e.g., corticotropin-releasing factor 1 [CRF1] receptor
antagonist, neurokinin 1 [NK1] receptor antagonist) have been evaluated on stress-induced
acceleration of transit or increased fecal pellet output [12]. By contrast, in the majority of
human transit studies, compounds have been evaluated in healthy control subjects, or in IBS
patients in the absence of any acute stressor. This is important, as drugs aimed at stress-
induced changes of GI function have consistently failed to show effects on baseline
measures in the rodent models [12].
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In summary, while there is a poor correlation between transit and symptoms, preclinical
models have been relatively successful at translating objective GI transit measurements
between animals and humans [8]. It is important to emphasize that despite the limited
correlation between symptoms and GI transit in humans, several recently developed drugs
aimed at accelerating intestinal transit and/or at normalizing bowel movements (including
tegaserod, lubiprostone and linaclotide) have shown beneficial effects on abdominal pain/
discomfort in Phase III clinical trials. Based on these findings, one may speculate that at
least part of the pain/discomfort reported by IBS patients is not related to a primary visceral
hypersensitivity, but may be secondary to discomfort and symptom-related anxiety
associated with unsatisfactory bowel movements.

Visceral sensitivity in experimental human models
Perceptual responses to mechanical (and to a much lesser degree electrical or chemical)
stimulation are common measures of visceral sensitivity in clinical studies, and mechanical
rectosigmoid hypersensitivity has been referred to as a ‘biological’ marker of IBS [13],
showing relative specificity to the IBS patient population. Results from a large number of
studies comparing groups of IBS patients with healthy controls indicate that graded barostat-
mediated distension is a reliable and valid approach for testing perception of visceral
sensation and changes in perception to an acute aversive stimulus. However, to be useful as
a biomarker or surrogate marker for IBS, abnormal visceral testing results (‘visceral
hypersensitivity’) should be observed in all patients, should be syndrome specific and should
be helpful in discriminating medications that do or do not have a positive impact on either
specific or global IBS symptoms. Regrettably, there is no evidence for a strong correlation
between this acutely evoked response and the presence and severity of spontaneous
abdominal pain or global IBS symptoms. In fact, some drugs that produce a positive change
on visceral sensitivity testing in human barostat studies fail to show beneficial effects on
spontaneous IBS symptoms and vice versa (Table 1) [14–38]. For example, while the κ-
opioid antagonist fedotozine or the synthetic somatostatin analogue octreotide have shown
significant beneficial effects in human barostat studies, the positive impact of this class of
compounds on IBS symptoms could not be verified in Phase II clinical trials. On the other
hand, other compounds targeting the serotonergic system showed no clear effect on the
perception of visceral stimuli in clinical experimental studies, but were found to have
positive effects on global IBS symptoms.

In summary, these findings illustrate that while acute visceral perception testing procedures
have been used in a wide range of preclinical and clinical studies to evaluate the potential
benefits of candidate drugs as visceral analgesics/antihyperalgesics, and as potential
medication for treating IBS symptoms, the weak predictability in discriminating compounds
that may have a positive impact on either specific or global IBS symptoms suggests that
these human tests may not be suitable as cost-effective drug development strategies for IBS.

Visceral sensitivity in animal models
Reflexive or behavioral nociceptive responses to acute colo-rectal distension (CRD) have
become the standard readout for the assessment of visceral sensitivity in rodents, and the
visceromotor response to distension is the most commonly used index of visceral pain
response in rats [39]. The popularity of this measure is related to the fact that it has been
assumed to be homologous to the subjective response to colorectal distension in humans, to
the relative ease to perform and automate it, and the reproducibility across laboratories.
However, based on the lack of a consistent clinical viscero-analgesic effect of a series of
compounds that initially showed robust analgesic and anti-hyperalgesic effects in
experimental animal models, predictive validity of these animal models has proven to be
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disappointing (Table 2) [14–16,18,19,33,36,40–80,201]. For example, fedotozine, which
showed robust visceroanalgesic and antihyperalgesic effects in several animal models, failed
to show positive effect on visceral sensitivity testing in humans. Similarly, alosetron (a
5HT3 receptor antagonist) and tegaserod (a 5HT4 receptor agonist and 5HT2b antagonist)
exhibited visceral antihyperalgesic effects in preclinical testing using the model of CRD in
sensitized animals, but produced no change in visceral sensitivity in human visceral pain
testings. Pregabalin, an anticonvulsant and an α(2)δ ligand used in the treatment of seizures
and pain syndromes, showed equivocal results on visceral sensitivity in rodent models
[81,82], but was shown to normalize the increased perception threshold to rectal distension
in IBS patients with rectal hypersensitivity [32].

However, it is important to emphasize that some of the compounds that showed positive
effects on visceral hypersensitivity in rodents but failed to show visceral analgesic effects in
human testing did produce positive results on IBS symptoms, presumably via mechanisms
other than visceral analgesia. This demonstrates the limitations of the conventional approach
of trying to translate between rodent and human pain studies.

The role of endophenotypes in bench-to-bedside translation
While the face validity (i.e., how well does a model mimic clinical features of IBS patients)
of some rodent models of visceral pain has been good, the predictive validity (i.e., how well
do drug studies performed in the model predict effectiveness in humans) has been
disappointing. For example, adult rats having been exposed to the maternal-separation
paradigm as pups show evidence for stress-induced fecal pellet output, stress-induced
visceral hyperalgesia and anxiety-like behavior, all findings homologous to those reported in
IBS patients [83]. However, several drugs that showed effectiveness in this model (e.g.,
antagonists for the CRF1 or NK1 receptors) have failed to show effectiveness in human
models or in clinical trials. The problem of bench-to-bedside translation, however, does not
simply originate in a failure of the animal models. Improved definition and classification of
clinical states based on biological abnormalities are needed. Such improvement is dependent
on the identification of robust endophenotypes in humans with adequate effect sizes for
cardinal symptoms or global end points, which can be modeled in a transverse translational
approach in rodents.

We propose a novel reverse translational approach, which begins with the identification and
in-depth characterization of neurobiological endophenotypes in IBS patients or subsets of
such patients. This approach does not aim to identify a rodent model of a complex, unique
human disorder, but aims to use the rodent model to pharmacologically characterize the
homologue of an endophenotype that has previously been characterized in patients. In
contrast to biomarkers, which are thought to be specific for a particular disorder,
endophenotypes are dimensional constructs that play a role across categorical disease
definitions [84,85]. For example, in the case of IBS, the endophenotype of enhanced
responsiveness of a stress and emotional arousal circuit is likely to be found in anxiety
disorders, and in other stress-sensitive disorders. Similarly, the endophenotype of ineffective
cerebral cortico-limbic inhibition is likely to be found in many, often overlapping disorders
characterized by physical or emotional discomfort. It has been suggested that clusters of
endophenotypes may be more similar among subsets of patients with different disorders,
rather than being seen in all patients of a given disorder [86]. Rodent models of such
endophenotypes are important to identify potential molecular targets, dose ranging and
possible side-effect profiles of candidate compounds. As implied by the endophenotype
concept, successful drug development based on this approach would be expected to be
useful for subsets of patients with different syndromes, but not necessarily for all patients of
a given syndrome.
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Given the high incidence of mood and anxiety symptoms in IBS patients, as well as the
growing acceptance of the importance of central pain amplification in the pathophysiology
of IBS [87,88], the development of rodent homologues of such brain endophenotypes should
be important. However, the question remains, what level of inquiry of the involved brain
endophenotypes in humans is most promising for the preclinical assessment of candidate
IBS drugs? A behavioral change, while capturing a broad spectrum of dysfunction, may lack
specificity, while a neuromolecular change may not generalize across a disease that is likely
multifactorial in origin and that is characterized by subtypes with overlapping symptoms.
Pseudoaffective responses (e.g., electromyography, pain behavior) themselves do not allow
for the elucidation of the underlying systems-level processes by which molecular, cellular
and genetic profiles bias behavior and nociception. Neuroimaging can complement such
association studies by identifying the biological effects of a compound at the brain
endophenotype level, such as the level of integrated neural systems and circuits.

The utility of neuroimaging in CNS drug development
Our understanding of the functional and structural reorganization of the brain in response to
chronic pain, and how the brain responds to pharmacological treatment, has been
significantly changed as a result of developments in neuroimaging of the CNS. The key
findings of these studies can be summarized as follows:

• In several chronic pain conditions, regional changes in gray matter density have
been demonstrated with anatomical imaging. Even though the underlying
neuroanatomical changes remain to be determined, these findings have great
potential to function as endophenotypes for persistent pain conditions, or even as
biomarkers for individual syndromes;

• Alterations in brain state and response of the brain circuits to drugs have been
demonstrated with PET and functional MRI (fMRI);

• Changes in neurotransmitter levels (glutamate, aspartate, glycine and γ-amino
butyric acid [GABA]) have been shown with magnetic resonance spectroscopy
(MRS) [89].

Borsook et al. [89] have insightfully described how the use of fMRI, in particular, may help
speed drug development for CNS indications at a number of levels that include:

• Evaluation of differential efficacy of drugs within and across pharmacological
subtypes;

• Identification of potential for CNS side effects;

• Opportunities to define drug dosing and benefits of drug combinations;

• Potential for surrogate models using healthy subjects for drug evaluation;

• Setting up a potential method for re-evaluating failed drug candidates;

• An objective method to select and stratify patient populations to enable pro of-of-
concept clinical investigations [90].

The potential applications of neuroimaging provide many opportunities for bidirectional
translation between humans and rodents, which may help speed drug development for
chronic visceral pain states, including IBS. An underlying assumption in this proposition is
that pharmacologic subtypes and/or side effect profiles show specific brain mapping
‘signatures’ that are similar in humans and animals.

One of the potential strengths of integrating neuroimaging during the drug development
process is its potential to translate findings of alterations in neural circuits across species,
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enabling a more focused use of animal models in research. Neuroimaging may also serve as
a useful proxy measure of pain responses that, in the animal, cannot be elicited verbally.
While pain imaging of the CNS has been extensively explored in human subjects,
neuroimaging technologies applied to rodents to study endophenotypes of persistent pain in
animals is still in its infancy. A significant gap remains in ‘bedside-to-bench’ translation of
well-studied brain-mapping abnormalities in IBS patients (reviewed in [91]).

The choice of imaging modalities in animal models
While structural imaging has the potential to greatly increase our understanding of the
functional neuroanatomy of chronic pain conditions, the current lack of understanding of the
mechanisms underlying such structural changes, and the temporal characteristics of these
changes, makes it currently impractical to use such end points for drug development in
rodents. In this regard, functional brain mapping and chemical imaging may represent more
suitable approaches. Ideally, such imaging in animals would be performed under conditions
that approximate those used in human subjects – that is, nonsedated animals with minimal
interference with the subject’s natural behavior. At the same time, the ideal imaging
modality would optimize spatial and temporal resolution, allow for serial measurements
across time, while providing 3D views of brain function. No method simultaneously meets
all these criteria.

Past research on brain responses to noxious visceral stimulation in animals has relied
predominantly on the measurement of early response genes, in particular c-Fos expression
[92–95], with a broad variability reported between laboratories [92,96,97]. Unlike human
imaging studies evaluating brain responses during acute CRD, c-Fos studies typically use
prolonged exposure (>30 min) to high-intensity visceral stimuli, which may lead to the
integration of a variety of nonspecific behaviors over the duration of pain exposure,
including acute sensitization of the visceral afferent system. Furthermore, analysis is often
limited to a few selected brain regions, lacking the whole-brain level analysis achieved in
human studies. Thus, it is not surprising that translation of findings between human and
animal brain mapping has been diffcult. It is noteworthy that studies examining increases in
c-Fos expression in response to CRD in the lumbosacral region of the spinal cord have
reported more consistent results within animals [92,98–100], but parallels to human imaging
have not been explored extensively. Other region-specific analyses of neuronal responses to
CRD have been carried out using in vivo electrophysiological recording [101,102], and such
brain electrical recordings may prove useful once specific brain regions of vulnerability
have been determined. Spatial resolution, with microPET and advanced image
reconstruction software, remains at best approximately 1.2 mm at the center of the field of
view. This represents approximately 7% and 13% of the width of the rat and mouse brain,
respectively, and is poorly suited for the detection for all but the broadest changes in
regional cerebral blood flow (rCBF) or metabolism in rodent models. In specific instances,
however, such broad changes may suffice for the testing of specific compounds, as has been
demonstrated for opiates [103]. Functional MRI and single photon emission computed
tomography (SPECT, nanoSPECT), though they provide whole brain analysis and adequate
temporal and/or spatial resolution, require sedation of the animal, limiting the types of brain
responses that can be examined [97]. We have advocated in the past the use of
autoradiographic methods of perfusion mapping, as this method can be applied in awake,
nonrestrained animals and yield information at the circuit level across the entire brain, with a
spatial resolution (~100 µm) appropriate for the rat or mouse models, and a temporal
resolution (seconds–minutes) sufficient for capturing acute brain changes. Nevertheless,
autoradiographic methods, although they provide 3D spatial information, contain no
information about dynamic cerebral changes. Therefore, studies of disease progression or
response to treatment using intra-animal comparisons cannot be performed. In addition,
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because of the need for extensive cryosectioning of the brain, the method lends itself less
well to high-throughput screening than perhaps MRI, nanoSPECT or microPET.

Homology between the rodent & human brain
Despite their differences, remarkable similarities exist between normal rats and humans at
the level of brain anatomy, neurotrans-mitters and their respective receptors, and nociceptive
processing. Our own work examining functional activation during acute noxious visceral
stimuli in rats and humans has shown that many of the sensory, limbic and paralimbic brain
regions that show significant changes in the rodent are analogous to those reported in normal
human subjects [104,105]. Nevertheless, differences in neuroanatomy have been reported.
Rats and mice appear to lack the lamina I spinothalamocortical pathway to the dorsal
posterior insula by way of the posterior part of the ventromedial nucleus, as well as a
pathway from lamina I to medial dorsal thalamus to the anterior cingulate cortex [106]. In
addition, pain is a multifaceted problem, with pain perception engaging not only sensory and
motor processes, but also emotional and cognitive ones. To what extent the emotional and
cognitive components of human pain perception can be modeled in the animal remains open
to debate. That emotional and cognitive input can modulate pain perception in the rat has
been suggested by the accentuation of pain responses by acute and chronic stress [107,108].
Furthermore, work in the rat has shown that the opioid system of the anterior cingulate, a
region thought to be involved in the affective–motivational dimension of pain, may
selectively process the aversive quality of noxious mechanical stimulation, with little effect
on the physical paw withdrawal [109]. Though indeed ‘rats are not monkeys are not
humans’ [106], the use of select functional neuroimaging end points in animals may provide
an improved means for the bidirectional translation of endophenotypes relevant to persistent
pain between animal models and human disease conditions. Reverse translation of some of
these endophenotypes into rodents may provide an important tool for evaluating
pharmacological effects of candidate compounds, which cannot be performed in humans.

Brain imaging of noxious visceral stimulation in normal human subjects & animals
In human subjects, increases in rCBF to noxious somatosensory stimuli are consistently
observed in the insula, in secondary somatosensory cortex (S2), in the anterior cingulate
cortex (ACC), and with slightly less consistency in the contralateral thalamus and in primary
somatic areas (S1) [110]. Studies of noxious visceral stimulation in normal human subjects
(typically acute CRD) have also identified the insular cortex as the single most consistently
activated brain region, with the posterior insula being a primary projection area for visceral
afferent information, while mid- and anterior insula subregions are considered higher
association areas for these bodily signals, where they are integrated with affective and
cognitive inputs. A majority of studies have also reported activation in response to CRD of
the dorsal ACC, S1/S2, prefrontal cortical regions and, to a lesser extent, posterior parietal
cortex and thalamus (reviewed in [91]).

Functional brain mapping in normal rats during acute CRD has also clearly identified the
insula as a region that is activated [105]. Using perfusion mapping of the brain, we found
greater activation in the anterior insula in male than in female rats, similar to what had
previously been reported in healthy human subjects [111], as well as in IBS patients
[112,113]. Significant differences in response to CRD were also noted in the cingulate and
somatosensory cortex and thalamus, although sex differences remain. Of note, in the insula
and dorsal ACC of the animals, changes in rCBF showed a positive correlation with both
electromyographic (EMG) and behavioral pain scores [114]. The clusters showing
significant correlations with either EMG or pain score were noticeably smaller than those
showing group differences in rCBF within a given region. Furthermore, not all brain regions
that showed group differences correlated with EMG or pain score. This suggests that EMG
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and behavioral measures are likely to reflect only part of the animal’s response to the
noxious visceral stimulus.

Activation of the insula was also noted during re-exposure to an environmental context
previously paired with acute, noxious visceral stimulation [115]. In this study, the insula was
activated in rats during avoidance of stepping down from a platform, a behavior that
previously had been conditioned over 2 days (18 trials/day) to acute CRD. This suggests the
importance of fear-conditioned responses in cerebral nociceptive circuits that persist
independently of actual visceral stimulation. Similar insular activation relative to controls
has also been reported in IBS subjects during anticipatory fear of CRD [116].

Relevant known alterations of brain circuits in IBS subjects that need to be examined in
animal models of FGIDs include:

• A hyperresponsiveness of the homeostatic afferent network to distension;

• A hyperresponsiveness of the emotional arousal network during expectation;

• Compromised engagement of cortico–limbic–pontine systems during delivery of
aversive visceral stimuli [91].

With regards to the emotional arousal network (locus coeruleus complex, amygdala,
infralimbic [‘infragenual’] and ventral cingulate cortex [‘supragenual’]), we have found a
hyperresponsiveness of this network during acute CRD in female compared with male rats
[105]. Also noted was a diminished response in females compared with males of cortical
circuits that modulate activity in limbic and paralimbic areas. These results highlight the
importance of sex as a factor in defining an animal model, and that female rats may model
aspects of the functional brain response observed in IBS subjects (a majority of whom are
women) more closely than male rats. Recent findings also point to the importance of strain
differences in both the visceromotor response, as well as in the extent of prefrontal cortical
activation [117,118].

Animal models typically do not take into account the biopsychosocial and environmental
interactions that represent major components of the patient’s pain complaints and responses
to treatment. Based on the understanding that environmental infuences affect pain behavior
in FGIDs, a strong clinical argument can be made for inclusion of measures of visceral
hyperalgesia, in particular stress-induced visceral hyperalgesia. Visceral hyperalgesia is
accentuated during periods of acute and chronic stress in IBS subjects, as well as in rodent
models [108]; there is an increased incidence of life stressors in IBS subjects compared with
controls [119–122]; and IBS subjects show an exaggerated stress hormone response and
visceral perceptual alterations compared with controls [123–125]. It has been proposed that
such increased history of early life stress, and alterations in the stress response, may trigger
not only long-term changes in cognitive processing and mood, but also in visceral functions
and visceral sensitivity to noxious stimuli [124,126,127]. Results from our laboratory in the
rat model suggest that stress-induced visceral hyperalgesia is accompanied by exaggerated
insula activation during CRD [128]. These three observations in the insula – activation
during acute CRD, during recall of fear-conditioned CRD and in association with a stress-
related model of visceral hyperalgesia – suggest that this brain region, and associated
networks, is a promising candidate for an improved animal-to-human translation during drug
development, despite well-known neuroanatomical differences between the human and the
rodent insula. Possibilities exist in the future for applying connectivity analysis to animal
brain mapping to understand cerebral responses at the network level [129], as has been
begun to be undertaken in IBS human subjects [130].
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Expert commentary
While animal model-based drug development efforts for diseases, such as cancer or
inflammatory bowel disease, have shown significant promise, similar efforts in complex,
symptom-based disorders, such as IBS, using rodent models have generally been
disappointing. Traditional drug development for FGIDs has been partially successful in the
development of novel treatments aimed at modulating biological targets such as slow transit
or alterations in intestinal secretion. A substantial number of compounds aimed at these
biological end points have been developed and have shown promise to be clinically effective
in IBS, chronic diarrhea and chronic constipation [8]. By contrast, this approach has largely
failed for the subjective, multidimensional aspect of FGIDs that is characterized by
persistent pain or discomfort. Similar frustration using this approach has been experienced in
psychiatry [5] and in pain research [6], putting into question the validity of animal models
for such disorders in general.

The drug development for well-defined ‘organic’ disorders with agreed upon
pathophysiology (including certain motility disorders, such as slow-transit constipation) has
been successful since it is based on modeling objective, disease-specific, biological end
points (‘biomarkers’) such as tumor regression, inflammation or colonic transit, which are
highly correlated with the human disease. However, even though intestinal transit measures
and the effect of candidate compounds on such readouts show good correlation between
preclinical and clinical models, the correlation between such measures in humans and
clinical symptoms is not very strong, since a large number of IBS patients have normal
transit. For example, it is unclear why constipation-predominant IBS patients with normal
colonic transit should benefit from a drug that is aimed at accelerating colonic transit.

As previously proposed for other human pain conditions [89,90,131,132], we propose that
brain endophenotypes that influence central pain modulation (rather than the entire disease
process) can be modeled in rodents in a reverse translational approach. Current research
strongly suggests that brain imaging approaches in awake or minimally sedated rodents may
provide improved quantifiable readouts, which can be translated directly to human brain
imaging findings. In the future, transgenic and knockout mouse models hold promise for
improving our understanding of specific molecular mechanisms that contribute to the
respective phenotype.

Brain mapping has started to be invoked in drug development for pain conditions in human
and animal studies over the past decade (reviewed in [90]), although at this early stage,
standards for the value of neuroimaging in drug development remain to be defined. In
addition, questions remain regarding whether a drug’s response ‘signature’ at the level of
brain mapping may differ by disease state and chronicity, and whether neuroimaging should
focus on resting state function or brain responses to acute experimental challenges.
Functional brain mapping in rodents will likely complement behavioral measurements in
animal models of visceral pain. While the optimal imaging strategy may differ between pain
disorders and their chronicity, functional neuroimaging in rodents is beginning to validate
the relevance of animal models to human conditions at the brain level [133–136].

Five-year view
Currently there is a need to clearly define, characterize and validate human endophenotypes
that allow better prediction of relevant outcome measures in clinical trials, and to develop
preclinical homologues of these human endophenotypes. Current measures of pain in
animals are mainly focused on evoked acute pain responses and do not correspond to the
spontaneous, on going or recurrent pain found in IBS. New functional and behavioral assays
are needed that model such chronic pain conditions. This includes the replacement of
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reflexive outcome measures with homologous measures, such as brain imaging approaches,
and the replacement of measurements of evoked pain responses with measurements of
spontaneous pain behavior. Spontaneous behaviors might include such measures as
spontaneous locomotor activity, gait, posture, guarding, flinching, social behavior, anxiety,
body weight and food intake (Figure 1) . In a recent study, a 5HT1A receptor antagonist was
found to inhibit the visceromotor response to CRD, while demonstrating no effect on the
cardiovascular pseudo affective response. These results in animals contrast with a lack of
clinical efficacy to reduce abdominal pain in IBS patients and illustrate the need to use
multiple readouts for the measurement of pain to increase the predictive value of animal
studies [67].

Key issues

• Perceptual responses to mechanical (and to a lesser degree electrical or
chemical) stimulation are common measures of visceral sensitivity in clinical
studies. The weak predictability of such acute visceral perception testing in
discriminating compounds that may have a positive impact on either specific or
global irritable bowel syndrome (IBS) symptoms suggests that these human tests
may not be suitable as cost-effective drug development strategies for IBS.

• In rodent models of functional gastrointestinal disorders (FGID), reflexive or
behavioral nociceptive responses to acute colorectal distension have become the
standard readout for the assessment of visceral sensitivity; however, the
predictive validity of these animal models has proven to be disappointing.

• While there is a poor correlation between transit and symptoms, preclinical
models have been relatively successful at translating objective gastrointestinal
transit measurements between animals and humans.

• The problem of bench-to-bedside translation, however, does not simply
originate in the limitations of the animal models. Improved definition and
classification of clinical states based on biological abnormalities are needed.
Such improvement is dependent on the identification of robust endophenotypes
in humans with adequate effect sizes for cardinal symptoms or global end
points, which can be modeled in a transverse translational approach in rodents.

• Rather than trying to develop rodent models with good face validity for the
human FGIDs, it may be more productive to translate robust human
endophenotypes into homologous rodent readouts.

• Functional imaging may provide one means of identifying endophenotypes that
can translate from the human to the animal. Imaging-based endophenotypes
promise to provide improved end points to define treatment and drug
development for FGIDs. Proof-of-concept studies with effective (and
ineffective) candidate drugs are required to test this hypothesis.
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Figure 1. Spectrum of endophenotypes for translating nociceptive responses from humans to
rodents
While spontaneous pain behavior and pseudoaffective reflex responses are individually
lacking in this regard, it has been suggested that the use of combined multiple physiologic
and behavioral readouts may improve the process of translating findings from humans to
rodents.
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