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Abstract
Brain machine interfaces (BMIs) use signals from the brain to control a device such as a computer
cursor. Various types of signals have been used as BMI inputs, from single-unit action potentials
to scalp potentials. Recently, intermediate-level signals such as subdural field potentials have also
shown promise. These different signal types are likely to provide different amounts of
information, but we don't yet know what signal types are necessary to enable a particular BMI
function, such as identification of reach target location, control of a two-dimensional cursor or the
dynamics of limb movement. Here we evaluated the performance of field potentials, measured
either intracortically (local field potentials, LFPs) or epidurally (EFPs), in terms of the ability to
decode reach direction. We trained rats to move a joystick with their forepaw to control the motion
of a sipper tube to one of four targets in two dimensions. We decoded forelimb reach direction
from the field potentials using linear discriminant analysis. We achieved a mean accuracy of
69±3% with EFPs and 57±2% with LFPs, both much better than chance. Signal quality remained
good up to 13 months after implantation. This suggests that using epidural signals could provide
BMI inputs of high quality with less risk to the patient than using intracortical recordings.

Introduction
Brain machine interfaces (BMIs) have the potential to improve the ability of people
paralyzed from disorders such as stroke, amyotrophic lateral sclerosis, or spinal cord injury
to interact with their environment. In addition to spikes measured intracortically from single
neurons [1-4], field potentials representing the summed activity of thousands of neurons
have been used as BMI control signals. These field potentials can be recorded from various
levels, including the scalp (EEG) [5, 6], below the dura (ECoG) [7-9], and within the cortex
(LFPs) [10, 11]. It is generally accepted that there is a trade-off of reduced quality for
reduced risk: the less invasive the recording, the lower the signal quality. Spikes tend to be
the most informative [4, 12], although one study [13] showed that broadband, multiunit
activity (MUA) performed even better than discriminated single spikes at decoding arm
trajectories. Although Scherberger et al. [14] showed that LFPs in posterior parietal cortex
may predict the intention to move slightly better than do spikes, LFPs generally are
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outperformed by spikes at decoding reaching movements [4, 12, 13]. This difference in
decoding may partially be due to greater independence of spikes compared with LFPs.
Subdural potentials (ECoG) presumably have the same sources as LFPs but are farther from
them, and thus the signal may be reduced. EEG is attenuated dramatically by the CSF, skull,
and scalp [15].

It is not yet certain which type of signal is best for a given BMI application. Since
intracortical spike recordings can provide highly detailed information about arm kinematics
[16], kinetics [17] and muscle activity [18, 19], they have frequently been used as BMI
inputs [2, 3, 20]. However, current intracortical electrodes typically record single-unit spikes
for no more than 1-3 years [21, 22]. This signal loss is related to various factors, including
vascular damage, immune response and neuronal loss [23-26]. Since an LFP is thought to
represent the combined activity of hundreds to thousands of neurons [27, 28], it is likely to
be more stable than a single unit spike signal [14]. Likewise, multiunit activity (MUA) may
be more stable than the activity of single-unit spikes, but it requires high-bandwidth (10-30
kHz) sampling that increases power and processing requirements—important considerations
for an eventual implanted device. Finally, spikes, LFPs, and MUA all require intracortical
electrodes, which carry increased risk of stroke, hemorrhage, and infection for the patient.
Therefore, many groups have begun examining less-invasive signal sources for BMIs.

Subdural signals have recently shown promise as BMI control signals [7, 9, 29, 30]. To date,
ECoG-based BMIs have used decoding algorithms that are simple linear combinations of
two ECoG features to control a cursor in two [7, 9] dimensions. These algorithms rely on the
brain's remarkable plasticity to learn the mapping between, for example, power in the mu
(8-13 Hz) band during hand and tongue movement imagery, and cursor movement in two
dimensions. Despite this plasticity, many researchers believe that intracortical signals will be
necessary to reduce the cognitive load of BMI tasks, or for BMI functions with more
degrees of freedom, such as the control of a prosthesis or functional electrical stimulation
(FES) of a paralyzed limb. However, several groups have used ECoG offline to decode
continuous outputs such as hand trajectories [8, 31-34]. This suggests that more complex
BMI functions may be achievable with ECoG, especially if signals more closely related to
normal movement are used. Moreover, ECoG may have greater stability than spikes [32].
Thus, ECoG has become a viable contender for a BMI signal source along with intracortical
signals.

Epidural field potentials (EFPs) may be similar in quality to ECoG [15] with less risk to the
patient from stroke, infection and hemorrhage. While a few preliminary studies have used
single, bipolar EFPs in a BMI [29, 35-37], EFPs have not yet been used to decode
movement parameters offline, so it is difficult to compare performance in these studies to
prior studies using other signals. In this study, we examined the ability to decode reach
direction in rats using motor cortical EFPs, and compared this to the decoding performance
using LFPs.

Methods
Rat behavior

Behavioral, surgical and recording methods were approved by the Northwestern University
Animal Care and Use Committee. Rats were water restricted for approximately 20 hours
before each session. After each session, they were allowed at least an hour of unlimited
access to water. Each rat was trained to grasp and move a spring-loaded joystick with its left
forepaw to guide a sipper tube from one of four positions at 90 degree intervals on the
circumference of a circle centered on its mouth. The sipper tube moved in proportion to the
joystick position until it came within 3 degrees of the center position, at which point it
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stopped, a success tone sounded, and a juice reward was given. One second after the joystick
returned to its center position, the sipper tube again moved to one of the 4 outer targets to
start the next trial. The rat had 10 seconds in which to move the sipper tube back to the
center. Otherwise, the trial was marked as a failure and the next trial began. On average, rats
completed trials in 1.2 s. It took an average of 46±11 sessions to train the rats. Details of the
behavior are given in[38].

Because we did not restrain the rats during the task, they were able to turn around and often
moved their heads at the same time as their forepaws. To assess whether the brain signals we
recorded were related to arm or head movement, we trained a subset of the rats on a “reverse
task,” in which the sipper tube moved in the opposite direction of the joystick for both left/
right and up/down axes. Since the rats usually moved their heads along the path of the sipper
tube, this reverse task effectively decoupled the movements of the head and forepaw. Rats
performed forward and reverse tasks on different days separated by at least a week [38].

Electrode implantation
After rats demonstrated sufficient acquisition of the task (at least 70% of trials were
successful, typically 150-200 successful trials per session), we implanted either epidural or
intracortical electrodes over the right (contralateral) sensorimotor cortex. The rats were
given dexamethasone (0.2 mg/kg IP) 30 min before surgery to reduce brain swelling and
atropine (0.05 mg/kg IP) to reduce oral secretions. They were anesthetized using ketamine
(100 mg/kg IP) and xylazine (10 mg/kg IP), with supplemental ketamine boluses as needed.
Upon recovery from anesthesia, and for two days post-operatively, the rats were given
meloxicam (0.2 mg/kg IP) for pain relief and enrofloxacin (5 mg/kg IP) to deter infection.
They also received minocycline (0.1 mg/ml) in their water for 2 days prior and 3 days after
surgery which has been shown to increase the quality and longevity of neural recordings
[39].

We performed a craniectomy centered at the caudal forelimb area, stereotaxic coordinates
+1 AP, 2 ML [40, 41]. Three rats were implanted with epidural arrays. Two arrays were
custom-built using 100 μm diameter platinum wires embedded in silicone, one 1×16 array
with 500 μm interelectrode spacing aligned along the sagittal plane (initially used in [15]),
and one 4×4 array with 700 μm spacing. The third array was made from flexible polyimide
(4×4, 150 μm contact diameter, 400 μm interelectrode spacing) [42]. We implanted three
different rats with 50 μm diameter tungsten microwire electrode arrays (2×8, 250 μm
interelectrode spacing, Tucker Davis Technologies). These arrays were placed as close as
possible to the stereotaxic coordinates used for the epidural arrays while avoiding large
cortical veins, and inserted to a depth of approximately 1.1-1.4 mm. Both epidural and
intracortical arrays had similar impedances (∼50-150 kΩ measured at 1 kHz). Ground and
reference leads were connected to skull screws. The craniectomy was covered with a thin
layer of silicone elastomer (Kwik-Cast, World Precision Instruments, Inc., FL) and
polymethyl methacrylate acrylic, and the electrode connectors were affixed to the skull with
bone screws and acrylic.

Feature extraction
Starting one week after surgery, we recorded field potentials while the rat performed the
reaching task. We recorded all signals with an RZ5 Bioamp System (Tucker Davis
Technologies [TDT], Alachua, FL), including brain signals, joystick position, digital pulses
indicating trial onset, reward, abort, and failure codes. Only successful trials were used in
the analysis. Field potentials were band-pass filtered with cutoffs at 2 and 240 Hz and
sampled at 500 Hz. We calculated the power within 10 Hz frequency bands relative to that
occurring from 1000 ms to 750 ms before movement onset. Power spectra were calculated
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with the short-time Fourier transform on Hanning windowed, 256 ms time segments that
overlapped by 56 ms (EEGlab Matlab toolbox [43]). As prior studies have shown directional
modulation of delta/theta (0-10 Hz) and high gamma (70-170 Hz) bands [12, 44-46], we
used the power in these two bands as the features of the signal to use for decoding. The high
gamma band was notch filtered at 120 Hz to reduce the line noise harmonic. As features, we
used the power in these two bands in two, 256-ms time bins starting 200 ms before
movement, and at movement onset. The 64 available features (16 electrodes × 2 time bins ×
2 frequency bins) were concatenated into one feature vector.

Feature selection and decoding
We used a one-way ANOVA to rank features in order of the significance of their modulation
with movement direction. The z-scores of the most significant features were used to train a
linear discriminant analysis (LDA) decoder. We defined decoder performance as the
percentage of trials correctly decoded using ten-fold cross-validation. Nine folds were used
for training each decoder and the final fold (10% of trials in that session) used for testing;
this was repeated 10 times (once for each fold). The mean decoder performance of the 10
folds was used as the performance level for each session. The feature extraction, selection,
and decoding sequence is summarized in Figure 1.

Starting with a maximum of 30 features, the relation between number of features and
prediction accuracy was examined by iteratively removing the least significant feature and
recalculating the accuracy. These feature dropping curves were analyzed to determine the
number of features at which the prediction accuracy did not differ significantly from the
accuracies using more features. This saturation point was determined by performing a series
of one-tailed t-tests comparing performance at each feature number with performance using
more features, with p=0.15 as the significance threshold [15]. This was repeated for all of
the sessions in the study.

The statistical significance of the difference between EFP and LFP decoding performance
was evaluated using a mixed model (PROC MIXED, SAS v9.2) with a fixed effect of field
potential type and random intercept for animal.

Results
Figure 2(a) demonstrates a rat performing the reaching task with its left forepaw. The
joystick is seen on the floor and the sipper tube is mounted in front of the rat. Typical task-
related EFPs and behavior signals are shown in panel b. In general, LFPs and EFPs had
similar signal amplitudes (50-100 μV). During and slightly before movement, both types of
signal increased in high gamma (70-170 Hz) and decreased in mu (8-13 Hz) and beta (13-25
Hz) power. This high-gamma power increase was modulated with reach direction, as seen in
the time frequency spectrograms of EFPs (Figure 3(a)) and LFPs (Figure 3(b)).

An example of feature-dropping curves for EFPs and LFPs based on ANOVA feature
selection is shown in Figure 4. In this example, EFP and LFP curves saturated at 9 and 12
features, respectively. For both EFPs and LFPs, the high gamma band features tended to be
ranked higher than the 0-10 Hz band features. In LFPs, the second time bin (0-256 ms)
tended to be ranked higher than the first time bin, but there was no clear temporal pattern for
EFPs. Over all sessions, the feature-dropping curves saturated at 8±5 and 10±5 for EFPs and
LFPs, respectively. These values were not statistically different (p=0.4, Mann-Whitney U
test). Consequently, we used the 12 most significant features for prediction of both signal
types, and found similar accuracy for EFPs and LFPs.
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Figure 5 shows confusion matrices from single sessions for both EFPs and LFPs. In these
two sessions, 84 and 125 trials were used to train decoders which achieved an overall
accuracy of 74% and 64% for EFPs and LFPs, respectively. Decoding was also consistent
across reach directions in these two sessions, with at least 60% accuracy in decoding each
direction. A summary of decoding performance for all rats (Figure 6) shows that EFPs
decoded with 69±3% accuracy (n=21 sessions from 3 rats, mean ±SE) while LFPs decoded
with 57±2% accuracy (n=14 sessions, 3 rats). This difference was not statistically significant
(p=0.09, mixed model). The mean number of trials in each session was 107 for EFPs and
161 for LFPs.

Two rats were trained first on the forward (normal) task and then on the reverse task that
was designed to decouple head and arm movement. Decoding performance using EFPs
remained high in the reverse task, with 65±3% mean accuracy vs. 73±3% mean accuracy on
the forward task in these two rats. Time-frequency spectra for one epidural electrode
recorded from a rat during both the forward and reverse tasks (8 months apart) are shown in
Figures 7(a) and 7(b), respectively. Both forward and reverse tasks had an increase in high
gamma power for reaches up and to the left. There was a stronger increase in gamma power
in reaches to the right for the reverse task than for the forward task, possibly due to changes
in modulation in that electrode during the significant time between these two recordings. It
is likely, however, that the modulation in high gamma power was more closely related to
forelimb than to head or neck movements. The similarity of high gamma modulation,
particularly along the vertical axis, for the forward and reverse tasks was a consistent feature
over the great majority of electrodes that modulated during movement for the two rats
trained on both tasks. This supports the hypothesis that the high gamma modulation was
related to forelimb movements.

The EFP signals retained strong modulation with movement direction for periods in excess
of a year (Figure 8). Using decoders rebuilt each day, accuracy remained high out to 400
days in one rat and 250 days in another. This suggests that EFPs are a potentially long-
lasting source of signals for reach decoding. Rats implanted with intracortical electrodes
were recorded over a time span of less than 6 weeks, (although good LFP decoding in one
rat lasted 4 months) so we were unable to assess LFP performance over time.

Discussion
In this study, we have shown that epidural field potentials can be used to decode reaching
direction with accuracy that is comparable to that of intracortical field potentials. Both LFPs
and EFPs demonstrated increased high gamma (70-170 Hz) power and decreased mu/beta
(8-30 Hz) power before and during forelimb movement as has been described in several
studies in monkeys [12, 31, 44, 45] and humans [8, 47-49]. The epidural decoding
performance of 69% on 4 target directions is comparable or superior to other studies in the
literature using subdural field potentials (ECoG) in human subjects [50]or LFPs in monkey
M1 [12, 13, 44].

There is considerable variation in the details of these studies: different numbers of targets,
different time bins and features used for decoding, different decoders, and different numbers
of electrodes, among others. In other studies, performance on 8-target decoding with
monkey LFPs ranged from ∼45% [44] to 87% [12]. However, the latter study combined data
that were recorded sequentially from different electrode locations in M1. This assumed that
LFPs were stable across days and that simultaneously recorded LFPs would have the same
performance, which may be optimistic for such highly correlated signals [51]. Stark and
Abeles [13] reported 53% performance in decoding 6 targets with LFPs, but this included
LFPs from both M1 and PMd and used additional information from times before movement
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onset. Ball et al. [52] reported 75% mean performance on 4 targets with ECoG in 4 humans.
Finally, Mehring et al. [50] compared single electrode performance in human ECoG (35%)
and monkey LFPs (49%) in a 4-target reach task.

The present study is the first to compare extracortical and intracortical signal decoding
performance directly in the same species, using the same motor task. Moreover, we used
electrodes of similar diameter (50 μm and 100 μm) and impedances (∼50-150 kΩ at 1 kHz)
for both LFP and EFP recording, respectively. Most prior ECoG studies in humans [7, 50,
52] have used larger disc electrodes of at least 2 mm diameter, which translates to 200-400
times the surface area, and much lower impedance, than the electrodes we used. While it is
not yet clear what size electrodes are best to record field potentials, our study reduces the
effect of some of the extraneous variables in comparing different signal types [50]. While
we have shown previously that differences in size and thickness of the cortex and
extracortical structures between rats and humans make a large difference in the spatial
properties of brain signals in the two species [15], we did not examine the effect of the
electrode size. In general, larger electrodes with lower impedances will record from both
local and distant (i.e., volume-conducted) signal sources. To record from local sources only,
a smaller, higher impedance electrode is probably preferable; however, this requirement
must be balanced with the reduced signal-to-noise ratio from higher-impedance electrodes.
Our epidural and intracortical arrays had more similar interelectrode spacing than did prior
studies of different signal sources (700 μm and 250-500 μm respectively, vs. 10 mm and
350-700 μm for subdural and intracortical electrodes in [50]), which presumably reduced,
although did not remove, the effect of spatial resolution on the comparison.

Since we did not restrain the rats, their head and neck tended to move with the sipper tube
during the trial. However, we controlled for this using a task that reversed the relation
between head and forelimb movements. The high gamma band continued to modulate with
forelimb, not head or neck, movement, which increases the likelihood that the signals we
decoded were related to forelimb movements.

Since LFPs are recorded in closer proximity to the signal sources than are EFPs, one might
have expected better decoding performance with LFPs than with EFPs. Yet our study found
an insignificant trend toward better performance with EFPs than with LFPs, although it
should be noted that the sample size was rather small. It is possible that the somewhat
greater cortical coverage of the epidural arrays compared with intracortical arrays could
have improved their performance. Since rats have a small and less well-defined forelimb
motor cortex than monkeys, our epidural electrodes might have been more likely to include
forelimb movement areas. In any case, EFPs performed about as well as LFPs in rats.

Rats have thinner dura and CSF layers than monkeys and humans, so it is far from certain
that in humans, EFPs and LFPs will also perform similarly. We showed previously in rats,
that ECoG and EFPs have similar spatial bandwidths [15]. The same study also suggested
that human dura has little effect on the field potential signals and that human ECoG and EFP
spatial resolutions are similar when the CSF layer is compressed (as it would be with
implanted electrodes). Our preliminary evidence from primates also has demonstrated
similar performance of EFPs and LFPs on reach direction decoding [53, 54]. Overall, these
results suggest that EFPs may provide relatively good performance as BMI inputs for
decoding reach direction. They raise the question of whether the performance of EFPs and
ECoG performance may also be similar in humans. We are currently examining this
possibility using simultaneously recorded ECoG and EFPs in epilepsy patients undergoing
preoperative monitoring. If this possibility proves true in humans, EFPs might provide a
less-invasive source of signals for BMIs. While there are no studies comparing relative risks
of epidural, subdural, and intracortical electrodes in any animal, opening the dura for
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subdural or intracortical electrodes likely increases the risks of infection of the brain
parenchyma, and could increase the risk of stroke and subdural hemorrhage.

Since field potentials are aggregated from thousands of neurons, it seems plausible that they
will be more stable and have greater longevity than will spikes from single neurons. Dickey
et al. [55] showed that only 57% of single unit spikes are stable (defined by spike waveform
and interspike interval histogram) for one week, and only 39% for 2 weeks. Nicolelis et al.
[56] and Jackson and Fetz [57] found similar results at one week and even less stability
(10% in the 2007 study) at 2 weeks. In contrast, Chao et al. [32] showed that information
decoded from subdural field potentials in monkeys was stable for 250 days. The present
study was not designed to assess longevity in either EFPs or LFPs. Technical difficulties
(faulty head cap or broken reference wires) limited the duration of recording rather than
problems with the electrodes themselves. However, based on the observations in [32] and
the results presented here, longer-term testing of subdural and epidural arrays is clearly
warranted.

We have demonstrated that EFPs and LFPs perform similarly in decoding intended reach
direction in rats, and we have preliminary evidence to suggest similar performance in
monkeys [53]. However, it remains to be seen whether EFPs can perform as well as LFPs at
decoding more complex signals such as the time course of hand movement, endpoint force,
or EMG. We are currently investigating these properties in monkeys. Determining the
capabilities of particular signal sources in terms of various BMI functions is an important
step toward translating BMIs to clinical use. For example, EFPs might suffice to implement
target selection for a patient with locked-in syndrome from amyotrophic lateral sclerosis, but
to implement BMI-controlled FES in a patient with tetraplegia from a spinal cord injury, it
may be necessary to use spikes. Ultimately, matching input signals to desired BMI functions
could allow clinicians more flexibility in selecting a BMI to match each patient's needs
while minimizing risk.
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Figure 1.
Flow chart for feature extraction, selection, and decoding. Dimensions at each step are
shown to the right or above the arrows. T, number of trials in one fold of cross-validation.
The sequence from z-score to Result is repeated 10 times, once for each fold, and the results
averaged to define the performance of each session.
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Figure 2.
Rat performing reaching task. (a) The rat moves the joystick to move the sipper tube. The
different arrows and arrowheads denote the corresponding joystick and sipper tube
movements in each direction. The corresponding forepaw positions and epidural field
potentials are shown in (b). Occurrences of go cues, movement onset, and rewards are
displayed as green, red dashed, and cyan dotted lines, respectively. Joystick position signals
(X and Y for left/right and up/down movements respectively) are shown in the bottom two
traces (blue).
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Figure 3.
Event-related spectral potentials (ERSP) averaged with respect to reach direction for a single
(a) epidural and (b) intracortical electrode. Each plot shows the average ERSP (in units of
log spectral power relative to the -1 to -0.75 s baseline) over all trials to that direction. Plots
are spatially arranged in the direction of the reach (up, down, left, and right). In these
examples, both EFPs and LFPs show increased high gamma power for reaches in the up
direction, with the EFP also showing some increased power in reaches to the left. These
changes started slightly before movement onset (purple dashed lines) and ended at
movement offset (black dotted lines).
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Figure 4.
Feature-dropping curves using ANOVA feature selection for one session of EFP (thin blue
line) and LFP recordings (thick red line). The highest-ranked features were dropped last.
The EFP curve saturates at about 9 features while the LFP curve saturates at about 12
features. Error bars show standard deviation for 10-fold cross-validation.
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Figure 5.
Confusion matrices of decoded and actual data from one session using (a) epidural field
potentials (EFPs) and (b) local field potentials (LFPs).
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Figure 6.
Summary of decoding performance for EFPs and LFPs over all sessions for each rat. Error
bars denote standard errors. Chance prediction was 25% (dashed line). EFP and LFP
performance did not significantly differ.
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Figure 7.
Event-related spectral potentials (ERSP) averaged to reach direction for EFPs recorded from
the same electrode during (a) forward and (b) reverse tasks. Power increases in the high
gamma band (70-170 Hz) starting just before movement onset (purple dashed line) are
evident in reaches to the upper, left and right directions in both tasks. This suggests that
recorded signals in this electrode are related to reach direction, not head movement
direction.
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Figure 8.
Decoding accuracy of EFPs remains stable over time. Performance on both forward (closed
symbols) and reverse (open symbols) tasks are shown for 3 rats (only 2 rats on reverse task).
Decoders for each session were rebuilt on each session's data.
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