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Abstract
Prediction models that use gene expression levels are now being proposed for personalized
treatment of cancer, but building accurate models that are easy to interpret remains a challenge. In
this paper, we describe an integrative clinical-genomic approach that combines both genomic
pathway and clinical information. First, we summarize information from genes in each pathway
using Supervised Principal Components (SPCA) to obtain pathway-based genomic predictors.
Next, we build a prediction model based on clinical variables and pathway-based genomic
predictors using Random Survival Forests (RSF). Our rationale for this two-stage procedure is that
the underlying disease process may be influenced by environmental exposure (measured by
clinical variables) and perturbations in different pathways (measured by pathway-based genomic
variables), as well as their interactions. Using two cancer microarray datasets, we show that the
pathway-based clinical-genomic model outperforms gene-based clinical-genomic models, with
improved prediction accuracy and interpretability.
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1. INTRODUCTION
Cancer is a heterogeneous complex disease, influenced by both genetic background and
environmental exposure. Therefore, when weighing treatment options it is important to use
accurate prognostic models. Towards this end, it is common for clinical information such as
age, tumor size, histopathologic grade, and lymph node involvement to be used when
modeling cancer prognosis. Tumor specific markers are also increasingly used in modeling.
For example, estrogen receptor and human epidermal growth factor receptor 2 (HER2) are
used for breast cancer, and prostate specific antigen (PSA) for prostate cancer.
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However, while clinical prognostic factors are useful at a population level for identifying
risk, because of the heterogeneity and complexity of cancer, they are far from being accurate
predictors of an individual’s clinical course. Often, cancer patients may exhibit the same
clinical pattern, but prognosis can vary significantly. The recent development of high-
throughout microarrays for measuring gene expression has given investigators a more
accurate way of identifying cancer subtypes by making use of gene expression profiles. This
approach has been successfully applied to tumor classification and to making prognosis in
lung, breast, colon and other cancers (Beer et al., 2002; Perou et al., 2000, Alon et al., 1999).
For predicting survival outcome (death or recurrence) approaches based on the Cox
proportional hazard model have been proposed, including partial least square (Nguyen and
Roche, 2002), L1-penalized regression (Segal, 2006, Datta et al., 2007), L2-penalized
regression (Hastie and Tibshirani, 2004), supervised principal component analysis (Bair and
Tibshirani, 2004). By using high dimensional genomic information, these methods have
been shown to improve cancer prognosis compared to models based on clinical predictors
alone.

Although gene-based prediction models is a promising approach, some disturbing
inconsistencies among gene expression profiles have been reported (Ein-Dor et al., 2005). It
has been suggested that one reason for these discrepancies may be that in complex diseases
many genes are associated with outcomes, each with only a small marginal effect.
Therefore, many real but weak signals could be missed, especially when sample sizes are
small (Mootha et al., 2003). Because activities within pathways are key components for
cancer development (Wood et al., 2007), pathway analyses that borrow information from
genes within a pathway and associate groups of genes instead of individual genes with
clinical outcome, have become a more popular alternative (Mootha et al., 2003; Wang et al.
2008). Increased power comes from combining weak signals from a number of genes within
each pathway. Signatures from oncogenic pathways have been shown to be not only
effective markers for identifying tumor subtypes, but also a valuable guide for targeting
therapies (Bild et al., 2006). Several recent papers have successfully integrated microarray
data with prior pathway knowledge for disease status prediction (Lee et al., 2008; Chen and
Wang, 2009) and have shown that pathway based prediction models improve accuracy and
increase reproducibility (Manoli et al., 2006).

In this paper, we propose an integrative clinical-genomic model that combines both genomic
pathway and clinical information. More specifically, we integrate genomic predictors based
on pathway information with clinical variables using Supervised Principal Components
(SPCA) and Random Survival Forests (RSF) (Ishwaran et al., 2008). First, we summarize
genomic information from each pathway using supervised principal components (Section
2.1); these are the “supergenes”. Next, using both supergenes and clinical variables as
predictors, we use RSF for prediction. Doing so allows us to approximate the underlying
functional gene network by allowing interactions between pathway-pathway and pathway-
clinical (or environmental) factors. One of the important properties of RSF is that it is highly
adept at identifying interactions.

Section 2 describes the details of our proposed approach. Section 3 considers two publicly
available breast cancer microarray data sets and compare the performance of our proposed
model with three widely used approaches: supervised principal components, L1-penalized
Cox regression, and Cox-based boosting.

2. METHOD
Our method involves two main steps:
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1. Summarize information from genes in each pathway using SPCA to obtain
pathway-based genomic predictors.

2. Build prediction model based on clinical variables and pathway-based genomic
predictors using RSF.

Our rationale for this approach is that the underlying disease process may be influenced by
environmental exposure (measured by clinical variables), perturbations in different
pathways (measured by pathway-based genomic variables) as well as their interactions. We
discuss the SPCA method and RSF in more details in the next two sections.

2.1 SPCA
Principal Component Analysis (PCA) is a popular dimension reduction technique for
summarizing information from a group of genes, such as those from the same pathway
(Tomfohr et al., 2005; Bild et al., 2006). The first principal component has been called the
“eigengene” or “metagene” (Alter et al., 2000). However, because pathways such as those
from Gene Ontology (Ashburner et al., 2001) are defined a priori in a particular experiment,
typically only a subset of genes from a pathway work together to influence changes in a
biological process, which then brings about changes in outcome. When all the genes in a
pathway are used to estimate the principal components, the resulting “eigengene” may be
affected by noisy signals from genes unrelated to outcome. Therefore, we adopt a semi-
supervised approach: SPCA to do gene shaving and dimension reduction within pathways.

SPCA was proposed by Bair and Tibshirani (2004) and Bair et al. (2006) to predict survival
outcomes using genome-wide gene expression data. Instead of using all genes as in standard
PCA, a subset of genes having strong correlations with survival time are selected for PCA.
The estimated principal component scores are used as predictors in a Cox proportional
hazard model for survival prediction.

Although SPCA is an effective prediction model, it can be difficult to interpret because of
the large number of genes often selected in constructing the eigengenes. Rather than
assuming a few eigengenes at the genome-wide level, it is more reasonable to assume an
eigengene for each pathway. Towards this end, SPCA was successfully modified and
applied to pathway analysis (Chen at al., 2008; Chen and Wang, 2009). Along the same
lines, in this paper, we use the estimated eigengene (i.e., first principal component score) to
represent the latent variable associated with underlying biological process in a pathway.

2.2 Random Survival Forests
Random forests (RF) is a state of the art ensemble learning method, which was introduced
by Breiman (2001), and further developed by Breiman and Cutler. RF grows deep, random
trees, which are aggregated to form the ensemble learner. By growing a deep tree, the base
learner has low bias. By growing the tree randomly (see details below), tree-correlation, and
hence variance is kept low. These two competing forces enable RF to be an effective
classification and regression procedure for high-dimensional data.

Random survival forests (RSF) is a new extension of Breiman’s RF methodology to right-
censored survival settings (Ishwaran et al., 2008). The core algorithm used by RSF and RF
are similar. First, ntree bootstrap samples are drawn from the original data. For each
bootstrap sample, a single random survival tree is grown. In growing the tree, at each tree
node, mtry variables are randomly selected and the node is split by finding the variable that
maximizes the log-rank test across nsplit randomly selected split points. Each survival tree is
grown to full size under the constraint that the minimum number of unique event times in a
node is no less than a predefined nodesize value. Each bootstrap sample excludes on average
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36.7% of the data, called out-of-bag (OOB) data, which is used to construct an OOB
ensemble used for estimating test set error (Ishwaran et al., 2008).

To evaluate the survival prediction performance of RSF as well as other procedures, we use
Harrell’s concordance index (C-index) (Harrell et al., 1982), which estimates the probability
of concordance between predicted and observed survival. To measure the error rate, we use
1-C, which is bounded between 0 and 1. An error rate of 0 indicates perfect prediction,
whereas an error rate of 0.5 indicates random guessing.

A key feature of RSF is the ability to assess variable importance (VIMP). VIMP is defined
as the prediction error from the OOB ensemble subtracted from the prediction error of a new
OOB ensemble derived when the variable in question is “noised up” (Ishwaran et al., 2008).
A large positive VIMP indicates a predictive variable.

2.3 Analysis Details: Work-Flow
The following algorithm describes the work-flow used to construct the clinical-genomic
model:

1. Randomly partition the data into training and test sets of sizes n1 and n2,
respectively.

2. Link gene identifiers from microarrays with those from the pathway databases
Gene Ontology and KEGG (Ashburner et al., 2000; Kanehisa et al., 2002). Group
genes into different pathways. For genes not assigned to any gene categories, rather
than discarding those genes, perform K-means clustering to group them based on
their expression patterns. To determine the optimal number of cluster, use the Gap
statistic (Tibshirani et al., 2001). Genes grouped this way are referred to as
“pseudo-pathways”.

3. Using the training set, use SPCA to select the subset of genes most associated with
survival outcome for each pathway (or pseudo-pathway). Using the gene
expressions of the selected genes, the “supergene” for a pathway is estimated by the
first principal component score. A super-gene expression matrix is constructed
using the supergenes. If there is a total of m pathways (including pseudo-
pathways), the training set super-gene matrix is of dimension m × n1.

4. Using survival outcomes as the response, use RSF with the pathway super-gene
matrix and clinical information as predictors. Only training data is used.

5. To assess performance, construct a super-gene matrix for the test data (of
dimension m × n2). These calculations use the eigenvectors estimated from the
training data alone. Using the training set derived forest, determine the accuracy of
the resulting predictor on the test set using the test set super-gene matrix and test
set clinical variables.

3. RESULTS
We studied the performance of our method using two breast cancer microarray datasets. Our
first example is the widely used benchmark microarray dataset from Miller et al. (2005). It
included 251 microarray samples (i.e., patients) obtained from Affymetrix U133A and
U133B platforms (GEO accession no. GSE3494). Of the 251 samples, only 236 have
follow-up information; only these data were used for our analysis. In addition to gene
expression data, clinical predictors used included: P53 status, Elston-grade, ER, PgR, age,
tumor size and lymph node status. The second dataset included 255 early stage estrogen
receptor (ER) positive breast cancer samples from patients receiving tamoxifen adjuvant
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treatment (Loi et al., 2008). Three Affymetrix platforms, U133A, U133B and U133PLUS2
were used (GEO accession no. GSE6532). The survival endpoint was time until first distant
metastatic event (distant metastasis free survival). Clinical-pathological predictors were
histological grade, tumor size, age, nodal status, ER (high vs. low expression), PgR (high vs.
low expression) and HER2 (high vs. low expression).

3.1 Survival Prediction Performance
Each dataset was randomly split into training and testing sets using a 2:1 ratio. For the
Miller dataset, we mapped 13,441 genes to Gene Ontology “Biological Process” (GO-BP)
categories. There were 10,695 genes belonging to 1570 GO-BP categories with gene set
sizes larger than two. The remaining 2,746 genes were split into groups with similar gene
expression patterns using K-means clustering in tandem with the Gap Statistic (Tibshirani et
al, 2001). There were a total of 1576 pathways (1570 based on GO categories and 6 based
on K-means clustering). These were then used to derive 1576 supergenes. For the Loi
dataset, we mapped 11,553 genes to 1656 GO-BP categories, and the remaining 4184 genes
were divided into 12 clusters, yielding a total of 1668 supergenes.

RSF was applied as described in Section 2.3. All forests were comprised of ntree = 5000
survival trees, with each tree grown under random log-rank splitting with an nsplit value of
10. All RSF applications in this paper were implemented using the R-package,
randomSurvialForest (Ishwaran and Kogalur, 2007). Default values for the package were
used in all examples, excepting those just listed.

We compared performance with three other popular procedures: (i) SPCA (Bair et al.,
2006); (ii) L1-penalized Cox regression (LASSO) (Park and Hastie, 2007); and (iii) Cox-
likelihood based boosting (Binder and Schumacker, 2008). These procedures were
implemented using the R-packages: superpc, glmpath and Coxboost, respectively. Table 1
lists test set errors for all procedures using 1-C (Section 2.2). All results are averaged over
10 independent replicates of the procedure outlined above. Pathway-based models used
supergenes and clinical variables as predictors, whereas gene-based models used individual
genes and clinical variables as predictors. Five-fold cross-validation was used to select
tuning parameters for the comparison procedures (for SPCA, the threshold for selecting
genes; for Cox Lasso, the L1 regularization parameter; and for Cox Boosting, the optimal
number of boosting steps). For all procedures, as expected, the pathway-based approach
performed better than the gene-based one. This is not surprising, as these models have
incorporated additional prior biological knowledge. Among all methods, the RSF pathway-
model had lowest prediction error over both datasets.

To better understand why the RSF pathway based approach worked so well, we investigated
three sources potentially contributing to its success: (1) selection of subset of genes for
constructing supergenes within each gene set; (2) gene categories from clustering of genes
not annotated in pathway databases; and (3) clinical variables. For each of these factors, the
RSF based model was constructed by removing the factor being investigated and keeping all
other procedures unchanged. For example, to evaluate the impact of (1), all genes instead of
a selected subset of genes were used to estimate the supergenes for each pathway. For (2)
and (3), supergenes from K-means clusters and clinical variables were omitted from the RSF
model, respectively.

Table 2 shows that the selection of a subset of genes for estimating supergenes had the
largest impact on prediction error. This supports our assumption that within each gene set,
only a subset of genes play an important role. By removing noisy signals from non-relevant
genes, the pathway-based RSF model improves both prediction performance and biological
interpretation.
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Finally, we should remark that while we used K-means and the Gap statistic to form clusters
for genes without pathway annotation in our approach, this may not necessarily be the
optimal method for clustering. In deciding what method might be best, one could use the R-
packages “clValid” and “RankAggreg” to evaluate the performances of different clustering
algorithms and to select the optimal approach (Datta and Datta, 2003). However, we note
that informal experimentation with different clustering procedures showed that prediction
performance for RSF remained very stable. We believe this is because most of the predictors
in the model were derived based on a priori defined pathway information, which lends
stability to our approach.

3.2 Predictors Identified by RSF
A VIMP analysis was used to identify key variables for predicting survival outcome. All
predictors, including supergenes representing the pathways and clinical variables, were
ranked by VIMP. To increase precision, bootstrap resampling was used. We drew 200
independent bootstrap samples and calculated VIMP for each sample. The estimated VIMP
for a variable was calculated as the mean over all bootstrap samples divided by the standard
deviation.

Table 3 shows the top 10 variables in terms of standardized VIMP for the Miller et al.
(2005) dataset. The list includes one clinical variable and nine supergenes. The pathways for
the supergenes are involved in different biological processes such as cell proliferation,
neuron development, cell cycle, ion transport and amino acid metabolism. The most
significant predictor is endothelial cell proliferation (GO: 0001935). It is well known that
tumor angiogenesis, which is the development of new blood vessels and a critical process in
tumor progression, is dependent on endothelial cell proliferation. It has been reported that
estrogen directly modulates angiogenesis through endothelial cells and estrogen receptor
antagonists can inhibit angiogenesis in breast tumors (Glgliardi and Collins, 1993). In
addition, two GO categories (GO: 0000281, GO: 0000077) are related to cell cycle, which is
closely related to cancer, which results from uncontrolled division and growth of cells.

The nine supergenes listed in Table 3 were derived from a total of 39 genes (last column).
Prior literature has shown several of these to be directly related to breast cancer. For
example, PTEN is a tumor suppressor gene working through the action of its phosphatase
protein product. Inactivating mutations or deletions of the PTEN gene can lead to resistance
to chemotherapy and hormone therapy (Pandolfi, 2004).

Supplementary Table 1 shows the 10 predictors by standardized VIMP for the Loi et al.
(2008) data. The first pathway, negative regulation of apoptosis (GO: 0043066), is
substantially more predictive than other genomic or clinical predictors. It has been shown
that Tamoxifen (TAM) and its active metabolite, 4-hydroxytamoxifen (OHT) can induce
apoptotic cell death through ER-dependent and ER-independent pathways (Mandlekar et al.,
2000; Obrero et al., 2002). Different studies have confirmed that multiple non-ER-mediated
mechanisms such as MAP kinases, calmodulin and calcium signaling, caspases, TGF-beta
involve TAM-induced apoptosis (Mandlekar and Kong, 2001). The genes in negative
regulation of apoptosis and several other top pathways are closely related to these functions.
For example, VEGFA is a pivotal gene in breast tumor angiogenesis and metastases and
elevated VEGFA level is known to be associated with reduced disease-free survival for
TAM treated patients (Ryden et al., 2005).

3.3 Interactions Identified by RSF
In addition to ranking and identifying important predictors individually, RSF can also be
used to identify important interactions between variables. For a pair of variables, the joint
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VIMP is defined to be the difference between the prediction error when both predictors are
noised up and the prediction error without noising up. The VIMP for each single variable is
calculated and the sum of two single variable VIMPs is the additive importance. A large
difference between the joint VIMP and the additive importance indicates a potential
interaction between two variables (Ishwaran, 2007).

We used the top 30 predictors with largest single variable VIMPs and evaluated all pairwise
interactions of these variables using the above approach. To increase precision we used a
bootstrap standardized measure for the interactions using 200 independent bootstrap draws.

Supplementary Table 2 shows the top 10 pairwise interactions for each dataset. For the
Miller et al. (2005) data, we identified both pathway-pathway and pathway-clinical
interactions. An interesting finding relates to the prostaglandin metabolic process (GO:
0006693). Although the individual VIMP ranking for this pathway is 28th, its pairwise
interaction with several other pathways ranked high. Prostaglandin E2 and its receptors play
a key role in cancer progression by activating signaling pathways that involve apoptosis,
antiogenesis, migration and cell proliferation (Wang and DuBois, 2006). Several clinical
trials have shown that non-steroidal anti-inflammatory drugs (NSAIDs), which inhibits
prostaglandins mediated processes, can reduce the relative risk of developing different
cancers such as breast, colorectal, bladder, etc. (Gupta and DuBois, 2001). Our results
suggest that the genes related to the prostaglandin metabolic process exhibit high
connectivity with genes in other pathways and are possible “hub” genes in breast cancer
development.

For the Loi et al. (2008) data, a pathway involved in several important interactions is the
very-long-chain fatty acid metabolic process (GO: 0000038), which ranked 25th by
individual VIMP. This is probably because tamoxifen affects fatty acid metabolism.
Actually, tamoxifen therapy is associated with an increased risk of developing fatty liver
(steatosis) and it is reported that 43% of patients having tamoxifen treatment may develop
steatosis within the first two years (Ogawa et al., 1998). The selected genes in this gene set
include ELOVL2, HSD17B4, SLC27A2 and SLC27A6, and these genes are critical for
triglyceride biosynthesis. This perturbed pathway may have effect on other metabolism
processes in these tamoxifen treated breast cancer patients.

4. DISCUSSION
We have presented a novel approach to predicting survival outcomes by integrating gene
expression profiles with prior biological knowledge and clinical factors. Because the
underlying disease process for cancer may be dependent on perturbations of different
pathways, prediction models based on pathways may approximate the true disease process
more closely than models based on genes alone. We have shown that our pathway-based
clinical-genomic model improves prediction accuracy over gene-based prediction models.
Furthermore, we found in addition to grouping genes into pathways, within each pathway,
the selection of the subset of genes most associated with the outcome is a critical step for
accurate prediction performance. This agrees with our hypothesis that only a subset of genes
from a pre-defined pathway may participate in the cellular process influencing survival
outcome.

An attractive feature of our methodology is that RSF can handle a large number of clinical
and genomic predictors with mixed types (categorical or continuous). In addition, RSF can
automatically discover higher order and nonlinear interactions between predictors such as
clinical-clinical, clinical-pathway and pathway-pathway interactions. This important feature
enables us to closely approximate the underlying disease process, which is influenced by
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multiple pathways, environmental effects, and pathway-environmental interactions. This in
turn can shed light on the biological mechanisms behind a disease process. Although we
have described a pathway-based clinical-genomic modeling for survival outcomes, the
methodology is generalizable and can be easily extended to binary, multi-category, or
continuous outcomes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 2

Factors contributing to performance of pathway-based RSF prediction models. Shown are test set errors using
1-C, averaged over 10 independent experiments.

Method Miller et al. (2005) data Loi et al. (2008) data

Pathway-based RSF 0.2823 0.2881

(1) No gene screening in gene sets 0.2992 0.3014

(2) No K-means clusters 0.2903 0.2934

(3) No clinical variables 0.2895 0.2925
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Table 3

The top 10 predictors with largest standardized VIMP for the Miller et al. (2005) dataset

Name Description Set size VIMP Gene Symbols of selected genes used to estimate supergenes

GO:0001935 Endothelial cell proliferation 4 1.921 DLG1, HMOX1

GO:0031175 Neuron projection
   development

13 1.459 LAMB1, CDK5, CHL1, CDK5R1, STX3, EFHD1, NRTN,
   GALR2, PTEN, RASGRF1, STMN3, GDNF

GO:0000059 Protein import into nucleus,
   docking

16 1.347 CSE1L, RANBP5, IPO4

GO:0000281 Cytokinesis after mitosis 3 1.344 MYH10, NUSAP1

GO:0006537 Glutamate biosynthetic
   process

3 1.202 PRODH, LOC440792

Lymphnode 1.201

GO:0009168 Purine ribonucleoside
   monophosphate
   biosynthetic process

5 1.160 AMPD1, AMPD3, CECR1

GO:0000077 DNA damage checkpoint 11 1.160 RAD1, RAD9A, FOXN3, CHEK1, RAD17, ATR, CHEK2,
   HUS1, ZAK, BRIP1

GO:0015711 Organic anion transport 14 1.139 SLC16A1, SLC16A3, SLC16A5

GO:0018206 Peptidyl-methionine
   modification

3 1.119 METAP1, PDF
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