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A defining characteristic of most human cancers is
heterogeneity, resulting from the somatic acquisition
of a complex array of genetic and genomic altera-
tions. Dissecting this heterogeneity is critical to devel-
oping an understanding of the underlying mecha-
nisms of disease and to paving the way toward
personalized treatments of the disease. We used gene
expression data sets from the analysis of primary and
metastatic melanomas to develop a molecular de-
scription of the heterogeneity that characterizes this
disease. Unsupervised hierarchical clustering, gene
set enrichment analyses, and pathway activity analy-
ses were used to describe the genetic heterogeneity of
melanomas. Patterns of gene expression that revealed
two distinct classes of primary melanoma, two dis-
tinct classes of in-transit melanoma, and at least three
subgroups of metastatic melanoma were identified.
Expression signatures developed to predict the status
of oncogenic signaling pathways were used to ex-
plore the biological basis underlying these differen-
tial patterns of expression. This analysis of activities
revealed unique pathways that distinguished the pri-
mary and metastatic subgroups of melanoma. Distinct
patterns of gene expression across primary, in-tran-
sit, and metastatic melanomas underline the genetic
heterogeneity of this disease. This heterogeneity can
be described in terms of deregulation of signaling
pathways, thus increasing the knowledge of the bio-
logical features underlying individual melanomas and
potentially directing therapeutic opportunities to in-
dividual patients with melanoma. (Am J Pathol 2011,
178:2513–2522; DOI: 10.1016/j.ajpath.2011.02.037)

A dominant characteristic of virtually all cancers is heter-
ogeneity. For instance, breast cancer is a collection of

diseases, each with distinct underlying molecular mech-
anisms and clinical characteristics.1–3 The importance of
dissecting the heterogeneity is illustrated with the exam-
ple of trastuzumab (Herceptin), an important drug for the
treatment of breast cancer, but only in the few patients
who are Her2 positive.4 This challenge is further com-
pounded by the evident complexity of most cancers,
involving multiple mutations and alterations that generate
the cancer phenotype and, thus, requiring therapeutic
strategies that can match the complexity with equally
complex combination regimens.5–7 Clearly, it is critical to
develop methods to stratify cancers into homogeneous
subgroups, representing common mechanisms of dis-
ease, to then allow development of combination thera-
peutics that target these mechanisms.

Melanoma is no exception to this paradigm, with pre-
vious work highlighting substantial heterogeneity in the
disease. Multiple studies have documented chromo-
somal copy number alterations, loss of heterozygosity,
mutations in oncogenes, and differences in gene expres-
sion patterns in melanomas. A total of 14 regions of copy
number gains and 13 regions of copy number losses are
significantly present in a large collection of cultured mel-
anoma cells and in primary melanomas.8 From a hierar-
chical clustering analysis of the cultured melanomas, six
main groups and two major subgroups reflective of copy
number alterations and mutational status of particular
oncogenes can be identified. Significant differences in

Supported by awards from the National Cancer Institute (RO1CA104663,
RO1CA106520, and U54CA112952 to J.R.N.).

Accepted for publication February 14, 2011.

The content of this article is solely the responsibility of the authors and
does not necessarily represent the official views of the National Cancer
Institute or the National Institutes of Health.

Disclosures: D.S.T. has received commercial research grants of greater
than $10,000 from Scherring-Plough and Adherex and honorarium from
the speaker’s bureau at Novartis and is a member of the Scientific Advi-
sory Board at Genetech; J.R.N. has ownership interest of greater than
$10,000 in Expression Analysis and is a member of the Scientific Advisory
Board at Millenium Pharmaceuticals and Qiagen.

Supplemental material for this article can be found at http://ajp.
amjpathol.org or at doi: 10.1016/j.ajpath.2011.02.037.

Address reprint request to Joseph R. Nevins, Ph.D., Institute for Ge-
nome Sciences and Policy, Duke University Medical Center, Box 3382,

Durham, NC 27710. E-mail: j.nevins@duke.edu.

2513

http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://dx.doi.org/10.1016/j.ajpath.2011.02.037
mailto:j.nevins@duke.edu


2514 Freedman et al
AJP June 2011, Vol. 178, No. 6
DNA copy numbers and mutational status of particular
oncogenes have also been documented in melanomas
exposed to different degrees of UV light.9–11 These dis-
tinctions are further amplified in analyses of differences in
gene expression patterns in melanomas. Differential
gene expression patterns and the distinct biological pro-
cesses associated with such patterns have been docu-
mented in normal skin, common nevi, dysplastic nevi,
radial and vertical growth phase melanomas, metastatic
melanomas, and thin versus intermediate and thick tu-
mors.12–16 In addition, a subtype of melanomas exhibit-
ing differential regulation of genes involved in the ability
of melanomas to form primitive tubular networks in vitro, a
characteristic of highly aggressive metastatic melano-
mas, has been identified.17

Previous work18,19 has focused on the development of
genomic signatures that can measure various aspects of
cancer biology, including the deregulation of various on-
cogenic pathways. More important, we showed that
these genomic signatures accurately predict responses
to various targeted therapeutics in vitro, in vivo, and in
human studies, a result seen in other independent stud-
ies.20 The opportunity to use these genomic signatures to
dissect the complexity of melanoma provides a more
in-depth understanding of the disease subtypes com-
pared with an analysis of global gene expression data
obtained from each patient. In short, we propose that
gene expression signatures predicting activation of cell
signaling pathways known to be critical for defining the
oncogenic state can serve to dissect the heterogeneity of
melanoma and to provide opportunities to develop novel
therapeutic strategies. Given the 5-year survival rates of
patients with later-stage melanomas and the lack of a
complete understanding of the molecular mechanisms
involved in melanoma progression, genomic profiling of
melanoma samples has the potential to improve both the
effectiveness of therapeutics and our understanding of
the biological features of melanoma.21 Specifically,
genomic profiling has the potential to guide physicians to
the therapeutic agents that would be most effective in the
treatment of particular melanomas. In addition, genomic
profiling has the potential to assimilate the biological
characteristics of melanoma with its clinicopathological
characteristics. Therefore, we characterized melanoma
gene expression data from eight independent studies
publicly available through Gene Expression Omnibus
(GEO). We characterized gene expression patterns, bio-
logical processes, and the activity of oncogenic signaling
pathways that are associated with specific melanomas.

Materials and Methods

Human Melanoma Samples

Melanoma gene expression data from eight indepen-
dent studies publicly available through GEO were
characterized. A total of 303 samples comprising be-
nign nevi, primary melanoma, and metastatic mela-
noma were available from six independent data sets

(GSE3189, GSE4570, GSE4587, GSE4845, GSE7553,
and GSE8401), and a total of 76 samples comprising
in-transit melanoma were available from two indepen-
dent data sets (GSE10282 and GSE19293). The sam-
ples comprising the GSE3189 data set had a melano-
cyte content of �50%, with no mixed histological
characteristics, and the samples comprising the
GSE7553 data set contained �95% melanoma cells.
The percentage of tumor in the samples comprising the
other GEO data sets is not known. All gene expression
data used in the study were arrayed on the Affymetrix
HG-U133 platforms (Santa Clara, CA), and probes
were filtered to include only those probes present on
the HG-U133A array (Affymetrix, Santa Clara, CA).

Computer Hardware

Analyses were performed using a Dell desktop computer
with a 2.8 GHz Intel Pentium D CPU processor, 2 Gb
RAM, and running Microsoft Windows XP Professional
2002.

Preprocessing of Microarray Data of Human
Melanoma Samples

MAS5.0 normalized data for each sample were down-
loaded from GEO from previously published studies
(GSE3189, GSE4570, GSE4587, GSE4845, GSE7553,
GSE8401, GSE10282, and GSE19293). Only benign nevi
and primary, in-transit, and metastatic melanoma sam-
ples were used in the analyses. The MAS5.0 data were
filtered, resulting in data sets composed of only probes
present on Affymetrix Human Genome U133A 2.0 arrays.
The MAS5.0 normalized filtered data were then log2
transformed in MATLAB R2008a with the Bioinformatics
and Statistical toolboxes installed using the following
code:

��a�load�‘dataset.txt’�;
��a2�log2�a�; a2�a2 � 1� � 1;
��dlmwrite�‘newfile.txt’,a2,‘\t’�;

To normalize these samples, bayesian factor regres-
sion modeling (BFRM) was used to normalize the data
against 69 Affymetrix probes for human maintenance
genes using 15 principal components.22,23 BFRM was
performed as previously described to generate a normal-
ized log2 MAS5.0 version of the data set.19 More details
of this software are available at http://www.stat.duke.edu/
research/software/west/bfrm/index.html.

Preprocessing of Microarray Data of Pathway
Signatures

The methods used to generate the oncogene and tumor
suppressor pathway signatures have been described in
great detail,19 and the training data are publicly available
at http://data.genome.duke.edu/breast_subgroups. The
Binreg ver2 program and tutorial are available at http://
www.duke.edu/�dinbarry/BINREG. By using Affymetrix

Expression Console version 1.0, .CEL files were MAS5.0

http://www.stat.duke.edu/research/software/west/bfrm/index.html
http://www.stat.duke.edu/research/software/west/bfrm/index.html
http://data.genome.duke.edu/breast_subgroups
http://www.duke.edu/dinbarry/BINREG
http://www.duke.edu/dinbarry/BINREG
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normalized. The MAS5.0-normalized data were then log2
transformed in MATLABR2008a with the Bioinformatics
and Statistical toolboxes installed using the following
code:

��a�load�‘dataset.txt’�;
��a2�log2�a�; a2�a2 � 1� � 1;
��dlmwrite�‘newfile.txt’,a2,‘\t’�;

All microarray statistical analyses were performed us-
ing R/Bioconductor software.

Pathway Analysis

The training data and conditions used to generate pat-
terns of pathway activity in the human melanomas were
performed as previously described.18,19 All training data
comprised only probes present on Affymetrix Human Ge-
nome U133A 2.0 arrays and were MAS5.0 log trans-
formed.

The signatures were applied to the human melanoma
samples using the parameters in Table 1.

Unsupervised Hierarchical Clustering

Unsupervised hierarchical clustering was performed us-
ing Cluster 3.0. The MAS5.0 log-transformed BFRM-nor-
malized data were imported into Cluster 3.0. Data were
filtered using the SD (Gene Vector) property, resulting in
a data set containing 1000 genes. The filtered data were
then mean centered for genes and arrays. Hierarchical
clustering of the adjusted data, genes, and arrays was
performed using the correlation (uncentered) similarity
metric and average linkage clustering. Data matrices and
array trees were viewed using Java TreeView 1.0.12.

Gene Set Enrichment Analysis

The GenePattern gene set enrichment analysis (GSEA)
module was used to run analyses on a server at the
Broad Institute.24,25 MAS5.0 log-transformed BFRM-nor-
malized gene expression data for the appropriate sub-
group of human melanoma samples were uploaded. The
c2.all.v2.5.symbols.gmt [Curated] gene set database

Table 1. Parameters Used in the Application of Oncogenic Pathw

Signature AKT �CAT EGFR ER E2F1 E2F3 H

No. of genes 250 85 500 125 150 350
No. of

metagenes
3 2 2 2 2 2

Burn-in 1000 1000 1000 1000 1000 1000
Iterations 5000 5000 5000 5000 5000 5000
Skips 1 1 1 1 3 1
CI 95% 95% 95% 95% 95% 95%
RMA or

MAS5.0
MAS5.0 MAS5.0 MAS5.0 MAS5.0 MAS5.0 MAS5.0 MA

Quantile
normalized

Yes Yes Yes Yes Yes Yes

Shift scale Yes Yes Yes Yes Yes Yes
Binreg Ver 2 2 2 2 2 2

CAT, catenin; EGFR, epidermal growth factor receptor; ER, estrogen
inositol 3-kinase; PR, progesterone receptor.
and the HG_U133A.chip chip platform file from the GSEA
website were used. A total of 1000 permutations were
performed. All other default parameters were used. Gene
sets significantly enriched at a nominal P value �1%
were noted and used for subsequent GATHER analyses.

GATHER Analysis

Genes composing gene sets significantly enriched at a
nominal P value �1% were identified using the
c2.all.v2.5.symbols.gmt [Curated] gene set file from
the GSEA website. Identified genes were annotated for
gene ontology codes using GATHER.26 For analyses of
in-transit melanoma, the most positively expressed
probe identifiers that define the in-transit melanoma
subgroups in the unsupervised hierarchical clustering
analysis were annotated for gene ontology codes using
GATHER.26

BRAF and NRAS Mutation Status

In-transit melanoma tumor samples were homogenized
using a miniature bead beater (Biospec Products,
Bartlesville, OK) and lysing matrix A (MP Biomedicals,
Solon, OH), total RNA isolated (RNeasy; Qiagen, Valen-
cia, CA), and cDNA synthesized (first-strand cDNA syn-
thesis; Roche, Indianapolis, IN). PCR amplification of
BRAF and NRAS mutation sites (exons 15 and 3, respec-
tively; primer sequences are given later) was performed
on a Stratagene Robocycler 96 using HotStart TaqDNA
polymerase (Qiagen) in a 50-�L reaction volume (reac-
tion settings are given later). Purified PCR products
(Qiaquick PCR purification kit; Qiagen) were sequenced
by the Duke University DNA Analysis Facility using the
Applied Biosystems Dye Terminator Cycle Sequencing
system with AmpliTaq DNA Polymerase and ABI 377
PRISM DNA sequencing instruments and analysis soft-
ware (Applied Biosystems, Carlsbad, CA). PCR amplifi-
cation of BRAF was performed using the following primer
sequences (208 bp product spanning nt 118 to 325 of
exon 15): 5=-TCATAATGCTTGCTCTGATAGGA-3= (for-
ward) and 5=-AGTGGAAAAATAGCCTCAA-3= (reverse).
The following reaction settings were used: 1 cycle at
95°C for 15 min; 2 cycles at 94°C for 45 s, 70°C for 1.5
min, and 72°C for 1.5 min; 2 cycles at 94°C for 45 s, 68°C

natures to the Human Melanoma Samples

MYC p53 p63 PI3K PR RAS SRC STAT3

500 250 75 250 250 350 85 125
2 3 3 2 3 2 3 3

1000 1000 1000 1000 1000 1000 1000 1000
5000 5000 5000 5000 5000 5000 5000 5000

1 1 1 1 1 1 1 1
95% 95% 95% 95% 95% 95% 95% 95%

AS5.0 MAS5.0 MAS5.0 MAS5.0 MAS5.0 MAS5.0 MAS5.0 MAS5.0

Yes Yes Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes Yes Yes
2 2 2 2 2 2 2 2

r; HER2, human epidermal growth factor receptor 2; PI3K, phosphatidyl-
ay Sig

ER2

250
3

1000
5000

1
95%
S5.0 M

Yes

Yes
2

for 1.5 min, and 72°C for 1.5 min; 2 cycles at 94°C for
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45 s, 66°C for 1.5 min, and 72°C for 1.5 min; 2 cycles at
94°C for 45 s, 64°C for 1.5 min, and 72°C for 1.5 min; 25
cycles at 94°C for 45 s, 62°C for 1.5 min, and 72°C for 1.5
min; and 1 cycle at 72°C for 10 min. PCR amplification of
NRAS was performed using the following primer se-
quences (150 bp product spanning nt 170 to 320 of exon
3): 5=-CACACCCCCAGGATTCTTAC-3= (forward) and 5=-
TGGCAAATACACAGAGGAAGC-3= (reverse). The fol-
lowing reaction settings were used: 1 cycle at 95°C for 15
min; 38 cycles at 94°C for 45 s, 57°C for 1.5 min, and
72°C for 1.5 min; and 1 cycle at 72°C for 10 min.

Results

Current classification systems for melanoma are mor-
phology based, with the main prognostic factors being
Breslow tumor thickness, tumor ulceration, and meta-
static involvement of the regional lymph nodes.27 Previ-
ous work28 has identified various cell signaling networks
in melanoma tumorigenesis, and several genetic altera-
tions have been identified in melanoma. Nevertheless,
the extent to which these studies fully detail the complex-
ity of the disease process has been limited. In contrast,
other work18,19 has clearly shown the power of gene
expression profiling to both dissect the complexity and
reveal functional information regarding the conse-
quences of the various genetic alterations. In addition,
these studies have shown the potential to link these ex-
pression profiles with therapeutic opportunities. As such,
we have sought to make use of available melanoma ex-
pression data to provide a characterization of the dis-
ease.

Identification of Distinct Subgroups of Primary
and Metastatic Melanomas

Given previous work in the study of other cancers that
suggest substantial heterogeneity of disease, an ability to
examine many samples is critical to develop an under-
standing of the full range of the heterogeneity. Thus, we
initially characterized gene expression data from benign
nevi and primary and metastatic melanomas from six
independent studies publicly available through GEO. A
total of 303 samples were available from six independent
data sets (Table 2).

A major challenge in making use of these combined
data is the inherent laboratory-specific batch effects that
confound DNA microarray data, a characteristic clearly
evident in the principal component analysis of the overall
gene expression characteristics of these data sets (see
Supplemental Figure S1A at http://ajp.amjpathol.org).
Clearly, there are substantial batch differences in these
data sets that would confound any attempt to identify
meaningful biological variation. To address this chal-
lenge and normalize the data from the independent stud-
ies, we log transformed the MAS5.0 data and used BFRM
to normalize the data against 69 Affymetrix probes for
human maintenance genes using 15 principal compo-
nents.22,23 A principal component analysis after the ad-

justment shows that the variability present between the
initial data sets has been eliminated (see Supplemental
Figure S1B at http://ajp.amjpathol.org).

As a starting point in the analysis of patterns of gene
expression that characterize melanoma, we performed
an unsupervised hierarchical clustering analysis of the
gene expression data encompassing the 303 samples.
As shown in Figure 1, a complex series of patterns of
gene expression was evident and coincided with the
three distinct forms of disease state in this collection of
samples: benign nevi, primary melanoma, and metastatic
melanoma.

Based on patterns of gene expression, the primary
melanoma samples could be subdivided into two distinct
groups (P1 and P2 in Figure 1). The metastatic samples
were distinct and clustered into three distinct groups
based on patterns of gene expression (M1, M2, and M3).
The benign samples clustered together with the P1 sub-
group of primary tumor samples. The other primary tumor
subgroup (P2) was distinct and more similar to the M2
metastatic cluster (P2/M2).

Taken together, this analysis emphasizes the hetero-
geneity of melanoma, both primary and metastatic, and
suggests that one class of the primary tumors has char-
acteristics in common with metastatic disease, suggest-
ing the possibility that these tumors might represent a
more advanced stage of the primary disease.

Biological Distinctions in Primary and Metastatic
Melanoma Subgroups

To gain insight into the biological processes represented
in the gene expression patterns associated with the pri-
mary and metastatic melanoma subsets, we used two
approaches. First, we used GSEA to identify sets of
genes showing a statistically significant difference be-
tween subsets.24,25 To facilitate the interpretation of the
biological processes associated with the identified sets
of genes, we used an annotation tool called GATHER.26

An analysis of the genes in the P2 subset of primary
melanomas compared with the P1 subset reveals enrich-
ment for cell proliferation ontology terms (see Supple-
mental Table S1, A and B, at http://ajp.amjpathol.org),
perhaps consistent with the observation that these tu-
mors may represent a more advanced or aggressive form

Table 2. Data Sets Used for Expression Data Analysis

GEO data set

Benign
nevi

samples

Primary
melanoma
samples

Metastatic
melanoma
samples

GSE3189 18 45 0
GSE4570 0 0 6
GSE4587 2 4 4
GSE4845 0 4 83
GSE7553 0 14 40
GSE8401 0 31 52

Data are given as the number of each sample in each data set. Six
independent data sets (publicly available through GEO) were used; mel-
anoma gene expression data were obtained from these data sets for the
current study.
with characteristics similar to metastatic disease.

http://ajp.amjpathol.org
http://ajp.amjpathol.org
http://ajp.amjpathol.org
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As a second approach to characterize the distinctions
in the melanoma subgroups, we used expression signa-
tures developed to measure the activity of various signal-
ing pathways. These signatures were previously used to
measure the activity of the signaling pathways in various
tumor samples.18,19 At the same time, these pathway
signatures have predicted sensitivity to various cancer
drugs that target components of the relevant pathway
and, thus, provide the further benefit of potentially iden-
tifying therapeutic options for subgroups of patients. We
predicted the activity of these pathways in the collection
of melanoma samples, leading to the generation of prob-
ability measures that has previously reflected the state of
pathway activity, as measured by various biochemical
assays. These probability scores are then used in a man-
ner similar to gene expression values to provide a picture
of patterns of pathway activity in the samples (Figure 2).

It is evident from this analysis that the various sub-
groups of primary and metastatic melanoma exhibit dis-
tinct patterns of pathway activity. In particular, the anal-
ysis of the distinctions in the P1 and P2 subgroups of
primary melanoma reveals an increase in MYC pathway
activity in the P2 samples versus the P1 samples (Figure
3A). In light of the enrichment for cell proliferation gene

Figure 1. Unsupervised hierarchical clustering analysis of melanoma exp
using BFRM. Expression data were filtered in Cluster (see Materials and
matrix, columns represent samples; rows, genes; red, higher expression v
defines the sample in each column. Subgroups of samples exhibiting sim
coded within the array tree.
sets in the P2 subgroup, as previously described, this
result suggests that a primary distinction in these two
forms of primary tumor is proliferative capacity, with the
subgroup exhibiting an increase in this phenotype also
being similar to one of the metastatic subgroups.29,30 The
P1 subgroup exhibits an increase in p53 pathway activity
and a decreased proliferative phenotype; other work31

has shown that wild-type levels of p53 have been asso-
ciated with melanomas, exhibiting improved prognoses.

Distinct distributions of the activity of certain onco-
genic signaling pathways can also be seen among the
three subgroups of metastatic melanoma (Figure 3B).
The M1 subset exhibits higher activity of the �-catenin
pathway. Consistent with these results, nuclear accumu-
lation of �-catenin has been shown in melanoma.32 Two
other pathways exhibiting subset-specific increases in
activity are the epidermal growth factor receptor and
estrogen receptor pathways, with the M1 and M2 subsets
exhibiting higher activity of these two pathways. Consis-
tent with these results, epidermal growth factor receptor
expression has been shown in metastatic melanoma.33

Interestingly, one study34 has shown clinical activity of
tamoxifen in metastatic melanoma, with dacarbazine plus
tamoxifen treatment resulting in improved response rates
and survival compared with dacarbazine treatment alone

data. MAS5.0 gene expression data were log transformed and normalized,
s) to 1000 genes that are represented in the data matrix. Within the data
nd green, lower expression values. The color bar below the data matrix
expression patterns, as defined by the nodes of the array tree, are color
ression
Method
alues; a
among women. The M1 subset also exhibits elevated
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levels of the SRC pathway. Consistent with these results,
c-Src expression has been shown in malignant mela-
noma.35 The M3 subset exhibits elevated levels of the
SRC and STAT3 pathways. Interestingly, dasatinib has
inhibited migration and invasiveness of melanoma cells in
vitro and reduced metastases of melanoma in vivo.36,37

Figure 2. The status of oncogenic signaling pathway activities analyzed in
heat map, columns represent samples; and rows, the oncogenic signaling pa
a blue to red continuum, respectively. The color bar below the heatmap def
subgroups, as shown in Figure 1 (the array tree above the heat map define
CAT indicates catenin; EGFR, epidermal growth factor receptor; ER, estroge
inositol 3-kinase; PR, progesterone receptor.
STAT3 has also played a role in the metastatic potential of
melanoma, with the presence of constitutively activated
STAT3 being able to change poorly metastatic melanoma
cells into highly metastatic tumor cells.38 Thus, perhaps
the M3 subset of metastatic melanomas, which exhibit
elevated levels of activity of SRC and STAT3, is a more

ign nevi, primary melanoma, and metastatic melanoma samples. Within the
nalyzed. Pathway activities on a low to high continuum are represented by
sample in each column. The samples are ordered according to the defined
groups of melanoma samples exhibiting similar gene expression patterns).

tor; HER, 2 human epidermal growth factor receptor 2; PI3k, phosphatidyl-

Figure 3. Statistically significant differences in
the distribution of activities of particular onco-
genic signaling pathways identified between
subgroups of melanoma samples. A: Oncogenic
signaling pathways, as indicated, determined to
exhibit statistically significantly distinct levels of
activity between the two primary melanoma sub-
groups (P1 and P2). B: Oncogenic signaling
pathways, as indicated, determined to exhibit
statistically significantly distinct levels of activity
among the three metastatic melanoma sub-
groups (M1, M2, and M3). Relevant sections of
the heat map from Figure 2 are reproduced. The
differences in the distribution of activities of par-
ticular oncogenic signaling pathways within
samples composing one subgroup of melanomas
compared with another subgroup of melanomas,
as indicated, were quantified with a Mann-Whit-
ney U-test. CAT indicates catenin; EGFR, epider-
mal growth factor receptor; ER, estrogen recep-
the ben
thway a
ines the
s the sub
tor; STAT3, signal transducer and activator of
transcription.
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highly aggressive subset. There are three distinct forms
of metastatic melanomas revealed by this analysis.

Classification and Biological Features of
In-Transit Melanoma Metastases

Approximately 20% of patients experiencing a recur-
rence of melanoma will present with in-transit metasta-
ses, multiple lesions in the epidermal, dermal, or subcu-
taneous layers of tissue of an extremity between the
primary melanoma site and the regional lymph nodes.
Many of these in-transit melanoma metastases will ulti-
mately metastasize to distant sites. Although in-transit
melanoma is referred to as a type of metastatic mela-
noma, the relationship between the gene expression pat-
terns of in-transit melanoma and other melanoma states
is not known.

By using the framework of gene expression patterns
established from the unsupervised hierarchical clustering
analysis of benign nevi, primary melanoma, and meta-
static melanoma, we investigated the similarities and dif-
ferences in gene expression patterns of in-transit mela-
noma samples in relation to the other tumors. To eliminate
any inherent laboratory-specific batch effects between

Figure 4. Unsupervised hierarchical clustering analysis of in-transit mela
normalized, using BFRM. Expression data were filtered in Cluster (see Mater
data matrix, columns represent samples; rows, genes; red, higher expressio
defines the sample in each column.
the data sets composed of benign nevi, primary mela-
noma, and metastatic melanoma and those composed of
in-transit melanoma metastases, we log transformed the
MAS5.0 data and used BFRM to normalize the data
against 69 Affymetrix probes for human maintenance
genes using 15 principal components22,23 (see Supple-
mental Figure S2 at http://ajp.amjpathol.org). Unsuper-
vised hierarchical clustering of the gene expression data
from the in-transit melanoma metastases revealed that
in-transit melanoma metastases from a given patient
clustered together and exhibited similar patterns of gene
expression (data not shown).39 As shown in Figure 4, the
in-transit melanoma metastases could be subdivided into
two distinct groups based on patterns of gene expression
(IT1 and IT2 in Figure 4). One of the subgroups of in-
transit melanomas (IT1) was similar to one of the classes
of primary tumor and the benign nevi samples (B/P1 in
Figure 1), whereas the other subgroup (IT2) was distinct
and more similar to one of the metastatic clusters (M3 in
Figure 1).

To gain insight into the biological processes repre-
sented in the gene expression patterns associated with
the in-transit melanoma subgroups, we again took two
approaches. First, an analysis of the gene expression
pattern characteristic of the IT1 subset of in-transit mela-
noma reveals an enrichment for ontology terms associ-

xpression data. MAS5.0 gene expression data were log transformed and
Methods) to 1000 genes that are represented in the data matrix. Within the

; and green, lower expression values. The color bar below the data matrix
noma e
ials and
ated with development, whereas positively expressed

http://ajp.amjpathol.org
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genes of the IT2 subset of in-transit melanoma reveal an
enrichment for immune response ontology terms, further
emphasizing the distinct biological characteristics under-
lying the two subsets of in-transit melanoma (see Supple-
mental Table S2, A and B, at http://ajp.amjpathol.org).
Second, we used the gene expression signatures devel-
oped to measure the activity of various oncogenic sig-
naling pathways to further characterize the in-transit mel-
anoma subgroups. Consistent with a high degree of
genetic heterogeneity and complexity within in-transit
melanoma, no single oncogenic signaling pathway is de-
regulated in all in-transit melanoma metastases; rather,
several oncogenic signaling pathways are deregulated in
individual in-transit melanoma metastases (see Supple-
mental Figure S3 at http://ajp.amjpathol.org). Although
many oncogenic signaling pathways exhibit deregulation
in individual in-transit melanoma metastases, deregula-
tion of particular oncogenic signaling pathways is asso-
ciated with in-transit melanoma metastases of given
BRAF or NRAS mutation status (see Supplemental Figure
S4 at http://ajp.amjpathol.org). In particular, deregulation
of the E2F3 and p53 pathways is more commonly asso-
ciated with in-transit melanoma of mutant BRAF status;
deregulation of the Her2, p53, and progesterone receptor
pathways is more commonly associated with in-transit
melanoma of mutant NRAS status; and deregulation of
the E2F1 and ER pathways is more commonly associated
with in-transit melanoma of wild-type BRAF and NRAS
status.

Discussion

The advances in genomic technologies have led to the
recognition that human cancers, including melanoma,
exhibit enormous complexity of somatic gene alterations
that produce a substantial heterogeneity of disease. This
realization has profound implications for the treatment of
patients with cancer because it is clear that distinct
mechanisms and, thus, disease biological features are
associated with this complexity and heterogeneity. As
such, an ability to dissect and understand the distinct
forms of various cancers is a key in the development of
strategies for personalized cancer treatment.

Dissecting and understanding the distinct forms of var-
ious cancers from data generated from biochemical as-
says or genomewide expression analyses are challeng-
ing. Biochemical assays for the mutation status of
individual genes give limited insight into the underlying
biological features of tumors. Although genomewide ex-
pression analyses yield gene expression data for thou-
sands of genes, interpreting the underlying biological
characteristics of tumors from such information is difficult.
From gene expression profiling, it is difficult to interpret
the impact that functions associated with certain genes
relevant to a profile have within the context of the whole
genome. In addition, it is difficult to assess the biological
activity of relevant functions across individual tumors
composing a data set.

In light of these challenges, there are several advan-

tages to classifying the distinct forms of various cancers
based on alterations in signaling pathways that have
contributed to oncogenesis. This basis for classification
can do the following: i) separate tumors into more homo-
geneous groups with common underlying biological fea-
tures, ii) identify coderegulation of multiple oncogenic
pathways that have combined to contribute to transfor-
mation, and iii) provide a potential strategy to couple
therapeutic options with distinct subgroups of disease.
Previous work18,19 has demonstrated that, in many in-
stances, the prediction of pathway activation using an
expression signature can, at the same time, predict sen-
sitivity to therapeutic agents that target a component of
that pathway.

The work we describe herein identifies at least two
distinct forms of primary melanoma, two distinct forms of
in-transit melanoma, and three distinct forms of meta-
static melanoma on the basis of patterns of gene expres-
sion and pathway activity, providing a starting point to-
ward dissecting the heterogeneity of the disease.
Moreover, we suggest that the characterization of distinct
forms of melanoma on the basis of patterns of pathway
activity provides a potential approach to further under-
stand the biological features underlying individual mela-
nomas and to develop new therapeutic options for sub-
groups of patients. The approach of matching targeted
therapies in rational ways with characteristics of patient
melanomas has shown promise because most patients
with metastatic melanoma with a BRAF V600E mutation
exhibited a complete or partial response to treatment with
PLX4032, an inhibitor of mutant BRAF kinase.40,41 In ad-
dition to pathway activity, several immune response
genes have been identified as being differentially ex-
pressed in tumor samples.42,43 This observation has led
our group to initiate a study to immunologically charac-
terize patient in-transit tumors and lymph nodes using
polychromatic flow cytometry to evaluate immune re-
sponse, microarray-based analysis of gene expression,
and histological measurements to determine the role of
the immune system in defining a tumor’s biological fea-
tures and predicting response to therapy. Furthermore, a
therapeutic phase 1 regional isolated limb infusion trial
using melphalan as the chemotherapeutic agent, fol-
lowed by systemic therapy with ipilimumab (an anti–cy-
totoxic T-lymphocyte antigen 4 antibody), has been initi-
ated at Memorial Sloan-Kettering Cancer Center to
examine how manipulation of the immune system can
affect regional tumor response and augment the potential
systemic immune response generated by a regional cy-
totoxic chemotherapeutic agent. Although our results
cannot identify which subgroups of melanomas would be
most likely to be effectively treated by ipilimumab, an
analysis of the gene expression pattern characteristic of
the IT2 subset of in-transit melanoma reveals an enrich-
ment for ontology terms associated with immune re-
sponse. In future work, it will be informative to stratify
melanomas based on patterns of oncogenic signaling
pathway deregulation using prospectively collected sam-
ples in a clinical trial to ensure that results are obtained
from samples containing equivalent tumor content. In
addition, samples from a clinical trial would allow exam-

ination of clinical outcome data, including patient sur-
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vival, recurrence, and response to therapy, within the
context of the subgroups of melanoma, thus enabling
better classification. This approach to classifying mela-
noma has the potential to yield a new diagnostic tool that
could be used to optimize treatment selections for sub-
groups of patients with melanoma.

Although surgery is usually effective in treating earlier-
stage melanomas, patients with later-stage melanomas
have poor prognoses because the current therapeutic
options exhibit limited efficacy.44 Single-agent chemo-
therapies, most commonly dacarbazine, have clinical ac-
tivity in melanoma, but response rates for patients treated
with such agents are low (ie, �25%). Response rates for
patients treated with dacarbazine along with another
class of chemotherapy agent are higher (ie, 14% to 37%);
however, in randomized clinical trials, such combination
chemotherapy regimens have not demonstrated superior
results when compared with single-agent chemotherapy
regimens. Three-drug regimens (ie, cisplatin, vinblastine,
and dacarbazine) and four-drug regimens (ie, cisplatin,
dacarbazine, carmustine, and tamoxifen) exhibit 30% to
50% response rates. However, it is unclear whether com-
bination chemotherapy regimens are superior treatment
regimens compared with single-agent chemotherapy
treatment regimens because these combination chemo-
therapy regimens are associated with increased toxicity
in patients.

Clearly, new approaches are needed to improve re-
sponse rates and overall survival rates for patients with
later-stage melanomas. A focus on targeted therapies
that carry reduced toxicity is appealing but only if they
can be matched in a rational way with the characteristics
of the patient’s tumor. The approach we describe herein,
using biological characterizations that distinguish differ-
ent forms of melanoma, is one method toward that goal.
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