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Abstract
A central problem in de novo drug design is determining the binding affinity of a ligand with a
receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-
ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification
Scoring Algorithm), uses an empirical scoring function to describe the binding free energy.
Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen
bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants
using a linear model. Atom types have been introduced to differentiate the parameters for VDW,
H-bonding interactions and metal chelation between different atom pairs. A training set of 492
protein-ligand complexes was selected for the fitting process. Different test sets have been
examined to evaluate its ability to predict experimentally measured binding affinities. By
comparing with other well known scoring functions, the results show that LISA has advantages
over many existing scoring functions in simulating protein-ligand binding affinity, especially
metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to
demonstrate that the energy terms in LISA are well designed and do not require extra cross terms.
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Introduction
Structure-based drug design, especially de novo drug design, has made significant strides in
the past several decades. New lead compounds are designed based on the structure of
proteins and by applying the principles of molecular recognition such as optimization of van
der Waals interactions and hydrogen bonding. A good candidate for a drug molecule should
have an appropriate binding affinity for its target receptor, which is typically in the low
nanomolar (nM) range. While reported pKi values range between 3 and 10,1 binding
affinities weaker than the nM range may result in modest efficacy while affinity for multiple
targets could lead to undesired side effects. Additionally, with the development of fragment
based methods,2,3 small molecules (< 200–300 MW) are being studied that generally have
low affinity. Thus the chemical space of interest to medicinal chemists covers a wide range
of binding affinites. Being able to accurately predict the binding affinity for these molecules
is a central problem of structure-based drug design and remains a very significant scientific
challenge.5–7
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There are three types of scoring functions, physics based,8–11 knowledge-based,12–20 and
empirical.21–25 Physics based scoring functions are parameterized using quantum
mechanical calculations including available experimental information. These scoring
functions are also known as “force-field” scoring functions where each term has a physical
significance. However, these functions are computationally intensive relative to simpler
scoring functions because the associated energy landscapes associated are generally rugged
and therefore expensive to evaluate.26,27 Knowledge-based scoring functions use statistical
atom pair potentials derived from structural databases to yield a score. However, these atom-
pair potentials, known as the potentials of mean force (PMF) are typically pair-wise (the
probability of finding atoms A and B at a distance r), which means it unfortunately ignores
the influence from surrounding atoms. Another limitation arises from the inaccessibility of
the reference state where the interatomic interactions are zero. Moreover, knowledge-based
scoring functions assume that all of the distance space is accounted for, which given the
limited dataset available is unlikely to be the case for all chemotypes encountered in the
drug discovery process. Empirical scoring functions are computationally efficient, because
of their simple energy functions, but this also highlights their major limitation, the training-
set-dependent parameterization. Energy functions with simple forms can mask the
relationship between binding affinity and the crystal structures used to build the model.
Hence, the training process only derives parameters that represent a compromise between
the simplicity of the energy expression and the nuances of the interactions seen in protein-
ligand complexes.

In this work, we have developed a new empirical scoring function that is readily applicable
to de novo drug design. This function, Ligand Identification Scoring Algorithm (LISA),
aims to compensate for the common disadvantages of empirical scoring functions, with a
focus towards Zn metalloproteins. Because van der Waals (VDW) interactions and hydrogen
bonding are very important in protein-ligand complexes, different atom types have been
introduced in order to simulate these interactions between different atoms. A desolvation
term has also been included in order to capture solvation changes resulting from protein-
ligand complexation. Among protein-ligand complexes with high binding affinity (pKd>7),
metal chelation between active-site zinc ions and metal-binding “warheads” (e.g.,
carboxylate, sulphonamides, etc.) in ligands is widely observed; hence, we have also built a
Zn chelation term into LISA to capture this class of interactions.

Methods
Training set

It is well appreciated that both the size and the quality of a protein-ligand training set will
affect the final form and effectiveness of a scoring function. Since our scoring function
focuses on the evaluation of binding affinity for de novo drug design, the ligands in our
training set are required to have binding affinity data and structures that reflect what drug
candidates experience upon complexation. Hence in this work, we have chosen our training
set from the PDBbind v2010 refined data set28,29 and have further curated this set to further
ensure quality. (1) Every complex in the training set is a crystal structure with an overall X-
ray resolution ≤ 2.5 Å. Complexes solved by NMR techniques are currently not included in
our selection; (2) Crystal contacts are interchain or intermolecular contacts that occur as the
result of the protein crystallization process, and they are found in all X-ray structures.
Crystal contacts may influence the conformation of a protein and where a ligand binds to the
protein, by providing further crystal contacts or even un-natural binding pockets. In order to
avoid protein-ligand complexes affected by crystal contacts in our training set, we
eliminated all complexes in our training set that Søndergaard et al.30 found to have crystal
contacts affecting the ligand. (3) Only the complexes with Kd and Ki values have been
introduced into our training set. Complexes with only IC50 values were not included. (4) We
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focused on complexes with pKi or pKd's distributed from 3 to 11, because binding affinities
in this range are pharmaceutically relevant. Potential inconsistencies in Kd values due to
experimental conditions such as pH, temperature, etc. were not taken into account. (5) Based
on pharmacokinetic considerations, as embodied by Lipinski's rule-of-five, an orally
administered drug should have no more than 5 hydrogen bond donors, no more than 10
hydrogen bond acceptors, an octanol-water partition coefficient log P of less than 5, and a
molecular weight under 500 daltons.4 In the present research, we did not focus on the first
three rules in order to not limit our training set. For example, in prodrug design, the
hydrogen bond donor or acceptor atoms can be masked, and the logP value can change once
in vivo. On the other hand, we did retain the MW rule because complexes with high MW
ligands could have “fooled” our scoring function to become artificially dependent on MW
through the van der Waals terms. Hence, we decided that complexes containing ligands with
MW>600 would be excluded. 2061 complexes from PDBbind v2010 refined data set were
filtered based on the above 5 criteria and 492 complexes were left in our training set. Both
ligand and protein atoms were classified (atom-typed) as defined in Table 1.

Scoring Function
The empirical scoring functions in current use are based on the “Master Equation” model31,
where overall binding free energy (ΔGbind - see eqn. 1) can be decomposed into independent
free energy contributions (see eqn. 2). Each component is the sum of a certain type of
structure-related empirical energy terms (the fi(x,y,z) term) multiplied by a weighting
coefficient ci (see eqn. 3). The Master Equation represents the linear combination of these
components.

(1)

(2)

(3)

In the current research, our scoring function was decomposed into the following interaction
categories: van der Waals interactions, hydrogen bonding, desolvation (hydrophobic effect)
and metal chelation.

van der Waals interactions—van der Waals interactions are one of the most important
interactions present in protein-ligand complexes. The computed potential energy depends on
the distances between pairs of atoms. The Lennard-Jones 6–12 term is employed in this
work to reflect van der Waals interactions when two atoms approach during the binding
process between a protein and a ligand.

(4)
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(5)

In eqn. 4 and 5, rij is the distance between atom i in the protein and atom j in the ligand. σij
is the interatomic separation at which repulsive and attractive forces balance (the sum of the
van der Waals radii of atom i and atom j). ε is the potential well depth, subscripts A and B
refer to atom type A and B. εAB can be expressed using εA and εB according to eqn. 6. Thus,
based on the εA parameters taken, from the work of Cornell et al.32, we can compare our
well depth values obtained via regression with force field based values.

(6)

We scanned for all of the atom contacts between the ligands and their protein receptors from
the 2061 complexes found in the PDBbind v2010 data set and categorized those contacts
based on the atom types listed in Table 1. Some interaction types were not included in this
scoring function because (1) they rarely appeared as protein/ligand contacts; (2) they added
little substantive improvement to our model based on linear regression results, whose 95%
confidence intervals included 0. In the present work, VDW interactions between all pairs of
atoms are calculated according to the atom types listed in Table 2.

We set a distance cutoff of 3 to 5.5 Å to avoid non-physical attractive or repulsive forces.
Moreover, to avoid the large repulsions introduced by overlapped atom pairs, we set an
upper limit for fij(x,y,z). Cutoffs of 0.5, 1, and 5 pKd units have all been tested, and a value
of 0.5 was found to yield the best model. Hence, for any pair of atoms, if fij(x,y,z). exceeds
the 0.5 pKd cutoff, it is set to 0.5. Finally, the εAB parameter was obtained by linear fitting
using our training set.

Hydrogen bonding—Hydrogen bonding is another important interaction found in most
protein-ligand complexes. Such an interaction occurs when a lone pair on a (typically) polar
group approaches a hydrogen atom bound (typically) to a polar atom like N or O. The
principle variable associated with hydrogen bonding is the distance between the hydrogen
bond donor and hydrogen bond acceptor, dHA, the bond angle between the hydrogen bond
donor and acceptor, θD-H-A and the H---A-AA angle defined by the hydrogen bond acceptor
σH-A-AA. In the present work, we modeled hydrogen bonding as defined by eqn. 7, which is
an adaptation from earlier work of Vedani and co-workers (see eqn. 7).33,34 In this
description of hydrogen bonding, dHA, θD-H-A and σH-A-AA have defined optimal values.
Departure of dHA, θD-H-A and σH-A-AA from these optimal values destabilizes the hydrogen
bond interaction.

(7)

The f1(dHA) distance function is modeled as a Lennard-Jones 6–12 potential with the well
depths to be obtained from linear regression. In the two angle functions, the optimal angle
for θD-H-A is 180°, while for σH-A-AA, the optimal angle depends on the type of acceptor
atom and on the nature of the molecule in which it is embedded. Based on previous

Zheng and Merz Page 4

J Chem Inf Model. Author manuscript; available in PMC 2012 June 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



research,33,34 σo is 135° for carbonyl, carboxyl, and sulfonamide oxygen atoms, 109.5° (sp3)
or 120° (sp2) for hydroxyl oxygen atoms.

The spatial orientations of hydrogen atoms are normally not revealed by X-ray
crystallography at the resolutions typically seen for protein-ligand complexes (>1.5 Å).
Although hydrogen atoms can be added later, energy minimization is usually required to
optimally position them. Adding hydrogen atoms could become problematic especially
when hydrogen atoms could be placed into multiple positions, as in cases where a drug
molecule has multiple tautomeric states.35 Therefore, we modified eqn. 7 in order to resolve
the hydrogen atom positioning problem (see Figure 1). For the bond distance, dHA, we use
the distance between the hydrogen bond donor and the hydrogen bond acceptor dDA in place
of dDA. For the two angle variables, we use the following approximations: Based on an
analysis of the geometry of hydrogen bonds in which imidazole, serine, threonine, tyrosine,
adenine, cytosine, water, and sulfonamide fragments act as hydrogen-bond acceptors,34,36

up to 90% of the angles θD-H-A range within 180° ± 30°, which means that cos2(θD-H-A - θ0)
ranges from 0.75 to 1. Hence the assumption was made that θD-H-A can be set to 180°, which
results in f2(θD-H-A) = 1. Moreover, as a result of this approximation, the value of σH-A-AA is
equal to that of σD-A-AA. With these simplifying approximations with regards to the
hydrogen atom positioning, the hydrogen bond interaction between a ligand and its target
protein can be quantified with explicit variables.

In summary, hydrogen bonding in our model is described as follows:

(8)

For carbonyl, carbxyl and sulfonic oxygen atoms, σ0=135°, and for hydroxyl oxygen atoms
σ0=109.5°.

The εAB terms are decided upon based on the atom types found in the hydrogen bond donor
and acceptor pair. Two atom types for hydrogen bonds are used in this work, O and N. So
the εO-O and εO-N terms need to be derived in the fitting process. Hydrogen bond lengths are
always shorter than the sum of VDW radii and longer than covalent bonds. Based on O—
H⋯O and N—H⋯O bond lengths, r0 for the O⋯⋯O distance was set to 2.8 Å and the
N⋯⋯O distance was set to 2.9 Å in our model, with an upper limit for rij of 5 Å.
Furthermore, hydrogen bond “saturation” was also considered in our model. One lone
electron pair can form one hydrogen bond with only one polar hydrogen atom and vice
versa. In order to avoid over saturation in our computations, the program scans the atoms in
the ligand and protein. With the labels we have assigned to each atom, the program
determines the number of polar hydrogen atoms within 3.5 Å of a “potential” H-bond
acceptor. Next, the program determines the formation of a hydrogen bond using the
following principles: When an H-bond donor has n hydrogen atoms bonded (n ≥ 1), it will
form hydrogen bonds with the nearest n H-bond acceptors; When an H-bond acceptor has n
lone pairs (n ≥ 1), it will form hydrogen bonds with the nearest n H-bond donors.

Desolvation—Desolvation causes changes in the entropy as well as in enthalpy of the
ligand and its target protein. This effect is very difficult to accurately characterize since it
involves complicated ligand-water, protein-water, and water-water interactions before and
after binding. Different algorithms have been used in other empirical scoring functions. In
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this work, we associated the free energy change caused by the desolvation effect with the
binding surface area. Significant advancements have been made over the last several
decades in the computation of molecular surfaces,37,38 but most are computationally too
expensive for this work because we will evaluate thousands of protein-ligand complexes.
Thus, a novel method was created to reflect the binding surface area with a grid-based
algorithm.

First, the effective distance between the ligand and its target protein, within which the
desolvation effect occurs, is set to 5 Å. An atom from the ligand (protein) would be judged
to be “within the binding surface” if any atom from the protein (ligand) is less than 5 Å from
it. In the second step of the computation, the program defines a box to cover the atoms from
both the ligand and protein marked as “within the binding surface”, and create regularly-
spaced grids within the box. The grid spacing used is 0.5 Å. Distances between the grids and
every single atom in the box are computed. If a distance between a grid and an atom is less
than the van der Waals (VDW) radius of the atom, the grid is marked as “within the atom”,
otherwise, the grid is marked as “outside the atom”. Third, grid points marked as “within the
atom” are translated by 0.5 Å along the Cartesian axes and if a grid point is re-identified as
“outside the atom” after one of these translations, the grid point is labeled as a “boundary
atom” of either the ligand or protein. Because the grid points are closely spaced, we identify
the sum of the grid points marked as “boundary atoms” as qualitatively reflecting the
binding surface area of the either ligand or protein. Hence, the mean value of the sum of
boundary atom grid points, of both the ligand and protein, represents the binding surface
area used in this work.

(9)

Metal Chelation—Metal chelates are observed in numerous metalloprotein-ligand
complexes as metal binding “warheads“.39 Scanning the pdbbind v2010 database, numerous
chelates between ligands and Cu, Fe, Mg can be found for protein-ligand complexes where
the pKd is higher than 6, but interestingly these metal binding warheads do not show as a
significant effect on the binding affinity as was observed in the case of Zn. Ligands use
different “warheads“ to chelate zinc ions such as O, N, S. We organized the ligands into
different categories and assigned different parameters for their corresponding models. It is
very important to design an appropriate model for the Zn chelation term. We started with
ligands with N as “warhead” because they show the strongest Zn chelation effect.

When the observed pKd is higher than 7 for a metalloenzyme-ligand complex, N-Zn
chelation is generally observed. For pKd values ranging from 7 to 11, we found 38
acceptable (no crystal contacts, etc.) complexes containing Zn-N chelation interactions in
the PDBbind v2010 database. Ultimately, all these complexes consisted of Carbonic
anhydrase II as receptor and a sulfonamide as ligand. The structure of the tetrahedral active
site is formed by three nitrogen atoms from imidazole groups (from His residues) and a
nitrogen atom from sulfonamide. Some examples are shown in Figure 2.

Although VDW interactions, hydrogen bonding and desolvation effects also exist in these
complexes, Zn chelation is still a significant effect in binding. From the calculation of the
interactions listed above, we found that for complexes without Zn chelation, who have high
binding affinity (pKd>7), the sum of VDW interactions between C3 and C2

( ) was always high (see atom types in Tables 1 and 2). However,
for those complexes with Zn chelation whose pKd ranged above 7, VDW interactions
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between C3 and C2 was not as high (see Table 3). This phenomena shows that Zn-N
chelation is balanced with VDW interactions in high binding affinity complexes, which to
some degree demonstrates that Zn chelation may be the dominant interaction in
metalloenzyme complexes with high pKds. A more detailed comparison is shown in Table 3.

Given the importance of Zn chelation in metalloprotein-ligand complexes, a mathematical
model for Zn-ligand chelation needs to be built. We need to figure out the relationship
between all factors and their contributions to binding affinity. First, a direct comparison
between the chelate structure and binding affinity were made. From Figure 3C we see that
when the distance between the ligand nitrogen and Zn is around 2 Å, binding energy is
likely to reach its maximum, and decreases when N---Zn distance moves away from 2 Å.
This has also been shown by Vedani and Huhta in their research.39 Then, we also examined
the relation between binding affinity and ligands' logP and molecular mass. From Figure 3A
and 3B, we cannot see clear trends of pKd changing with logP nor molecular mass of
ligands. This indicated that ligands' hydrophilicity and molecular weight factors on binding
affinity were excluded. Given this insight a function was constructed to model Zn chelation:

(10)

where r is the distance between the nitrogen in a ligand and Zn, δ is the distance at which
chelation affinity reaches its maximum.

We applied this model to all other Zn-ligand chelation cases. Besides Zn-N chelation, Zn-O
chelations are also widely seen among metalloprotein-ligand complexes. They include
monodentate ligands as carbonyl groups and phosphate groups, and bidentate ligands like
hydroxamic acid groups. There are also other ligands using employing Zn-S chelation, but
the available examples were few. From pdbbind v2010, we found 38 complexes with Zn-N
chelation (sulfonamide as ligands), 20 complexes with Zn-O chelation, 23 complexes with
Zn-O (hydroxamic acid as ligands) bidentate chelation and only 6 complexes with Zn-S
chelation. The equilibrium distances δ for different chelates were obtained from Vedani and
Huhta;39 δZn-O for a monodentate ligand was set to 1.961 Å, δZn-O for abidentate ligand was
set to 2.068 Å, δZn-N was set to 2.041 Å and interaction between Zn and S were ignored
because of too small training set.

The Final Expression—In summary our score has the following functional form:
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(11)

and for a detailed explanation of the terms see the discussion below.

Result and Discussion
Model Training Results

LISA's mathematical model included 17 descriptors to describe corresponding interactions
between certain types of atoms and 1 descriptor for the solvent effect. For the 2nd
(MVDW C3−C2/Car), 3rd (MVDWC3−N3/Npl3) and 5th (MVDW C3/C2/Car−S) terms, we combined
multiple interaction types and allowed them share one common weight, in order to decrease
the number of parameters to be fitted. Merging these interactions in this way is sensible
because they represent similar interacting atom types (In 2nd term, sp3 carbon - aromatic
carbon interaction was combined with sp3 carbon - sp2 carbon interaction, etc.), so our
observation is sensible.

Based on the mathematical model described in detail above, we performed linear fitting to
our training set of 492 complexes. Our scoring function is able to reproduce the binding
affinities of the entire training set with an R2 of 0.536 and an RMSD of 1.32 pKd,
corresponding to 1.86 kcal/mol in binding affinity at physiological temperature (310 K).
Leave-one-out cross-validation was also done for the training set with a Q2 of 0.503 and
RMSD of 1.38 pKd (1.94 kcal/mol).

Goodness of fit and the resultant parameters are listed in Table 4. Each parameter derived
from fitting reflects the weight factor for each term. We also provide the parameters for the
normalized data in order to eliminate the difference in scaling for all of the terms, because
(1) in most cases, carbons are more prevalent than other atoms in ligands, causing the scale
of for the VDW potential for carbon-carbon interactions to be larger than that of other
interactions; (2) SASA was described as surface area in LISA, while other terms in energy
units, so they have different variable scalings. Each term was scaled according to the
following formula:
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(12)

where Xi and  are the raw and normalized ith term values for interaction type i; Xi,min and
Xi,max are the minimum and maximum values for ith descriptor, respectively.

From the result shown in Table 4, we can compare the contribution of each interaction to the
predicted binding affinity. We find that the VDW interaction between sp3 hybridized carbon
atoms and unsaturated carbon atoms is the most important term in predicting binding
affinity. However, they outnumber other interactions by a factor of two or more. This
reflects the crucial effect of hydrophobic interactions in protein-ligand binding. However,
contributions of other interactions are not proportional to their contact number. Some types
of interactions, which are not so obvious, like VDW C3_N4 and VDW Car_Car, etc. have
considerable contributions to the binding affinity. This shows that for the design of new
ligands, simply increasing contact numbers in some cases may not increase binding affinity
effectively.

VDW interactions between all other atom pairs are neglected in this work for three reasons:
(1) εABS for some atom pairs show an unphysical negative contribution to the total binding
affinity based on preliminary fitting results, and as a result adding them into the scoring
function significantly lowered the correlation coefficient R2. Hence, they were neglected for
both a lack of physical interpretation and a lowering the goodness of fit. (2) 95% confidence
intervals derived for each descriptor should not include 0, otherwise the descriptor would be
regarded as statistically insignificant in the mathematical model. (3) VDW interactions
between some atom pairs like O and S, N and S etc. are rare in the training set. Adding them
into the scoring function would lead to the derivation of misleading parameters.

Presented in kcal/mol, εAB can be compared between our parameters and those derived by
Cornell et al for use in a force field designed for the simulation of proteins and nucleic
acids.32 From Table 5 we see that except for the well depths for VDW C3_N3, VDW C_S,
VDW C2_Npl3 and VDW Car_N3, most of our εAB parameters are generally very similar to
those derived by Cornell and co-workers. Graphical comparisons are shown in Figure 4.
This demonstrates that the VDW parameters derived herein are physically meaningful and
reliable to be used to estimate binding energies of protein-ligand complexes.

The SASA term is also important to binding affinity prediction. To further test the SASA
term, we tried grid densities of 0.1 Å and 1 Å. When using 1 Å as our grid density, the
correlation coefficient (R2) fell to 0.502 and RMSD fell to 1.38 for our training set
(R2=0.536 and the RMSD was 1.32 with our default 0.5 Å grid density). Using 0.1 Å as our
grid density, the correlation coefficient (R2) becomes 0.542 with a standard deviation of
1.31. Fitting results for the two grid densities (0.5 Å and 0.1 Å) were similar, but a 0.1 Å
grid density was much more computationally intensive than a 0.5 Å grid density. Hence, in
LISA we used 0.5 Å grid density throughout to simulate SASA.

Parameters for our chelation model are listed in Table 6. We can see both zinc-oxygen and
zinc-nitrogen chelation show significant contributions to the observed binding affinity.
However, compared to Zn-O chelation, Zn-N chelation plays a bigger role in the binding
affinity when the latter interaction is present. The reason for this is unclear, but
geometrically most of complexes containing zinc-nitrogen coordination retain structures
closer to tetrahedral than zinc-oxygen complexes. For Zinc-sulfur chelation, we couldn't
obtain reliable parameters due to the limited training set.

Zheng and Merz Page 9

J Chem Inf Model. Author manuscript; available in PMC 2012 June 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Validation of LISA
Lisa was validated for its ability to predict experimentally measured binding affinities using
three benchmarks. Then Artificial Neural Network (ANN) analysis was employed to
determine whether cross terms were needed or can improve LISA. ANN helps to analyze
correlations between LISA terms, and whether each term in LISA was well defined.

First, we introduced the entire PDBbind v2010 database with a total of 6772 protein-ligand
complexes. Using the same 5 criteria we used to choose our training set (see above), 2047
complexes were selected. Eliminating the complexes we used in our training set and other
test sets, 1399 complexes were left in our test set. Using this test set, LISA gave a Pearson
correlation coefficient r of 0.534 with a RMSD of 2.65 kcal/mol (see Figure 5)

We utilized two already constructed and widely used test sets built by Wang et al.41 and by
Muegge and Martin12. Wang's test set contains 100 diverse protein-ligand complexes, and
we obtained r=0.72, RMSD=2.32 kcal/mol using LISA. Comparison of LISA to other score
functions is presented in Figure 6, showing that LISA performs quite well on this test set.

Muegge and Martin's test set contains 77 diverse protein-ligand complexes from five protein
classes. Using our model we obtained an R2 of 0.68 and a RMSD of 1.42 or 2.01 kcal/mol.
For a detailed breakdown of each protein class, see Table 7. Complexes from class 1 were
chosen from serine proteases, where carbon-carbon interactions dominate. LISA yielded a
good correlation coefficient of R2=0.91, and a good RMSD value of 0.97 expressed in pKd
units or 1.38 kcal/mol. This shows that LISA models protein-ligand complexes dominated
by carbon-carbon contacts. Class 2 consisted of 15 Zn-O monodentate chelation complexes.
The correlation coefficient R2 derived from LISA was 0.93 and the RMSD was 0.89
expressed in pKd unit or 1.26 kcal/mol. Compared with other scoring functions, we believe
that LISA is more reliable in predicting metalloprotein-ligand binding affinities. Muegge
and Martin's class 3 test set consisted of complexes with very small ligands (L-arabinoses),
while class 4 contains larger ligands. LISA had comparatively poor results for these two
classes (R2=0.43 and RMSD=1.87 or 2.65 kcal/mol for class 3, R2=0.33 and RMSD=1.81 or
2.57 kcal/mol for class 4). This result to some degree proved that ligand size affect the
prediction of protein-ligand binding affinity and suggests future modifications of LISA
should consider very small and very large fragments in the training set. Several other score
functions struggled with these two classes, so this seems to be a general problem. For class
5, we obtained R2=0.83 and RMSD=1.89 or 2.35 kcal/mol.

We note that there is an overlap between the Wang and Muegge and Martin test sets and our
training set. For Wang's test set 12 complexes overlap, and for the Muegge and Martin test
set 10 complexes overlap. Both test sets have less than 10% overlap with the training set,
ensuring the reliability of our test set.

Following their earlierstudy, Wang and co-workers published another test of several widely
used scoring functions with a larger test set, the PDBbind v2002 refined set of 800 protein-
ligand complexes54 in 2004. We examined this test set to make a more comprehensive
comparison with other scoring functions using a much larger data set. Binding affinity data
was calculated by LISA and the performance was evaluated using the Pearson correlation
coefficient r, standard deviation (SD) and unsigned mean error (ME). Comparison between
the performance of LISA and other scoring functions can be seen in Table 8. In addition, we
found 123 complexes including metal-ligand contacts in this test set. For these
metalloprotein-ligand complexes, LISA reproduced an r of 0.77, SD of 1.09 and ME of
0.69. From the overall three test result comparisons, we believe that LISA perfoms well in
predicting binding affinity, especially for metalloprotein-ligand complexes.
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We also employed an Artificial Neural Network (ANN) to test the energy terms in our
scoring function. ANN training result can clearly reflect how much the interaction terms in a
scoring function correlate with binding affinity when judiciously controlling the number of
nodes in the hidden layers. While the ANN lacks a direct physical interpretation of the
interaction terms, and the training results do not provide access to the parameters, it can be
very useful in validating a scoring function model. Because ANN tries all possible
combinations between the input values to build up a relationship with the output value, if
ANN training shows a far better result than a linear fitting method, we can determine that
some cross terms need to be introduced into the scoring function. Thus, by observing the
convergence speed and comparing the goodness of fit, we can judge whether the energy
terms are well designed in our scoring function.

We used the LISA training set of 492 complexes to train our network, and designed a new
test set to test both LISA and the trained network. For the new test set, (1) We used the same
5 criteria in choosing complexes for the training set. (2) pKd values for the complexes in the
test set were distributed evenly from 3 to 11. Because for any fitting process, the goodness
of fit for the function varies in different regions of the output range, the test set should be
distributed evenly across its range of applicability in order to avoid false positive test results.
We searched for protein-ligand complexes related to the complexes in our training set,
which had similar ligands or pocket structures but different binding affinities compared to
the complexes in our training set. This was done with Binding MOAD.55 Finally we selected
41 complexes to be our test set.

ANN with a Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, a model of the
nonlinear fitting process, was employed in this work. Briefly, the ANN model is composed
of connections of the processing elements (nodes). The processing elements transfer data
from one bias to the next through activation functions until the output bias. A three-bias
model was used in the present work, for its higher tolerance to error and a comparatively
simple structure for training. For the number of hidden nodes, we employ the so-called
“self-generation of hidden nodes” method to include the fewest hidden nodes while
maintaining training precision. This analysis determined that five hidden nodes was the
optimal choice. The network passes through activation functions defined as sigmoid
functions; the tan-sigmoid function was selected as the activation function that defines the
transference from the input bias to the hidden bias. The log-sigmoid function was selected as
the activation function that defines the transference from the hidden bias to the output bias.

Using our new test set, LISA can reproduce pKd's with an R2 of 0.52 and RMSD of 1.20 or
1.71 kcal/mol. Trained ANN test result got R2 of 0.48 and RMSD of 1.92 kcal/mol. From
Table 9, we see that the ANN test result is no better than that of LISA, from which we can
conclude that the energy terms in LISA were well chosen and that no cross terms were
needed.

Conclusions
We have developed a new empirical based scoring function to evaluate binding affinity
between different protein and ligand pairs. The scoring function uses different models to
simulate van der Waals interactions, hydrogen bonds between different atom types and
desolvation. We have also included an explicit term to model metal ion chelation between
zinc and coordinating N and O ligand atoms. Our analysis suggests that we obtained
acceptable parameters for van der Waals interactions (using a 6–12 Lennard-Jones model)
through a comparison with standard force field parameters. We also collected data to
represent the chelation between Zn and different type of ligands. Interaction between Zn and
ligands containing N chelators was shown to be quite important is defining the observed
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binding affinity. Zn-O chelation also contributed to the observed binding affinity, especially
in the case of bidentate chelators like hydroxamic acids. This is an important feature in our
model that is largely ignored in other score functions. We also included desolvation into the
current model using a fast and novel surface area algorithm. When compared with other
scoring functions, LISA generally shows improved performance. An Artificial Neural
Network analysis was also used to confirm the goodness of fit and to demonstrate that cross
terms were not needed to improve our scoring function. The result suggests that
differentiating van der Waals interactions and hydrogen bonding by atom types may be a
good choice for empirical scoring functions, and that adding a metal chelation term
significantly improved the prediction of binding affinity to metalloprotein.
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Figure 1.
A simple description of the hydrogen bonding model
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Figure 2.
four examples of protein-ligand complexes with Zn-N ligand chelation. Fragments are
shown as ball-and-stick models.
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Figure 3.
Plots of pKd (y axis) vs. logP (logP values are derived using xlogP program40), pKd (y axis)
vs. molecular mass, and binding energy vs. the distance Å (x axis) between the ligand
nitrogen and Zn for the 38 complexes containing Zn chelation.
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Figure 4.
VDW potential well depth (εAB) by LISA vs. VDW potential well depth (ε'AB) by QM
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Figure 5.
LISA calculated pKi/pKd vs the experimental pKi/pKd for the PDBbind v2010 test set of
1399 protein-ligand complexes.
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Figure 6.
With the test set built by Wang,41 binding affinity comparison was done for LISA and some
well-known scoring functions, ITScore/SE,20 ITScore,19 X-Score,5 DFIRE,42

DrugScoreCSD,18 DrugScorePDB,15 Cerius2/PLP,43,44 SYBYL/G-Score,45 SYBYL/D-
Score,46 SYBYL/ChemScore,47 Cerius2/PMF,12 DOCK/FF,46 Cerius2/LUDI,31,48 Cerius2/
LigScore,49 SYBYL/F-Score,50 AutoDock.51
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Table 1

List of 20 atom types in LISA

Atom Type Description Hydrogen Bonding Donor/Acceptor? VDW radii

C3 sp3 hybridized carbon N/A 1.94

C2 sp2 hybridized carbon N/A 1.90

C1 sp hybridized carbon N/A 1.80

Car aromatic carbon N/A 1.85

N4 positively charged nitrogen N/A (if no H bonded) / Donor (if H bonded) 1.83

N3 sp3 hybridized nitrogen N/A (if no H bonded) / Donor (if H bonded) 1.87

N2 sp2 hybridized nitrogen N/A (if no H bonded) / Donor (if H bonded) 1.86

N1 sp hybridized nitrogen N/A 1.85

Nar aromatic nitrogen N/A 1.86

Nam amide nitrogen N/A (if no H bonded) / Donor (if H bonded) 1.83

Npl3 trigonal planar nitrogen N/A (if no H bonded) / Donor (if H bonded) 1.86

O3 sp3 hybridized oxygen Acceptor (if no H bonded) / Donor-Acceptor (if H bonded) 1.74

O2 sp2 hybridized oxygen Acceptor 1.66

S sulfur N/A 2.09

P phosphor N/A 2.03

F fluorine N/A 1.55

Cl chlorine N/A 2.00

Br bromine N/A 2.20

I Iodine N/A 2.40

Zn zinc cation N/A 1.20
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Table 2

List of atom types for the van der Waals interaction

Atom Type Description

C3 sp3 hybridized carbon

C2 sp2 hybridized carbon

Car aromatic carbon

N4 positively charged nitrogen

N3 sp3 hybridized nitrogen

N2 sp2 hybridized nitrogen

Npl3 trigonal planar nitrogen

O3 sp3 hybridized oxygen

O2 sp2 hybridized oxygen

S sulfur
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Table 3

Some example complexes showing the relations between sp3 hybridized Carbon & sp2 hybridized Carbon
VDW interaction, Zn chelation and pKd.

PDB Code VDW C3_C2 Zn Chelation pKd

1vkj −16.885 N/A 4.85

1a99 −12.084 N/A 5.70

1apb −15.76 N/A 5.82

1b58 −37.926 N/A 6.59

1lrh −28.539 N/A 6.82

1h2t −23.873 N/A 7.89

1fcy −60.245 N/A 8.52

1kdk −27.797 N/A 9.05

2fgu −45.694 N/A 9.18

1mrw −39.35 N/A 9.7

1df8 −42.823 N/A 9.92

1xpz −12.559 Y 7.08

1cny −15.87 Y 7.85

1ydb −3.7781 Y 8.24

1cim −12.885 Y 8.82

1cil −14.889 Y 9.43

1bnt −14.195 Y 9.89

1bnn −3.683 Y 10.00
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Table 8

Comparison of r, SD and ME from LISA and other scoring functions to the work of Wang et al.

Scoring Functions r SD ME

LISA 0.610 1.92 1.47

X-Score::HPScore 0.514 1.89 1.47

X-Score::HMScore 0.566 1.82 1.42

X-Score::HSScore 0.506 1.90 1.48

DrugScore::Pair 0.473 1.94 1.51

DrugScore::Surf 0.463 1.95 1.53

DrugScore::Pair/Surf 0.476 1.94 1.50

Sybyl::D-Score 0.322 2.09 1.67

Sybyl::PMF-Score 0.147 2.16 1.74

Sybyl::G-Score 0.443 1.98 1.56

Sybyl::ChemScore 0.499 1.91 1.50

Sybyl::F-Score 0.141 2.19 1.77

Cerius2::LigScore 0.406 2.00 1.57

Cerius2::PLP1 0.458 1.96 1.52

Cerius2::PLP2 0.455 1.96 1.53

Cerius2::PMF 0.253 2.13 1.71

Cerius2::LUDI1 0.334 2.08 1.66

Cerius2::LUDI2 0.379 2.04 1.62

Cerius2::LUDI3 0.331 2.08 1.67

GOLD::GoldScore 0.285 2.16 1.72

GOLD::GoldScore_opt 0.365 2.06 1.63

GOLD::ChemScore 0.423 2.00 1.56

GOLD::ChemScore_opt 0.449 1.96 1.52

HINT 0.330 2.08 1.65
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Table 9

ANN vs. LISA training and test results for the test set with 41 samples we have designed

training R2 test R2 training RMSD (kcal/mol) test RMSD (kcal/mol)

ANN 0.60 0.48 1.44 1.92

LISA 0.54 0.52 1.86 1.71
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