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Abstract
The ability to relate physical activity to health depends on accurate measurement. Yet, none of the
available methods are fully satisfactory due to several factors. This study examined the accuracy
of a multi-sensor board (MSB) that infers activity types (sitting, standing, walking, stair climbing,
and running) and estimates energy expenditure in 57 adults (32 females) 39.2 ± 13.5 years. In the
laboratory, subjects walked and ran on a treadmill over a select range of speeds and grades for 3
min each (six stages in random order) while connected to a stationary calorimeter, preceded and
followed by brief sitting and standing. On a different day, subjects completed scripted activities in
the field connected to a portable calorimeter. The MSB was attached to a strap at the right hip.
Subjects repeated one condition (randomly selected) on the third day. Accuracy of inferred
activities compared with recorded activities (correctly identified activities/total activities × 100)
was 97 and 84% in the laboratory and field, respectively. Absolute accuracy of energy expenditure
[100 – absolute value (kilocalories MSB – kilocalories calorimeter/kilocalories calorimeter) ×
100] was 89 and 76% in the laboratory and field, the later being different (P < 0.05) from the
calorimeter. Test–retest reliability for energy expenditure was significant in both settings (P <
0.0001; r = 0.97). In general, the MSB provides accurate measures of activity type in laboratory
and field settings and energy expenditure during treadmill walking and running although the
device underestimates energy expenditure in the field.
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Introduction
The ability to relate physical activity to health depends on its accurate measurement. In
clinical and population-based research, measuring physical activity is necessary because it is
a behavioral factor that plays a critical role in energy balance and in the etiology and
prevention of chronic disease (Helmrich et al. 1991; Pate et al. 1995; Leon et al. 1997;
Wannamethee and Shaper 2001; Knowler et al. 2002; Bianchini et al. 2002). Precise
information about physical activity is also needed to estimate the energy expenditure of
measured activities.

Research to refine and improve methods for measuring physical activity has been ongoing
for years (Chen and Bassett 2005; Warren et al. 2010). Although substantial progress has
been realized, none of the available methods are fully satisfactory because of problems
related to cost, convenience, and measurement error. The major challenge in establishing the
accuracy of any one method under free-living conditions has been the lack of a suitable gold
standard for comparison. Furthermore, methods must be evaluated not only for their efficacy
in measuring individual activity levels, but also for feasibility in population-based studies
(U.S. Department of Health and Human Services 1996).

To address limitations of existing methods, we developed a portable multi-sensor board
(MSB) that captures diverse cues from ongoing human movements to infer specific types of
activity (Lester et al. 2005, 2006; Brunette et al. 2005). The device uses novel pattern-
recognition approaches to identify activity type and speed of movement. The MSB also
provides contextual information not provided by current devices, for example, walking
indoors compared to outdoors, or walking in the proximal neighborhood compared to a
distal location because it measures activity in a real time and space continuum. The purpose
of this study was to evaluate our previously established methods for estimating physical
activity type in a larger group of volunteers under two experimental settings and to
determine if we could accurately estimate the energy expenditure of the identified activities.
We hypothesized that the MSB provides valid and reliable measures of major physical
activity types, including sitting, standing, walking, stair climbing, and running, and the
associated energy expenditure under both laboratory and field conditions.

Methods
Participants

Volunteers were recruited from a university and surrounding metropolitan area using print
media (e.g., fliers and newspapers). Interested individuals contacted study staff and were
screened for conditions limiting mobility using a questionnaire (ACSM 2006).
Demographics including age, sex, and height and weight were obtained by self-report. We
screened volunteers so that the sample would consist of a broad range of ages and body sizes
to ensure that our device would be applicable to a broader population. Potentially eligible
participants were then scheduled for an initial test at which time responses to the activity
questionnaire were reviewed, and eligible participants signed an informed consent form
reviewed and approved by the local Institutional Review Board.
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Procedures
Subjects completed three tests on separate occasions in the following order: laboratory,
field, and a repeat of either the laboratory or field test chosen at random as a measure of
test–retest reliability. Before the first test, with no shoes and wearing light (exercise)
clothing, subjects were weighed on a self-zeroing digital scale while height was obtained
using a wall-mounted stadiometer. Body mass index (BMI) was expressed as kg/m2. During
all tests, subjects wore a single MSB on the right hip, clipped to a fanny pack secured
around the waist, an Actical® monitor (Actical Software v2.1, Mini Mitter Company, Inc.,
Bend, OR, USA) on the left hip secured to a Velcro strap, and a heart rate monitor (model
T34, Polar Electro Oy, Kempele, Finland).

During the laboratory test, subjects were connected to a metabolic cart (ParvoMedics
TrueMax 2400, Sandy, UT, USA), used as the criterion measure of energy expenditure in
the laboratory. The system was calibrated before each test and sampled gas exchange every
30 s. Data collection forms were annotated with the time the devices were initialized and the
test was started, and a description of each stage in terms of time started and completed with
any explanatory notes (e.g., “nose clip came off”) to establish the actual activity performed
(“ground truth”), used as the criterion for activity type. Subjects walked or ran on a treadmill
over a select range of speeds and grades for 3 min each (see Table 1) while connected to the
calorimeter. The initial work stage was chosen at random. However, the four walking and
two running stages were always preceded and followed by brief periods of sitting/standing.
Any stage in which the subject’s heart rate exceeded 85% of the age-predicted maximum
was terminated, and the work rate was set to the next lowest stage for six possible work
stages.

In the field, subjects were connected to the Cosmed portable metabolic system (K4b2,
Cosmed Srl, Pavona di Albano, Rome, Italy), used as the criterion measure of energy
expenditure for field experiments. The MSB, Actical, and heart rate monitor were worn in
the same manner as the laboratory test. The field test lasted 10–15 min and consisted of a
scripted set of activities. Direct visual observation was used as the gold standard for activity
classification. Two experimenters conducted each data collection; one would verbally
instruct the subject using the script while the other recorded ground truth activities, times,
and any explanatory notes on a tablet PC. The script included the following activities
executed in order: (1) start data collection on the fifth floor of the building while sitting
down for 3 min; (2) stand, then walk to the elevator and descend to the main floor; (3) walk
across an atrium and then outside; (4) walk down a flight of stairs and then walk around an
inclined area outdoors; (5) walk back up stairs; (6) pick up a heavy object (~20 lb) and walk
around with it for a short distance; (7) place the object down and sweep for approximately
30 s; (8) finish sweeping and then walk back inside to the elevator; and (9) ascend back to
the fifth floor and walk back to the starting position and sit for 3 min.

Sensor board and data processing
The MSB platform consists of a small sensing unit (2 3/8″ × 3 1/8″ × 7/8″), Bluetooth sensor
node, and USB rechargeable battery board, weighing about 25 g total. The unit includes a
suite of multiple sensing (3-axis accelerometry, barometric pressure, humidity, temperature,
light, audio, and GPS), data storage, communication, and local computation abilities. The
main components of the system include: (1) an activity inference engine which classifies
activities into different types (sitting, standing, walking, running, cycling, and stepping); (2)
a step counter algorithm which uses signal analysis to detect steps and infer speed of
movement; and (3) prediction formulas (ACSM 2006) for converting the activity types listed
above, body weight, and horizontal and vertical velocity components into an estimate of
oxygen consumption. Energy expenditure is then computed using the estimate of oxygen
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consumption and the caloric equivalent per liter of oxygen consumed (i.e., 1 L of O2
liberates 5 kcal of energy) (ACSM 2006). This approach is similar to others (Zhang et al.
2004) where metabolic equivalent values (METs) (Ainsworth et al. 2000) were used to
estimate energy expenditure for detected movements.

The technical details of the MSB and approach for classifying activity type (Lester et al.
2005, 2006) and estimating energy expenditure (Lester et al. 2009) have been published.
Briefly, magnitude of acceleration is measured to avoid orientation-dependent effects and
used to compute six features consisting of fast Fourier transform (FFT) bands, magnitude
variance and standard deviation, and step speeds from a step counter four times per second;
these features are used as inputs into a naïve Bayes classifier that infers activity as one of the
major types listed above. Feature computation and classification is done inside the MSB
LIRA (library for the inference of real time activities). The current study validates models
that underwent machine learning using leave-one-out training as described in our previous
studies (Lester et al. 2005, 2006, 2009).

Statistical analysis
Descriptive information was computed as the mean and standard deviation (mean ± SD) or
percentage where appropriate. The criterion measure of energy expenditure was computed
using the average oxygen consumption and respiratory exchange ratio (RER) values
determined from the respective calorimeters over the entire test period, including all
transitions between activities, as described by others (Zhang et al. 2004). The average RER
was converted to a thermal (caloric) equivalent using published data (McArdle et al. 1996).
We calculated accuracy measures for activity inference using Eq. 1 and energy expenditure
(denoted as “C”) using Eqs. 2 and 3. Finally, we calculated sensitivity (number of true
positives divided by number of true positives + number of false negatives) and specificity
(number of true negatives divided by number of true negatives + number of false positives).

(1)

(2)

(3)

Accuracy measures are presented as mean percent ± SD with range. Differences in energy
expenditure accuracy for the MSB, Actical, and criterion were determined using a mixed
linear model. An unpaired t test was used to examine differences in energy expenditure
accuracy for the MSB by sex and an one-way ANOVA with means comparison using
Tukey’s studentized range test to examine differences in energy expenditure accuracy by
BMI category. Pearson’s correlation coefficient was calculated to examine the strength of
the relation between MSB energy expenditure and the criterion for each testing condition
and MSB energy expenditure between repeat tests for each testing condition as a measure of
test–retest reliability. Finally, agreement between the MSB and criterion was assessed using
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the method of Bland and Altman (1986). Statistical analyses were performed using SAS
version 9.2 (Cary, NC, USA), with significance defined a priori as P < 0.05.

Results
The study enrolled 57 subjects with 20–64 years of age. Data were unavailable from four
subjects because (1) the MSB malfunctioned on the first lab or field test in three subjects,
and each failed to return for subsequent testing and (2) in one subject, data were removed
because the nose clip came off during on the treadmill, and we were unable to form an
adequate seal between the subject’s face and the K4b2 mask during the field tests. This left a
final sample of 53 subjects. The total number of individual tests was 159 (53 subjects × 3
tests/subject). Our results are based on 148 total tests (93% of all possible tests), including
53 initial and 22 repeat laboratory tests, and 51 initial and 22 repeat field tests. The
discrepancy is due to five pre-data processing errors (e.g., files failed to record on the MSB
or were corrupted), from discovering two post-data processing errors (e.g., nose clip came
off during one additional treadmill test while the K4b2 unit was out of calibration during one
field test), and the remainder because some subjects failed to return for all test visits.
Descriptive data for the 53 subjects include age 40.0 ± 13.4 years, 55% female, 86% White,
not Hispanic, BMI 27.2 ± 4.3 kg/m2, and 20 normal weight, 19 overweight, and 14 obese
subjects.

Accuracy measures for activity inference and energy expenditure are provided in Table 2.
Overall, accuracy of inferred activities compared with the ground truth was 97% under
laboratory and 84% under field conditions. In the laboratory, inference accuracy was lowest
for running at 91% (91% sensitivity and 100% specific) and highest for walking at 99%
(99% sensitive and 96% specific), with about 97% accuracy (97% sensitive and 100%
specific) for sitting and standing, and less than 1% of activities that were unclassified
(returned as “null”). In the field, sitting and walking were correctly classified 97% of the
time with identical sensitivity and specificity for both activities. However, the lower overall
accuracy of activity inference in the field (84%) was due to 13% of activities being
unclassified.

The MSB energy expenditure was not different (P > 0.05) from the criterion measure in the
laboratory. However, Actical energy expenditure was significantly lower than both the MSB
and criterion in the laboratory test (both P < 0.001). In the field, MSB energy expenditure
was significantly lower than the criterion, and the Actical was significantly lower than both
the MSB and criterion (all P < 0.001). There were no differences in MSB energy
expenditure accuracy by sex or BMI category for either of test conditions (both P > 0.05).

Figure 1 shows the correlation (both P < 0.0001) between computed kilocalories from the
MSB and calorimeter in the laboratory (Fig. 1a) and field test (Fig. 1b). MSB energy
expenditure estimates between tests 1 and 2 were significantly correlated with each other in
both testing conditions (both P < 0.0001 and r = 0.97).

The bias plots shown in Fig. 2 for the laboratory (Fig. 2a) and field test (Fig. 2b) present the
degree of agreement between the MSB and criterion measure. The mean difference between
the MSB and criterion in the laboratory was −10.0 ± 12.4 kcal (dashed line), with upper
bound 14.2 and lower bound −34.2 kcal (long dash dot lines). In the field, mean difference
between the MSB and criterion was −12.8 ± 6.5 kcal (dashed line), with upper bound −0.2
and lower bound −25.4 kcal (long dash dot lines).
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Discussion
The MSB provides accurate estimates of physical activity type and energy expenditure
under laboratory and field conditions. Activity-type inference was substantially better for
laboratory than field activities, with 97 and 84% accuracy, respectively. Although these
values indicate that our approach performed quite well under both conditions, the difference
in accuracy between settings is not surprising because the field test consisted of a greater
range of activity types and less constrained activities that are more difficult to measure.

There are few methods currently in use to estimate activity type. For example, the intelligent
device for energy expenditure and activity (IDEEA) was shown to correctly identify and
quantify 32 types of human movements with a high degree of accuracy in a sample of 76
subjects (Zhang et al. 2003). Similarly, the DynaPort MoveMonitor objectively evaluates
gait and postures and was found to detect time spent walking and lying accurately but much
less so for sitting, standing, and stair stepping (Dijkstra et al. 2010). Using data from an
accelerometer in six subjects performing level walking, walking uphill, vacuuming, and
working at a computer in a laboratory setting, Pober et al. (2006) used quadratic
discriminant analysis and a Hidden-Markov model (HMM) to infer activity type. These
methods correctly identified activity type for 71 and 81% of the time points, respectively.
Troped et al. (2008) employed discriminant function analysis to identify the combination of
accelerometer and GPS variables that optimally predicted activity mode in a convenience
sample of ten adults who performed a prescribed set of activities in an outdoor (walking,
jogging, bicycling, and inline skating) and sedentary setting (driving an automobile). The
combination of accelerometer counts, steps, and GPS speed were able to correctly classify
activity type in 91% of the observations. We are unaware of other devices that measure
activity type, particularly for the kinds of activities we included in the field test; so, the MSB
is certainly among a handful of devices that are innovative in this regard. Nonetheless, there
are inherent limitations in all of these devices and methods, including ours, as will be
discussed in a subsequent paragraph. In general, the body of research is limited by
methodological studies with very small convenience samples, protocols employing a
restricted array of activities and settings, and cumbersome devices that require
individualized calibration.

Our device also performed quite well for estimating energy expenditure under both testing
conditions, although similar to activity inference, the MSB performed better in the
laboratory than in the less constrained field condition. In particular, accuracy in the field
suffered because subjects exerted an increased amount of energy sweeping and walking
while carrying a heavy load that the MSB was not able to detect. Instead, the MSB merely
detected walking and estimated energy expenditure based on the speed of walking alone.

Accuracy in the laboratory was slightly better when calculated using the average as in Eq. 2
(92 vs. 89%), although this approach is less robust because a device with equally large
positive and negative deviations from the standard will have an average difference that
approaches the standard, even though each individual measurement may have a large
magnitude of absolute error. This level of accuracy is comparable to that obtained by
IDEEA under similar laboratory testing (Zhang et al. 2004). Furthermore, the MSB was
superior to the Actical for estimating energy expenditure under both testing conditions. MSB
energy expenditure in the laboratory was, on average, only 10 kcal lower than computed
using the calorimeter, while the difference in the field was only about 13 kcal lower. In the
laboratory, the Bland–Altman plot (Fig. 2a) demonstrates that the direction of error is to
under rather than overestimate energy expenditure. In the field, the plot (Fig. 2b)
demonstrates that the MSB never overestimated energy expenditure. This may have clinical
implications because a device that overestimates energy expenditure could potentially lead
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the user to consume excess energy, believing they had expended more energy than they
actually had.

Although the results presented in this paper are from offline analysis, the MSB runs in real
time. Offline analyses were used because we needed to properly align MSB data to the
recorded calorimetry data and ground truth annotations to ensure appropriate validation.
This was done using a data-merging process to match the various data streams using their
respective timestamps. We compared a random sample of data using both methods, and the
differences between the offline/desktop and real-time versions were negligible. This is
important because, unlike other devices, data from the MSB can be provided to the user in
real time. The practical implication is that potentially valuable information on activity and
energy expenditure can be provided to the user as a form of instant feedback that could, in
turn, stimulate behavior change.

The low failure rate of the MSB, large sample size, variety of activities in the field, and
comparison to a “gold-standard” are particular strengths of the present study. However,
there are also several important limitations worth noting. First, accuracy for activity
recognition may be artificially high in the laboratory because we input the actual grade
performed due to the fact that we were unable to detect elevation changes on the treadmill.
Likewise, accuracy for activity recognition may be artificially high in the field because a
limited range of activity types were performed compared to a “real-world” situation.
Second, we included a commercially available monitor (Actical) during testing for
comparison to the MSB. However, device choice was merely out of convenience rather than
scientific merit, so it is unknown how well our MSB compares to other devices, such as the
more widely used Actigraph accelerometer. Finally, energy expenditure estimates were
influenced by a number of factors, as described below.

Resting energy expenditure was estimated using a MET value (3.5 ml O2 kg−1.min−1).
Although we could potentially improve energy expenditure estimates using subject-specific
measures of resting metabolic rate, the degree of improvement is probably small relative to
the burden of precisely measuring this component. Similarly, we used the caloric equivalent
per liter of oxygen consumed (5 kcal) to convert estimates of oxygen consumption to energy
expenditure. This value is indicative of carbohydrate oxidation and can lead to imprecision
in the estimate. However, we are not able to measure carbon dioxide production, and thus,
the precise fuel mixed used, though as noted above, the degree of improvement is probably
small. Likewise, use of prediction equations for energy expenditure likely led to error
because they are not applicable to all speeds and types of activities (e.g., the sweeping
motion in the field test). Similarly, accuracy of energy expenditure in the field was reduced
by our inability to distinguish between level and graded walking (i.e., the “walk around
inclined area outdoors” task). This was also the case for the ascending/descending step task;
the steps were located on an outdoor promenade and consisted of five steps on a gentle
grade that the MSB likely detected as walking instead of stair stepping. Although we
recently developed a method for extracting grade information from the barometric pressure
signal and GPS/GIS data sources (Lester et al. 2009), we were not able to fully implement
this approach in the present study. In the future, we could potentially improve the accuracy
by using a classifier method, as used for predicting activity type. Finally, we estimated the
energy expenditure using the entire period of activity including transitions when subjects
were not in steady state. Although this is a major source of error (see Lester et al. 2009 for
discussion), transition is a natural part of physical activity, particularly in regularly active
persons who frequently change from one activity to another. Future studies could extend the
findings presented here by using the doubly labeled water technique as the gold standard to
address the issue of steady state because the method provides a measure of total energy
expenditure over an extended period.
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Conclusion and future directions
The MSB provides acceptable measures of validity and reliability for estimating activity
type and energy expenditure under laboratory and field conditions. However, the device did
underestimate energy expenditure in the field. Our future work will be directed at improving
activity recognition and energy expenditure estimates under field conditions, and those
experiments will include a wider variety of activities. In some of our ongoing studies, we
have already witnessed how the system can use GPS, GIS, and barometric pressure data to
enhance the performance of the energy expenditure estimates by 5–10% during more natural
free-living conditions. Finally, our intent is to do away with the MSB as a stand-alone
device and instead integrate it directly into a mobile phone platform. Ideally, specific
elements of our platform and the analytic approach used to quantify activity type and energy
expenditure can be integrated into a mobile phone to create an “all-in-one” device that can
be worn discreetly to measure prolonged periods of physical activity and energy
expenditure. Ultimately, this device could have numerous practical and research applications
in the future for a variety of end users, including use for weight control and improving upon
national surveillance of physical activity.
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Fig. 1.
Relationship between average estimated energy expenditure (kilocalories) from the multi-
sensor board and measured energy expenditure from the calorimeter in the laboratory (a)
and field test (b). Values are provided as the total energy expenditure calculated during the
entire test period
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Fig. 2.
Bland–Altman bias plots for the laboratory (a) and field test (b). Kilocalorie average denotes
average of kilocalories from the multi-sensor board, and calorimeter and kilocalorie
difference is kilocalories from the multi-sensor board –kilocalories from the calorimeter.
The mean difference in energy expenditure between the MSB and criterion is represented by
the dashed line, with the 95% prediction intervals represented by long dash dot lines
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Table 2

Accuracy of the multi-sensor board and Actical for laboratory and field tests

Device Inference (%) Accuracy (%) Absolute accuracy (%) Energy expenditure difference (kcal)

Laboratory

 MSB 97.2 ± 2.9 92.1 ± 9.7 89.4 ± 6.6 −10.0 ± 12.4

86.0–99.2 66.6–124.6 66.6–98.5 −45.6 to 28.4

 Actical N/A 60.6 ± 10.5 60.6 ± 10.5 −44.5 ± 16.1*,†

N/A 36.6–86.7 36.6–86.7 −4.9 to −84.8

Field

 MSB 83.8 ± 3.7 76.0 ± 10.1 76.0 ± 10.1 −12.8 ± 6.5*

70.1–91.2 58.1–96.5 58.1–96.5 −1.2 to −26.0

 Actical N/A 65.5 ± 9.0 65.5 ± 9.0 −18.4 ± 6.9*,†

N/A 44.7–88.2 44.7–88.2 −4.6 to −33.0

Data for inference and accuracy are presented as the percent and standard deviation (SD) with the range indicated below, while the energy
expenditure difference is presented as the mean and standard deviation difference between the calorimeter and device in kilocalories (kcal).
Inference refers to measured activities from the multi-sensor board (MSB) compared to the recorded activity or “ground truth” (total number of
correctly identified activities/total number of activities performed × 100). Accuracy of the energy expenditure estimates are expressed as the
accuracy (total kilocalories computed from device/total kilocalories from the calorimeter × 100) and absolute accuracy {100 – absolute percentage
error, where absolute percentage error = [(total kilocalories computed from device – total kilocalories from the calorimeter)/total kilocalories from
the calorimeter] × 100}

*
Significant difference versus calorimeter at P < 0.001

†
Significant difference versus other device at P < 0.001
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