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Abstract
The serotonin2C receptor (5-HT2CR) is a member of the serotonin2 family of 7-transmembrane-
spanning (7-TMS) receptors, which possesses unique molecular and pharmacological properties
such as constitutive activity and RNA-editing. The 5-HT2CR is widely expressed within the
central nervous system, where is thought to play a major role in the regulation of neuronal network
excitability. In keeping with its ability to modulate dopamine (DA) neuron function in the brain,
the 5-HT2CR is currently considered as a major target for improved treatments of neuropsychiatric
disorders related to DA neuron dysfunction, such as depression, schizophrenia, Parkinson’s
disease or drug addiction.

The aim of this review is to provide an update of the functional status of the central 5-HT2CR,
covering molecular, cellular, anatomical, biochemical and behavioral aspects to highlight its
distinctive regulatory properties, the emerging functional significance of constitutive activity and
RNA-editing in vivo, and the therapeutic potential of inverse agonism.
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1. Introduction
Serotonin2C receptors (5-HT2CRs) are members of the 7-transmembrane spanning (7-TMS
or heptahelical) receptor superfamily, frequently referred to as G protein coupled receptors
(GPCRs). The 5-HT2CRs couple to multiple cellular signaling pathways and are involved in
the regulation of a variety of physiological functions and behaviors. Increasingly, 5-HT2CRs
are therapeutic targets for conditions such as schizophrenia, anxiety, depression, Parkinson’s
disease, drug addiction and obesity. The 5-HT2CR is the only 7-TMS receptor whose mRNA
undergoes adenosine-inosine editing events which change the coding for amino acids
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located within the putative second intracellular domain (i2) of the receptor. In in vitro
studies, RNA editing has a dramatic impact on the signaling characteristics of the 5-HT2CR.
In vivo, RNA editing efficiency differs in different brain regions and in response to various
drugs. Further, it has been suggested that alterations in RNA editing of the 5-HT2CR may be
involved in the etiology of different disease states such as schizophrenia and affective
disorders.

In this review, we discuss some of the various mechanisms that regulate the function of the
5-HT2CR and the implications for this regulation on various physiological functions and
behaviors controlled by this receptor.

2. Molecular pharmacological aspects in vitro
Like most, if not all, 7-TMS receptors, 5-HT2CRs couple to multiple cellular effector
systems. Perhaps the best studied effector coupled to 5-HT2CRs is the phospholipase C
(PLC) pathway. Albeit somewhat less well studied, other major effectors that are coupled
directly to 5-HT2CRs are the phospholipase A2 (PLA2) signaling cascade, the phospholipase
D (PLD) pathways and extracellular signal-regulated kinase (ERK) (for recent reviews see
Leysen, 2004; Raymond et al., 2006; Werry et al., 2006). 5-HT2CRs couple to PLC via Gq/
11 proteins (Chang et al., 2000) and can couple to PLD via Gα13 proteins (McGrew et al.,
2002), however, the signaling mediator for PLA2 activation is unknown. In addition to
phospholipid signaling pathways, 5-HT2CRs also activate desensitization mechanisms, such
as G protein coupled receptor kinase (GRK) (Berg et al., 2001b) and arrestin (Marion et al.,
2004). The receptor is also known to couple to pertussis toxin-sensitive G proteins (e.g. Gαi/
o; Alberts et al., 1999; Cussac et al., 2002; Lucaites et al., 1996) as well as to PDZ domain
containing proteins (Backstrom et al., 2000; Becamel et al., 2004). Consequently, the net
cellular effect of activation of 5-HT2CRs is a coalescence brought about by the concurrent
activation of several effector pathways within cells.

The second intracellular (i2) domain of 7-TMS receptors plays an important role in receptor
function. The highly conserved E/DRY motif is located in i2 at the cytosolic end of
transmembrane helix 3 and has been linked strongly to mechanisms of receptor activation
and G protein coupling (Flanagan, 2005). Many studies have provided evidence that E/DRY
motif and other residues within i2 are involved with direct coupling to G proteins (Burstein
et al., 1998; Moro et al., 1993; Sugimoto et al., 2004) or other signaling molecules
(Laghmani et al., 2005). In addition, i2 may participate in desensitization mechanisms such
as ß-arrestin binding, receptor internalization and downregulation (Marion et al., 2006).
Evidence also suggests that residues within i2 regulate the capacity of receptors to isomerize
thereby controlling the formation of active receptor conformations and constitutive receptor
activity (Alewijnse et al., 2000; Burstein et al., 1998; Flanagan, 2005; Rasmussen et al.,
1999; Scheer et al., 2000).

Editing of the 5-HT2CR mRNA leads to changes in amino acids in i2 starting just 2 residues
downstream from the E/DRY motif. mRNA transcripts of the human 5-HT2CR undergo
adenosine-to-inosine editing events at five sites which encompass amino acids 156-160
within the putative second intracellular loop of the encoded human receptor. In human brain,
the non-edited receptor contains the amino acids isoleucine, asparagine, and isoleucine (i.e.,
INI) at positions 156, 158 and 160, respectively. Consequences of RNA editing can produce
potentially 24 different isoforms of the human receptor; although RNA actually encoding for
about 14 different receptor isoforms has been detected (Fitzgerald et al., 1999). In rat,
adenosine-to-inosine editing events occur with the potential for generating 11 different
mRNA transcripts predicted to encode 7 different receptor isoforms (Burns et al., 1997).
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Importantly, differences in function of some edited receptor isoforms have been reported
(for review see Werry et al., 2008). Pharmacological characterization of two fully edited
isoforms (5-HT2C-VGV and 5-HT2C-VSV) has revealed decreases in agonist affinity
(Fitzgerald et al., 1999; Herrick-Davis et al., 1999; Niswender et al., 1999; Quirk et al.,
2001), potency (Berg et al., 2001a; Burns et al., 1997; Fitzgerald et al., 1999; Herrick-Davis
et al., 1999; McGrew et al., 2004; Price et al., 2001; Wang et al., 2000), ligand-independent
(constitutive) receptor activity (Berg et al., 2008; Herrick-Davis et al., 1999; Niswender et
al., 1999; Wang et al., 2000) and receptor-arrestin binding and internalization (Marion et al.,
2004) as compared with the non-edited receptor (5-HT2C-INI).

In addition to selectivity for receptor subtypes, agonists have selectivity for different
signaling pathways coupled to a single receptor subtype; a process known as ‘functional
selectivity’ (Berg and Clarke, 2006; Urban et al., 2007). It has been well-established that 5-
HT2C ligands can selectively regulate signaling pathways at the non-edited 5-HT2C-INI
isoforms (Berg et al., 1998, 2001a; Moya et al., 2007; Werry et al., 2005). We have found
that RNA editing results in a significant change in agonist functional selectivity for PLC
versus PLA2 signaling via 5-HT2C receptors (Berg et al., 2001a; 2008). For the fully-edited
isoforms, 5-HT2C-VSV and 5-HT2C-VGV, functional selectivity is lost (Berg et al., 2001a).
However, at the partially edited receptor, 5-HT2C-VNI, where a single amino acid
substitution of valine for isoleucine occurs at position 156 (I156V), the agonist functional
selectivity profile is substantially altered but not abolished (Berg et al., 2008). Interestingly,
agonists with greater relative efficacy for PLA2 vs. PLC at the non-edited receptor lost
preferential efficacy toward PLA2 in cells expressing the 5-HT2C-VNI receptor (i.e., agonist
relative efficacy for PLC and PLA2 were not different), whereas, agonists that were non-
selective for PLC vs. PLA2 at the 5-HT2C-INI receptor became selective for PLC at the 5-
HT2C-VNI isoform, due to reduced relative efficacy for PLA2. However, agonists with
preferential activity toward PLC retained their PLC signaling preference. Therefore, agonist
functional selectivity toward the PLA2 signaling cascade appears to be sensitive to effects of
RNA editing. Overall, these data suggest that the i2 domain of the 5-HT2CR plays a major
role in providing agonist-specific information to the signal transduction machinery of the
cell.

It has been well documented that 5-HT2CRs exhibit a great deal of ligand-independent
activity toward PLC. RNA editing appears to reduce the ability of 5-HT2CRs to signal
constitutively to PLC (Berg et al., 2008; Herrick-Davis et al., 1999; Niswender et al., 1999;
Wang et al., 2000). Reduction in constitutive receptor activity could arise from reduced
capacity of the edited receptors to isomerize to an active conformation(s) capable of
coupling to the Gq-PLC-IP pathway or to reduced G protein coupling of the active receptor
conformation(s). Several reports suggest a role for the E/DRY motif (especially the arginine
residue) in i2 of 7-TMS receptors in regulating the capacity of receptors to isomerize
between inactive and active conformations (Alewijnse et al., 2000; Burstein et al., 1998;
Flanagan, 2005; Rasmussen et al., 1999; Scheer et al., 2000). However, amino acids in the i2
region of 7-TMS receptors close to the conserved DRY sequence are also known to be
involved in G protein coupling (Burstein et al., 1998; Moro et al., 1993; Sugimoto et al.,
2004). Given the proximity of the amino acids altered by RNA editing to the E/DRY region,
either mechanism could be responsible for the reduced constitutive activity of the edited 5-
HT2CRs toward PLC.

To address the mechanism responsible for reduced constitutive activity of 5-HT2CR edited
isoforms, we compared the Gq-PLC-IP coupling efficiency of the RNA edited isoforms 5-
HT2C-VNI , 5-HT2C-VSV, and 5-HT2C-VGV occupied by either the full agonist, 5-HT, or the
partial agonists, LSD and DOI, to that of the non-edited 5-HT2C-INI receptor over a range of
receptor densities. The slope of the regression line of the receptor density- response curve is
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a good measure of the receptor-G protein coupling efficiency (Kang and Leeb-Lundberg,
2002). We found that the slopes of the regression line between receptor density and response
to maximal occupancy by agonist (full or partial) for RNA-edited receptors (5-HT2C-VSV, 5-
HT2C-VGV, 5-HT2C-VNI) were equal to, or greater than, that for the non-edited 5-HT2C-INI
isoform (Berg et al., 2008). One notable exception was LSD which is known not to activate
the 5-HT2C-VGV isoform (Backstrom et al., 1999; Berg et al., 2001a; Fitzgerald et al., 1999).
These results are consistent with the idea that the coupling efficiency of the agonist-
occupied receptors to Gq-PLC signaling is not reduced by RNA editing.

To examine the possibility that reduced constitutive activity of RNA edited 5-HT2C
isoforms is due to reduced ability to isomerize, we measured thermal stability of the
receptors. Constitutively active receptors with a high capacity to isomerize are structurally
unstable as a consequence of reduced stabilizing intramolecular constraints and therefore
denature more readily at elevated temperature (Alewijnse et al., 2000; Gether et al., 1997;
Samama et al., 1997). Receptor instability can be measured by the kinetics of the loss of
ligand binding at elevated temperature (Claeysen et al., 2001). Surprisingly, we found that
there was no difference in the thermal stability of the 5-HT2C-VNI, 5-HT2C-VSV or 5-
HT2C-VGV isoforms from the highly constitutively active non-edited 5-HT2C-INI receptor
(Berg et al., 2008). This suggests that RNA editing does not alter the isomerization capacity
of 5-HT2C receptors.

If there is no difference between the edited and non-edited 5-HT2C isoforms for either G
protein coupling efficiency or isomerization capacity, how can the difference in constitutive
receptor activity be explained? We suggest that the reduced constitutive activity toward PLC
of the edited 5-HT2C isoforms is due to reduced efficiency of G protein coupling of the
unoccupied receptor and that agonist occupancy promotes active receptor conformations that
differ from that of unoccupied receptors such that edited and non-edited 5-HT2CRs have an
equal ability to activate Gq-PLC-IP signaling in the presence of agonist.

In summary, RNA editing can produce different 5-HT2CR isoforms with different signaling
profiles of agonist-stimulated activity and reduced levels of ligand-independent receptor
activity. The dynamic nature of the expression profiles of RNA edited isoforms along with
their differential distribution throughout the brain may allow for an exquisite level of fine-
tuning of serotonergic neurotransmission via the 5-HT2CR. Moreover, the exciting
possibility of development of drugs which have selectivity for 5-HT2CR isoforms may
provide for enhanced therapeutic benefit with reduced adverse effects.

3. Functional neuroanatomy of the 5-HT2CR
Localization of the mRNA which encodes for the 5-HT2CR is restricted almost exclusively
to the central nervous system, with levels undetectable in liver, kidney, intestine, heart, and
lung (Julius et al. 1988). The distribution of the 5-HT2CR protein tracks closely with that of
the transcript in regions that receive innervation from 5-HT neurons arising from the
midbrain raphe nuclei (Pompeiano et al. 1994). The concordance of mRNA and protein
expression (Burnet et al. 1995; Lopez-Gimenez et al. 2001a, 2001b; Mengod et al. 1990a,
1990b; Pompeiano et al. 1994; Wright et al. 1995) suggests predominant postsynaptic
localization of these receptors, although the 5-HT2CR may be presynaptically localized in
some brain areas (Lopez-Gimenez et al. 2001a; Mengod et al. 1990a, 1990b; Pompeiano et
al. 1994). The functional significance of the 5-HT2CR within the limbic-corticostriatal
circuits is of current interest given the importance of this circuit in psychiatric and
neurological disorders including anxiety, depression, drug addiction, obesity, Parkinson’s
disease, and schizophrenia. The limbic-corticostriatal circuitry is an integrated collection of
nuclei and pathways which functionally connects the prefrontal cortex (PFC), ventral
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striatum, amygdala, and hippocampus, among other nuclei. This circuit is integral in
coordinating reward-related associative learning and motivated behaviors that contribute to
multiple aspects of psychiatric disorders (for reviews, see Hyman et al. 2006; Kalivas and
Volkow 2005; Kauer and Malenka 2007).

The distinct patterns of expression of the 5-HT2CR, which is prominently expressed in
neurons throughout the limbic-corticostriatal circuit, enables differential modulation of
neurotransmission by the 5-HT2CR. For example, microinjection studies indicate that the 5-
HT2CR in the PFC and the nucleus accumbens (NAc) do not play an active, tonic role in
motor control (Filip and Cunningham 2003; Ramos et al. 2005). However, separate
populations of the 5-HT2CR within the PFC and NAc differentially influence the stimulated
output of the mesocorticoaccumbens pathway, which is seen as both altered efflux of DA
and γ-aminobutyric acid (GABA) neurotransmitters (see below). Microinjection studies
employing selective 5-HT2CR ligands have described an opposing stimulatory and
inhibitory influence of 5-HT2CR in the NAc and PFC, respectively, over several behavioral
effects of the psychostimulant cocaine (Filip and Cunningham 2003; Liu et al. 2007) or 3,4-
methylenedioxymethamphetamine (MDMA) (Ramos et al. 2005). Thus, a functional
equilibrium within the limbic-corticostriatal circuit in vivo is exerted by the 5-HT2CR.

Both the NAc and the PFC are indeed enriched in 5-HT2CR expression. The mRNA for the
5-HT2CR was detected in what appeared to be GABA medium spiny projection neurons in
both the core and shell of the NAc, along a rostrocaudal gradient (Eberle-Wang et al. 1997).
The 5-HT2CR mRNA was detected in medium-sized GABA interneurons in layer V of the
PFC (Pasqualetti et al. 1999) but only low levels of 5-HT2CR mRNA was expressed in
cortical pyramidal neurons (Lopez-Gimenez et al. 2001a). In keeping with this finding,
expression of the 5-HT2CR protein was recently shown within parvalbumin-containing
GABA interneurons localized to the deep layers (V/VI) of the PFC (Liu et al. 2007). While
the neurochemistry of the 5-HT2CR in the NAc and the PFC has been of prominent interest
(see section 4), the receptor is also enriched in other nodes of the limbic-corticostriatal
circuit, notably the amygdala and hippocampus. Functional 5-HT2CR protein within the
basolateral amygdala is localized to GABA inhibitory interneurons and glutamate neurons
(Stein et al. 2000). The 5-HT2CR mRNA is also expressed in a subset of pyramidal
hippocampal cells restricted to the CA3 field of Ammon’s horn (Pasqualetti et al. 1999),
while 5-HT2CR protein was detected in the pyramidal cell layer in both CA1 and CA3
(Clemett et al. 2000). Since the CA3 pyramidal cells project to the CA1, these data suggest
that 5-HT2CR protein in CA1 may be localized to presynaptic axon terminals from CA3
neurons (Pasqualetti et al. 1999). The amygdala 5-HT2CR appears to be critical in the
regulation of stress, fear and anxiety (Campbell and Merchant 2003; Harada et al. 2008; Li
et al. 2003) while a population of hippocampal 5-HT2CR may be involved in regulation of
motility and anxiogenesis (Hackler et al. 2007; Stiedl et al. 2007; Whitton and Curzon
1990). Recent observations that activation of the 5-HT2CR increased hippocampal
neurogenesis suggests that this action may underlie learning and memory processes which
involve 5-HT (Meneses and Hong 1997; Nic Dhonnchadha and Cunningham 2008) as well
as the beneficial effects of serotonergic antidepressants (Banasr et al. 2004).

The ventral tegmental area (VTA) provides an interesting brain nucleus in which to consider
the in vivo significance of unique regulatory mechanisms afforded to the 5-HT2CR. Intra-
VTA microinfusion of 5-HT2CR antagonists did not alter basal nor cocaine-evoked
hyperactivity (Filip and Cunningham 2002; McMahon and Cunningham 2001). However,
upon activation via intra-VTA 5-HT2CR agonist microinfusion, engagement of 5-HT2CR-
controlled pathways originating in the VTA suppressed basal motility and limited the extent
of hyperactivity evoked by cocaine (Fletcher et al. 2004). As discussed in section 4, these
results are supported by a recent study demonstrating that intra-VTA injection of the 5-
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HT2CR agonist RO 60-0175 reduced the enhancement of DA outflow in the NAc induced by
a systemic injection of cocaine, while intra-VTA administration of the 5-HT2CR antagonist
SB 242084 had no effect (Navailles et al., 2008). These multifaceted effects could
potentially be related to the level of constitutive activity of the 5-HT2CR, the preponderance
of partially to fully edited 5-HT2CR isoforms expressed and/or the dynamic expression
patterns of 5-HT2CR protein within the DA vs. GABA neurons in VTA (Bubar et al. 2005;
Bubar and Cunningham 2007). Thus, the VTA provides an interesting locus for analyses of
the unique biology of the 5-HT2CR.

The VTA is localized in the ventral portion of the mesencephalon and is comprised of five
subnuclei with distinct afferent and efferent projections (Phillipson 1979; Swanson 1982).
The VTA is well known for supplying the major DA innervation for the limbic-
corticostriatal circuit and a population of GABA neurons in the VTA send collaterals that
synapse locally on DA neurons within the VTA as well as projections that terminate in both
the NAc (Van Bockstaele and Pickel 1995) and/or PFC (Carr and Sesack 2000; Steffensen et
al. 1998). Protein expression for the 5-HT2CR was found to be relatively uniform in VTA
GABA neurons across the rostrocaudal gradient and among the VTA subnuclei (Bubar and
Cunningham 2007; Eberle-Wang et al. 1997). Conversely, this protein was shown to be
differentially expressed in VTA DA neurons along distinct rostrocaudal and subnuclear
patterns (Bubar and Cunningham 2007). The differences in the 5-HT2CR distribution within
DA and GABA neurons as well as the variations in the proportion of colocalization across
subnuclei and rostral-caudal level suggest that discrete populations of the 5-HT2CR in the
VTA may tightly regulate the influence of 5-HT2CR upon DA (and GABA)
neurotransmission. Modulatory neurobehavioral effects could result from a functional
balance between both populations of 5-HT2CR located on GABA and DA neurons in the
VTA (Navailles et al., 2008). Although the distribution of the 5-HT2CR on these two
neuronal subtypes appears to vary slightly among the rostral-caudal levels of the various
subnuclei, the incidence of co-localization of 5-HT2CR with DA neurons appears to
predominate in several subnuclei, particularly in the middle VTA (Bubar and Cunningham
2007). Further examination into the impact of these different 5-HT2CR subpopulations
through systematic microinfusion studies is necessary to fully understand how the 5-HT2CR
in the VTA regulates activation of the DA mesocorticoaccumbens pathways.

The characteristics of the 5-HT2CR as a constitutively active receptor has been extensively
clarified in vitro (see section 2) and identified as relevant in the functional neurochemistry
of the limbic- corticostriatal circuit in vivo (see section 4)(Berg et al. 2005). The VTA 5-
HT2CR that controls accumbal DA release appears to lack constitutive activity (Navailles et
al., 2006), which may be driven by region-dependent RNA editing of the 5-HT2CR (Burns et
al. 1997). Recent studies have also found evidence for 5-HT2CR homodimerization on the
plasma membrane (Herrick-Davis et al. 2004, 2005), and endoplasmic reticulum (Herrick-
Davis et al. 2006) of living cells suggesting that dimerization may also play an important
role in the function of 5-HT2CR. Although 5-HT2CR homodimerization is difficult to
explore ex vivo or in vivo, functional studies implicate the involvement of 5-HT2CR
homodimerization in ligand binding, signal transduction, and receptor trafficking processes
(Herrick-Davis et al. 2004, 2005). The significance of constitutive activity and receptor
dimerization in vivo has only recently come under investigation; thus, future investigations
will provide a greater understanding of the importance of these processes in the regulation of
5-HT2CR function in the VTA and elsewhere in the limbic-corticostriatal circuit and the
potential relevance for consideration in the development of pharmacotherapeutics for
psychiatric diseases. Drug discovery initiatives have identified a number of new 5-HT2CR
binding chemicals and active initiatives are underway to uncover the pharmacology of
selective 5-HT2CR agonists, antagonist, partial agonists and inverse agonists. Allosteric
modulators of the 5-HT2CR (Im et al. 2003) and small molecule inhibitors that disrupt the

Berg et al. Page 6

Neuropharmacology. Author manuscript; available in PMC 2011 June 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



association of the 5-HT2CR with its key binding partners (Ji et al. 2006; Sharma et al. 2007)
also provide unique approaches to drug discovery in this system.

4. Neurochemical and functional aspects in vivo: focus on the 5-HT/DA
interaction

Since the discovery and identification of 5-HT2CRs in the mammalian brain (for review see
Barnes and Sharp, 1999), along with their dense localization in brain dopaminergic regions
(Clemett et al., 2000; Eberle-Wang et al., 1997; Pompeiano et al., 1994), much attention has
been devoted at studying their functional role in the modulation of DA ascending pathway
activity, i.e. the nigrostriatal and the mesocorticolimbic systems. Indeed, the 5-HT2CR is
actually considered as a pivotal pharmacological target for improved treatments of
neuropsychiatric disorders related to DA neuron dysfunction, such as schizophrenia,
depression, Parkinson’s disease or drug addiction (Bubar and Cunningham, 2006; Giorgetti
and Tecott, 2004; Meltzer et al., 2003; Millan, 2005; Schapira et al., 2006; Wood et al.,
2001).

It is now clearly established that central 5-HT2CRs exert tonic and phasic inhibitory controls
on DA neuron function in vivo. This was first suggested by electrophysiological studies with
non selective 5-HT2CR compounds (Prisco et al., 1994), and then confirmed by several
electrophysiological and biochemical studies using more selective 5-HT2CR antagonists and
agonists (for review see Alex and Pehek, 2007). Thus, the basal firing rate of DA neurons in
the substantia nigra pars compacta (SNc) and the VTA as well as the release of DA at
terminals within the striatum, the NAc and the PFC, is increased and decreased by the
peripheral administration of 5-HT2CR antagonists and agonists, respectively (De
Deurwaerdère and Spampinato, 1999, 2001; Di Giovanni et al., 1999; Di Giovanni et al.,
2002; Gobert et al., 2000).

The 5-HT2CR has been also shown to control activated DA neurons by modulating DA
neuronal firing (Pierucci el al., 2004; Porras et al., 2002) and DA release (Di Matteo et al.
2004; Hutson et al., 2000; Lucas et al., 2000; Navailles et al., 2004; Porras et al., 2002).
Specifically, studies with drugs which stimulate the release of DA through different cellular
mechanisms (morphine, haloperidol, cocaine phencyclidine and amphetamine) led to the
proposal that 5-HT2CR exerts preferential control of DA exocytosis (Navailles et al., 2004;
Willins and Meltzer, 1998) likely by regulating DA neuronal firing (Navailles et al., 2004).
Indeed, the degree of DA neuronal activity appears as a permissive factor for the modulatory
action of 5-HT2CR agonists and antagonists on DA release (Lucas et al., 2000; Navailles et
al., 2004; Pozzi et al., 2002).

Mesencephalic regions containing DA cell bodies (VTA and SN) has been first proposed as
a primary site of action for the inhibitory control of the mesocorticolimbic and nigrostriatal
DA pathways by 5-HT2CRs (Di Matteo et al., 2001; Navailles et al., 2004; 2006b). Control
of DA neuron activity is classically thought to be indirect and to involve a GABA-DA
interface (Di Matteo et al., 2001; Navailles et al., 2004) in accord with the presence of 5-
HT2CR transcript and protein in VTA and SN GABA neurons (Bubar and Cunningham,
2007; Eberle-Wang et al, 1997) and with their ability to modulate GABA function within
these brain regions (Bankson and Yamamoto, 2004; Di Giovanni et al., 2001; Invernizzi et
al., 2007). However, the absence of effect of intra-VTA administered 5-HT2CR agonists and
antagonists on basal DA release in the NAc (Navailles et al., 2006b, 2008), although
indirectly, does not support this view, and further microiontophoretic studies assessing the
influence of 5-HT2C agents on DA neuron firing are warranted to address this issue.
Furthermore, the recent finding that DA neurons in the VTA co-express the protein for the
5-HT2CR (Bubar and Cunningham, 2007; Ji et al., 2006) raises the possibility of direct
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excitatory control of DA neuron function. Modulatory effects of VTA DA neuron firing and
accumbal DA release could result from a functional balance between both populations of 5-
HT2CRs located on GABA and DA neurons in the VTA (Navailles et al., 2008).

Most intracranial microinjection studies, but not all, have provided evidence that 5-HT2CRs
present within DA terminal regions are capable of modulating DA neuron activity, by
exerting not only inhibitory but also excitatory influences on DA release. That striatal 5-
HT2CRs exert a facilitatory control of DA release in the rat striatum was first reported by
Lucas and Spampinato (2000), but not confirmed by subsequent studies (Alex et al., 2005).
NAc 5-HT2CRs have been shown to inhibit (Dremencov et al., 2005), facilitate (Yan, 2000)
or not affect (Navailles et al., 2006b, 2008) basal DA release in the NAc. Also, they have
been shown to exert concentration-dependent excitatory and inhibitory effects on activated
accumbal DA release (Navailles et al., 2008). At variance with the NAc and the striatum,
compelling evidence indicates that 5-HT2CRs localized in the PFC do not modulate basal or
activated DA release in this region, either tonically or phasically (Alex et al., 2005; Pehek et
al., 2006; Pozzi et al., 2002). However, as in the case of the NAC DA (Navailles et al.,
2006b), PFC DA release is sensitive to VTA 5-HT2C receptor inhibitory modulation (Pozzi
et al., 2002). Furthermore, as previously suggested by behavioral investigations (Filip and
Cunningham, 2003), recent neurochemical studies from our laboratory have shown that PFC
5-HT2CRs are able to modulate activated DA release in the NAc. Intra-PFC administration
of 5-HT2CR agonists and antagonists has been shown to facilitate the release of DA induced
by cocaine or morphine in the NAc (unpublished observations). Although the neuronal
circuits underlying the above reported effects remains to be determined, as discussed
elsewhere (Filip and Cunningham 2003; Navailles et al., 2008), 5-HT2CR-dependent
controls of DA release in DA terminal-regions, in keeping with the expression of 5-HT2CRs
on GABA cells (Eberle-Wang et al., 1997; Liu et al., 2007), may involve local GABA
circuits and/or negative feedback loops to the VTA and the SN, as well as polysynaptic
circuits including glutamate pathways relaying the PFC to the VTA and the NAc (Sesack et
al., 2003). Hence, studies with peripheral and intracranial administration of 5-HT2C agents
altogether indicate that the overall inhibitory control of central 5-HT2CRs on nigrostriatal
and mesocorticolimbic DA pathways may be considered as a composite response involving
functional balances between excitatory and inhibitory inputs to DA neurons related to
different 5-HT2CR populations located within multiple brain DA areas. Specifically, it
appears that, in contrast to striatal and accumbal DA release, PFC DA release is insensitive
to local control by 5-HT2CR.

A main step in the advance of the knowledge of the functional role of the 5-HT2CR comes
from recent microdialysis studies showing that 5-HT2C constitutive receptor activity
participates in the tonic inhibitory control of DA ascending pathways in vivo (De
Deurwaerdère et al., 2004). In agreement with the pharmacological characteristics of inverse
agonist activity (Berg et al., 2005) and consistent with in vitro studies in Chinese Hamster
ovary (CHO) cells expressing 5-HT2CRs (Berg et al., 2006; De Deurwaerdère et al., 2004),
it has been shown that the purported 5-HT2CR antagonist SB206553 behaves in vivo as an
inverse agonist at 5-HT2CR. Indeed, SB 206553-stimulated DA release is insensitive to the
decrease in 5-HT terminal activity induced by either intra-raphe injections of 5,7-
dihydroxytryptamine neurotoxin, or by peripheral administration of the 5-HT1A receptor
agonist 8-OH-DPAT (De Deurwaerdère et al., 2004). Also, the 5-HT2CR antagonists
SB242084 and SB 243213 prevent the increase in striatal and accumbal DA release induced
by SB 206553 and reverse the decrease in DA release produced by the 5-HT2CR agonist Ro
60-0175 in both brain regions (Berg et al., 2006; De Deurwaerdère et al., 2004). Thus, these
findings altogether indicate that the effect of SB 206553 on in vivo DA release is
independent of the changes in extracellular levels of 5-HT, and is likely related to its inverse
agonist properties at 5-HT2CRs to silence their level of constitutive activity in vivo.
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Interestingly, inverse agonist action of SB 206553 at native 5-HT2CRs has been recently
shown in primary culture of mouse cortical neurons (Chanrion et al., 2008).

Further support for the role of 5-HT2C constitutive receptor activity in the control of
midbrain DA neuron excitability in vivo comes from recent studies with the antipsychotic
drugs haloperidol and clozapine which show that 5-HT2CR inverse agonists can have
different effects than 5-HT2CR antagonists in vivo (Navailles et al., 2006a). Indeed, the
increase in accumbal and striatal DA release induced by haloperidol is potentiated by the 5-
HT2CR inverse agonist SB 206553 but unaltered by the 5-HT2CR antagonists SB 242084
and SB 243213. Conversely, the effect of clozapine, which is known to be a strong 5-HT2CR
inverse agonist in vitro (Berg et al., 1999; 2006; Herrick-Davis et al., 2000), is unaffected by
SB 206553 but blocked by SB 242084 and SB 243213. These findings, indicating that 5-
HT2C constitutive receptor activity participates in the dopaminergic effects of the
antipsychotic drugs clozapine and haloperidol, suggest besides that clozapine modulates
subcortical DA release by acting as a 5-HT2CR inverse agonist in vivo.

Interestingly, intracranial microinjection studies have also shown that the control exerted by
5-HT2C constitutive receptor activity on DA neurons occurs in a brain region-dependent
manner and that the NAc may represent a primary site of action for the regulatory effects of
constitutive receptor activity on the mesoaccumbens DA pathway (Navailles et al., 2006b).
Intra-VTA injections of the 5-HT2CR antagonists SB 242084 and/or SB 243213 prevent the
decrease in accumbal DA outflow induced by peripheral administration of the 5-HT2CR
agonist Ro 60-0175, but do not affect the increase in DA outflow induced by the peripheral
administration of the 5-HT2CR inverse agonist SB 206553. Intra-NAc infusions of SB
242084, as in the case of its peripheral administration (De Deurwaerdère et al., 2004), block
both Ro 60-0175- and SB 206553-induced changes of DA outflow. Thus, whereas VTA and
NAc 5-HT2CRs both participate in the inhibitory control exerted by 5-HT2CR agonist on
accumbal DA release, 5-HT2CRs in the NAc are primarily involved in the tonic inhibitory
control exerted by the constitutive activity of central 5-HT2CR. In accord with this
conclusion, intra-NAc, but not intra-VTA, administration of SB 206553 increases basal DA
release in the NAc (Navailles et al., 2006b). The observed region-dependent effect of the
inverse agonist SB 206553 could be related to different levels of 5-HT2CR constitutive
activity in the VTA and the NAc which may be related to the pre-mRNA editing of the 5-
HT2CR. Indeed, as discussed elsewhere (Navailles et al., 2006b), region-dependent RNA
editing of 5-HT2CR (Burns et al., 1997) may represent a mechanism generating receptor
populations with different levels of constitutive activity (Niswender et al., 1999).

In summary, the findings reported above provide updated insights into the dominant role of
the 5-HT2CR in the regulatory neurochemistry of central DA neuron function. The 5-HT2CR
appears to possess a unique ability to tonically regulate DA release by combined actions
involving the effects of endogenous 5-HT and constitutive receptor activity at different 5-
HT2CR populations present in multiple brain regions and thus may provide an exclusive
functional basis for the fine-tuning of midbrain DA neuron excitability by the 5-HT2CR in
the living brain.

5. Concluding remarks
Twenty-five years after its initial identification in the central nervous system, a sizeable
body of evidence has clearly demonstrated the pivotal role of the 5-HT2CR in the regulation
of neuronal network excitability. The malleability of signaling processes relative to
expression of edited 5-HT2CR isoforms throughout the brain (Schmauss, 2005), together
with the relevance of the 5-HT2C constitutive receptor activity in regulating physiological
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systems in vivo may provide an exceptional molecular basis for fine-tuning of 5-HT
neurotransmission via the 5-HT2CR in the living brain.

The 5-HT2CR is thought to be implicated in the pathophysiology of several neuropsychiatric
disorders (schizophrenia, depression, anxiety, sleep disorders, drug addiction, obesity), and
it is actually considered as a major pharmacological target for the development of improved
treatments of these diseases. In this context, it is noteworthy that the discovery of drugs with
inverse agonist properties at 5-HT2CR allows for an additional dimension for control of 5-
HT2C receptor activity, and has greatly increased the richness of our pharmacological tools.
However, the benefits of inverse agonist rather than antagonist properties at the 5-HT2CR
remains to be established, and, in the coming years, further experimental and clinical
evaluations are needed for a better understanding of the functional significance of
constitutive receptor activity and the therapeutic potential of inverse agonism in vivo.
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