1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

o WATIG,

HE

M 'NS;))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Biom J 2011 February ; 53(1): 57—74. doi:10.1002/bim;j.201000140.

Quantifying the impact of fixed effects modeling of clusters in
multiple imputation for cluster randomized trials

Rebecca. R. Andridgel”

1Division of Biostatistics, College of Public Health, The Ohio State University, 320 W. 10th Ave,
Columbus OH 43220, U.S.A.

Abstract

In cluster randomized trials (CRTS), identifiable clusters rather than individuals are randomized to
study groups. Resulting data often consist of a small number of clusters with correlated
observations within a treatment group. Missing data often present a problem in the analysis of
such trials, and multiple imputation (MI) has been used to create complete data sets, enabling
subsequent analysis with well-established analysis methods for CRTs. We discuss strategies for
accounting for clustering when multiply imputing a missing continuous outcome, focusing on
estimation of the variance of group means as used in an adjusted t-test or ANOVA. These analysis
procedures are congenial to (can be derived from) a mixed effects imputation model; however, this
imputation procedure is not yet available in commercial statistical software. An alternative
approach that is readily available and has been used in recent studies is to include fixed effects for
cluster, but the impact of using this convenient method has not been studied. We show that under
this imputation model the MI variance estimator is positively biased and that smaller ICCs lead to
larger overestimation of the Ml variance. Analytical expressions for the bias of the variance
estimator are derived in the case of data missing completely at random (MCAR), and cases in
which data are missing at random (MAR) are illustrated through simulation. Finally, various
imputation methods are applied to data from the Detroit Middle School Asthma Project, a recent
school-based CRT, and differences in inference are compared.
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1 Introduction

In cluster randomized trials (CRTS), identifiable clusters of subjects (e.g. clinics,
communities, or schools) rather than individuals are randomized to study groups, while the
outcomes of interest are observed on individuals within each cluster. Resulting data often
consist of a small number of clusters, each containing a relatively larger number of subjects,
and within each cluster observations are likely to be correlated. Usually the resulting
intraclass correlation (ICC) is small, with typical values in the 0.05 to 0.001 range (Murray
and Blitstein, 2003), but even small values can lead to large variance inflation factors and
cannot be ignored (Donner and Klar, 2000; Murray, 1998). Typical analysis methods for
CRTs include t-tests adjusted to account for the ICC and mixed model ANOVA/ANCOVA.
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Multiple imputation (MI) has been used in practice for handling missing data in cluster
randomized trials. An advantage of Ml is that the standard analysis approaches developed
for CRTSs can be used without modification. It is known in the statistical community that the
correct multiple imputation model in cluster randomization is one that accounts for the
clustering through mixed effects. Imputations under the mixed effects model are congenial
(in the sense of Meng, 1994) to an analysis that does account for the clustering within study
groups, that is, the analysis procedure can be derived from the imputation model. However,
there is concern that practitioners do not understand what constitutes a congenial imputation
model in the context of CRTs (D. M. Murray, personal communication, 2010). While it is
well known by practitioners that using fixed effects for clusters (i.e. dummy variables
indicating cluster membership) in analysis models leads to inflated type I error, the impact
of using this type of model for imputation has not been studied.

This paper describes the effects of imputing data from cluster randomized trials (CRTSs)
using a model with fixed effects for cluster on subsequent analyses in which clusters are
appropriately modeled as random effects. We restrict attention to a continuous outcome in a
balanced design, and throughout we assume that the mean is correctly specified and focus on
the impact of model misspecification on the MI variance estimator. We derive an expression
for the bias of the MI variance estimator when data are missing completely at random
(MCAR). Through simulation we compare the fixed effects for cluster imputation model to
one that ignores clusters, as well as a model that uses random effects for cluster, under both
an MCAR mechanism with available covariates as well as a missing at random (MAR)
mechanism.

There are several examples of CRTSs that have used mixed effects models for analysis, but
fixed effects for clusters in imputation. One example is in the Community Youth
Development Study (CYDS), which includes an extended nested cohort CRT evaluating the
effectiveness of a prevention system designed to reduce adolescent substance abuse
(Hawkins et al., 2008; Brown et al., 2009; Hawkins et al., 2009). Twenty-four communities
in seven states were matched within state and randomized to receive either the intervention
or control condition. Details on recruitment methods and study design are available
elsewhere (Brown et al., 2009). Analysis models included complex multi-level hierarchical
models that properly captured the nested structure of the data (Brown et al., 2009).
However, imputation in this study used NORMsoftware (Schafer, 2000), which uses a
multivariate normal model to generate imputations and cannot accommodate random effects.
Brown et al. (2009, p.362) state that they used “dummy-coded indicators of community
membership (to preserve the nested structure of the data).” This language suggests that the
authors wanted to incorporate the clustering into the imputation model, but were not aware
of the proper way to do so.

Another example of a CRT using fixed effects imputation is the Detroit Middle School
Asthma Project (DMSAP), an extended nested cohort CRT assessing two in-school
interventions to enhance management of asthma over a three year time period (Clark et al.,
2010). Nineteen middle schools were randomized to one of three study arms: control (six
schools), program one (seven schools), and program two (six schools). Details on the
methods used to identify and enroll students with probable asthma are available elsewhere
(Clark et al., 2010). Linear and nonlinear mixed models were used for analysis. Imputation
was performed with | VEWARE (Raghunathan et al., 2001), a SAS-callable software that uses
sequential regression imputation and cannot incorporate random effects. The authors used
“dummy variables for school to incorporate the clustered design” (Clark et al., 2010, p.84).
As in the CYDS, the intention of preserving the hierarchical structure was there, but
software limitations did not allow for a congenial imputation model. In particular, | VEWARE
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was chosen due to its ability to handle the continuous, binary, multicategory, and count
variables that were all subject to missingness in a non-monotone pattern.

Imputation methods in current commercial software only allow for fixed effects for clusters,
for example proc ni in SAS (SAS Institute Inc., 2004) or i i nput e in St at a (Stata
Press, 2009). Analysts wanting to incorporate cluster effects must use fixed effects for
clusters even when subsequent analyses would not use this model. Examples of additional
recent CRTSs that used multiple imputation include French et al. (2005), Pate et al. (2005),
and Ganz et al. (2005). Details of the imputation procedures used were not given, but since
each study used SAS for analysis it is likely that they used SAS for the imputations as well,
and thus were forced to either include fixed effects for clusters or ignore them altogether.

The only software that we are aware of that allows use of mixed effects models for
imputation is PAN (Schafer, 2008), available as a package in R (R Development Core Team,
2009). Details on the MCMC imputation method used in PAN can be found in Schafer
(1997). However, Ris not widely used outside of the statistical community and is less likely
to be used by practitioners designing and analyzing CRTs than the more widely available
commercial alternatives. In addition, PAN uses a multivariate linear mixed effects model, so
categorical data must be treated as multivariate normal in imputations, which can lead to
bias (Horton et al., 2003).

The effect of ignoring the clusters in CRTs was studied by Taljaard et al. (2008). They
evaluated imputation strategies for CRT data via simulation, assuming missingness was
completely at random (MCAR). They concluded that if the ICC is small (<0.005), ignoring
the clusters may yield acceptable Type I error, but if ICCs are larger, ignoring the clustering
will lead to severe inflation of the Type I error. The authors compared results from ignoring
clusters to several alternate imputation methods, most notably a mixed effects imputation
model with random effects for cluster. Taljaard et al. did not evaluate the approach using
fixed effects for clusters.

In the context of clustered data from sample surveys, Reiter et al. (2006) compared fixed and
mixed effects imputation strategies when survey data were missing at random (MAR). Fixed
and mixed effects imputation strategies had similar performance for most scenarios. The
methods only differed when there were no population stratum or cluster effects, with the
fixed effects imputation resulting in inflated variance estimates. While both survey data and
CRT data can be clustered, the effect of the clustering on analyses is usually appreciably less
in survey data (Scott and Holt, 1982). In survey data, one generally assumes that the ICC for
covariates is similar in magnitude to the ICC for the outcome variable. This is in contrast to
CRT data, where the ICC of the key covariate of interest (treatment group) is exactly one.
Thus the findings in Reiter et al. cannot be automatically extended to data from CRTSs.

This article is organized as follows. Section 2 reviews methods for analysis of data from
CRTs and their extension to a multiple imputation analysis. In Section 3 we describe the
fixed effects for cluster imputation model. In Section 4 we derive an analytical expression
for the bias of the multiple imputation variance estimator under MCAR when imputing with
a fixed effects model. In Section 5 we use a simulation study to evaluate the bias when
covariates are available under MCAR as well as under MAR, and compare to alternate
imputation models. In Section 6 we illustrate differences in inference under different
imputation models using data from the Detroit Middle School Asthma Study. Some
concluding remarks and suggestions for future research are provided in Section 7.
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We now review existing results for analysis of CRTs (Murray, 1998). Assume we have a
balanced design post-test only CRT with | = 1, 2 treatment groups, each consisting of j = 1,
..., kclusters with i = 1, ..., m individuals per cluster. The outcome yjj for subject i in
cluster j in treatment group | is assumed to follow the model,

Vig=tr+bjtei,
iid.
by "= N(O, po?)

e "N, (1 - p)o?), (1)

where by L ej; and p is the intraclass correlation. The variance of the mean for study group |
is then given by:

0'2 R
Vary.)=—[1+(n = 1)p], @

— k m
where y»lzzj:l Zizlyij//km_

An ANOVA partitioning of variance is used to estimate o2 and p. The mean squares
between clusters (MSC) and within (MSW) clusters are given by,

a . Oy )” § _ § _mp=y)”
S TR A LN T T

2k(m—1) 2(k—1) (3)

Estimates of 2 and p are then given by,

— '—M 7 — — 4
o= MSC'mMSH +MSW MSC-MSW

P=5CH+(m-DMSW* (4)

Plugging (3) and (4) into (2) yields the estimator for the variance of a group mean.

These variance estimates are used directly when comparing two group means with a two-
sample t-test adjusted to reflect the ICC (Donner and Klar, 2000). The test is given by
T:_%L_NIZ(L—I)-
2 [1+(m - 1)p) 5)

Substituting (4) into (5) yields an alternate expression for the estimated variance of the
difference in means, V(.o — y.1) = 2 x MSC/km.

Several other analysis methods are available for comparing two group means in the post-test
only CRT design. One could first calculate the cluster means and apply the standard two-
sample t-test to the cluster means. Alternatively one could use a mixed-effects ANOVA
model (Murray, 1998). A non-parametric option is to use a permutation test on the cluster
means, where treatment assignments are permuted (Feng et al., 2001). For balanced designs
with no covariates these approaches are all identical (Donner and Klar, 1994).
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For the purpose of this paper we focus on estimating the variance of a single group mean,
since this is used directly in the adjusted t-test. Overestimating the variance would lead to
conservative tests, and underestimating the variance would inflate Type | error.

2.2 Incomplete Data

Suppose now that some subjects in each cluster are missing the outcome. If the data are
missing completely at random (MCAR), a complete case analysis is valid, but may be
inefficient (Little and Rubin, 2002). In addition, an interesting feature of CRTs is that singly
imputing the corresponding cluster mean for a missing response also leads to valid inference
under MCAR (Taljaard et al., 2008). This result is intuitive with the two-stage analysis that
first calculates cluster means and then performs a t-test on the means. Clearly the cluster
means are unchanged by this type of imputation, so the subsequent t-test whose degrees of
freedom depend on the number of clusters, not the number of subjects, is valid. If data are
missing at random (MAR) the complete case analysis and thus singly imputing the cluster
means may be invalid (Little and Rubin, 2002).

An alternative method to handle incomplete data in CRTSs is to multiply impute the missing
values. First proposed by Rubin (1978), multiple imputation (MI) involves performing D >
2 independent imputations to create D complete data sets that are each analyzed with
standard methods and estimates combined over the D completed data sets. Unlike a
complete case analysis, multiple imputation is valid when data are MAR (in addition to
MCAR), assuming the multiple imputation model correctly includes variables associated
with response propensity (Little and Rubin, 2002).

For multiply imputed CRT data, estimates of the I group mean and its variance would be

obtained as follows. Let the mean of group | in imputed data set d be denoted ?“f) and let
W) be its estimated variance using Equation (2). These D estimates are then combined to
obtain the MI mean estimate and MI variance estimate. The overall group mean estimate is
given by the average of the D mean estimates,

|2
O,== Vﬁ:)
b 12:; )

The estimated variance of 8p is the sum of the average within-imputation variance and the
between-imputation variance. The average within-imputation variance is

1 D
— (d)
W,= di 1 w

and the between-imputation variance is

1 & @y —\2
BD:Z).—_IE(){ID _HD) .

The total variance of 8p is the sum of these expressions, with a bias correction for the finite
number of multiply imputed data sets,
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The adjusted t-test (for a single group mean) under multiple imputation is then given by

~t,.

7

D

For CRTSs, the complete data degrees of freedom are small, since it is based on the number
of clusters not the total number of subjects. For this reason the usual formula for the degrees
of freedom v for multiply imputed data,
v=(D - 1) 1+2 W ,
D+1 B,

is not appropriate. When the completed data sets have limited degrees of freedom, a
refinement to the v is recommended (Barnard and Rubin, 1999; Little and Rubin, 2002),

-1 =1

-1
V* = (V +anx)

where

— W/ ) Yeom + 1
Vobs=| = Veom
Vv Veom+3

D

and vgon are the degrees of freedom for the complete data test (i.e., 2(k — 1)).

3 Fixed Effects Imputation Model for CRTs

Creation of the multiply imputed values is a key step in a multiple imputation analysis. We
assume that the imputer uses a parametric regression model, though we expect that these
results would extend to imputation via a non-parametric method such as hot deck with the
approximate Bayesian bootstrap (Rubin and Schenker, 1986). Using widely available
commercial software the only method for incorporating cluster effects is to include
indicators for cluster in a regression imputation model. Letting I(-) denote the indicator
function that takes the value 1 when the contained expression is true and 0 otherwise, one
way to write the fixed effects regression model is,

2k

_\vU-,:ZIZ](I(-gI(C=j, g=[)+X,'j[B+€,'j[. ©
g=le=

In this model the unknown parameters {oq} allow a different intercept for each cluster ¢
nested within treatment group g, Xjj is a vector of additional covariates included in the
regression model, f is a vector of unknown regression coefficients, and ej;; ~ N(0, $2) is
residual error. We use ¢? to distinguish this variance from that of the data generation model
described in Section 2.1.
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To make the imputation “proper” in the sense of Rubin (1987), imputations are generated in
a two-step process. First, values for the regression coefficients o, B, and ¢2 are drawn from
their observed-data posterior distributions. Second, random draws of the missing yjj are
created conditional on the drawn values of the parameters. This type of stochastic regression
imputation is available in SAS (pr oc i ) and other software. The details of the imputation
method for data from CRTs with no covariates and fixed effects for cluster is given in
Appendix A.1.

There is an inherent discrepancy between this imputation model and the analysis model, and
we can write both models (omitting any additional covariates X) in ANOVA form for direct
comparison. We use tildes to denote random effects.

Imputation model:  y;=p+G+Cj+&;
Analysis model: y;;=p+G+Cj+&;

For both models the observed value yjj) is expressed as a function of the grand mean (), the
effect of the Ith group (G)), the effect of the ji cluster within the Ith group (Cj or C;y), and
residual error (&) In order to account for the positive ICC, the analysis model includes the
cluster effect as a random effect. However, the fixed effect imputation model incorporates
the cluster effect as a fixed effect.

4 MCAR, No Covariates

We begin by examining the simplest case, where data are missing completely at random and
there are no additional covariates for inclusion in the imputation model. We assume that the
data have the (balanced) form described in Section 2.1. For simplicity we assume that the
follow-up rate = in each cluster is the same, and treat sample sizes as fixed (i.e. number of
respondents in each cluster = mz = fixed). Multiple imputation proceeds using the model (8)
with fixed effects for cluster and no additional covariates, which effectively imputes for
each missing observation the mean of the cluster to which the observation belongs, plus
random error. Assume a total of D imputed data sets are created.

We focus on estimation of a single group mean and its variance. The expected value of the
MI mean estimator for group | as D — oo is E(p) = E[.;] = w, and thus is unbiased under
MCAR. However, the MI variance estimator is biased. As shown in Appendix A.2.,as D —
oo, the variance of the point estimator 0, is given by,

Var(@,)=[ 1+(mn — V)plo? [kmr ©

while the mean of the multiple imputation variance estimator Vp is given by,

E[V,]=[1+(mr — V)plo™ /kma+2(1 — n)(1 — p)o= [kmn. (10)

The bias of the multiple imputation variance estimator is then given by,

E(V,) — Var(8,)=2(1 — n)(1 — p)o /kmn.

The bias is always positive and the MI variance estimator overestimates true variance.
Smaller cluster size m, smaller number of clusters k, and a greater amount of nonresponse
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(smaller ) lead to larger bias. In addition, smaller p leads to greater bias. To visualize the
bias as a function of these parameters, we rewrite in terms of relative bias as:

E(V,) - Var(d, — ) -
Relative Bias= -2 Aar(()n)ZZ(l 1 —p)
Var(6,) 1+(mmr—1)p

From this equation we see that the relative bias does not depend on the number of clusters k,
but does still depend on cluster size, response rate, and ICC. Plots of the relative bias as a
function of ICC (p) for various combinations of cluster size m and nonresponse rate (1 — x)
are shown in Figure 1. The largest bias is at p = 0, when the relative bias is 2(1 — x), and as
p — 1, the bias goes to zero.

It seems startling at first that smaller ICCs lead to larger overestimation. We would tend to
think that as the ICC tends to zero, an imputation method that treats cluster members as
independent (i.e. no random effects) would perform better. However, if we think of the
imputation with fixed effects as fixing the cluster means at the observed values, we are
forcing the imputed values to cluster around these means. Thus the imputation artificially
inflates the ICC for the imputed observations. As p — 0 the variance of the mean of the
observed values approaches the variance under independence, but by imputing under the
fixed effects model we force apart the means of the imputed data. This increases the
between-cluster variability, inflating the ICC, and overestimating the estimated variance of
the mean.

5 MAR and MCAR with Covariates

Next we investigate more realistic situations where covariate information is available to aid
in the imputation, both under MCAR and MAR. Performance of the MI variance estimator
was evaluated for these situations with a Monte Carlo study. As in Section 4 we restrict
attention to estimating the mean of a single group, so the subscript | is dropped in the
remainder of this section. All simulations were performed using the software package R (R
Development Core Team, 2009).

5.1 Simulation Study: Data Generation

Since the results from MCAR with no covariates showed that smaller cluster sizes led to
worse performance of the Ml variance estimator, we chose m = 50 subjects for each of k =
20 clusters. For each subject i in cluster j a single covariate X was generated as Xjj ~ N(0, 1),
independently fori= {1, ..., m},j={4, ..., k}. We fixed o2 = 100 and generated the
outcome Y from yjj = 10 + toX;j + bj + jj where bj ~ N(O, pa?) is the cluster-level error and
eij ~ N(0, (1 — 12 = p)c?) is the subject-level error.

Parameters varied in generating the data included the unconditional ICC of Y, p = (0.001,
0.005, 0.01, 0.05, 0.1, 0.5), and the correlation between the outcome Y and covariateX, T =
(0,0.3,0.5,0.7, 0.9). Though CRTs rarely have ICCs above 0.1 (Murray and Blitstein,
2003), the value of p = 0.5 was included to evaluate relative performance of the methods in
the extreme. When the unconditional ICC is this large, the data generation model does not
allow © = 0.9, so this one combination is excluded from the simulation. When t =0, X
provides no extra information about Y, and as t — 1 the strength of X as a predictor of Y
increases. There are two types of ICCs to consider due to the introduction of the covariate X.
The conditional ICC is the ratio of between-cluster variance to total variance conditional on
X; while the unconditional ICC is the same ratio, integrating over X. For the purposes of our
simulation we focused on the unconditional ICC, since the analysis goal is estimating the
unconditional mean of Y; we note that the two quantites are (obviously) closely related.
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Once data were created for a specified t and p, missing values were imposed by generating
the response indicator rj; according to a logistic regression model,

logit (P(r;=0ly;j, x;}))=ao+a1 X;j (11)

The intercept ag was chosen so that E(rj;) = 0.7, giving an expected 30% nonresponse rate.
We generated missingness under two different mechanisms based on the value of a;: (a)
MCAR: a1 =0, (b) MAR: a1 = 1. We also evaluated the intermediate value of oy = 0.5;
resulting conclusions were the same and results are not shown.

5.2 Simulation Study: Imputation Methods

We compared the performance of three multiple imputation models. All three methods
included a fixed effect for the covariate X, but varied in how they incorporated cluster
effects. The first model used fixed effects for cluster (as in (8) and Section 4). Alternative
models included a naive model that ignored clusters and a model with random effects for
clusters, which matched the data generation model. The M CE package in R (van Buuren and
Groothuis-Oudshoorn, 2010) was used for the fixed effects for cluster imputation and the
imputation ignoring clusters; the PAN package (Schafer, 2008) was used for mixed effects
imputation. Details on the MCMC imputation method used in PAN can be found in Schafer
(1997); briefly, it uses an MCMC algorithm to simulate draws from the posterior
distribution of the parameters and then imputes missing values conditional on the drawn
parameter values. For our simulation we selected non-informative priors for regression
parameters, diffuse inverse-Wishart priors for variance components, and allowed a burn-in
period of 1,000 iterations before imputing on every 100th iteration.

For a given 1, p, and a4 the simulation proceeded as follows. First we generated a sample of
size k x m =1, 000 for the covariate X and then generated Y given X. Nonresponse indicators
for each observation were independently drawn from a Bernoulli distribution with
probabilities according to (11) and values were then deleted to create the respondent data
set. We then separately performed each type of multiple imputation with D = 10. For each
method, the M1 estimator of the overall mean of Y (8p) and its variance (Vp) were calculated
using (6) and (7). This entire process was repeated 1,000 times for each parameter
combination and results were averaged over the 1,000 replicates.

Performance of the M1 estimators was summarized as follows. The average MI variance
estimate was taken to be the average of 1,000 point estimates of V. This was compared to
the empirical variance of the MI mean, defined as the variance of the 1,000 point estimates
of Bp, using the ratio Vp/0p. In order to obtain an estimate of the simulation error for this
ratio we generated interval estimates using the bootstrap (Efron, 1994), since each set of
1,000 replicates only provided a single point estimate of the ratio. Five hundred bootstrap
samples were drawn from the set of 1,000 pairs of estimates (6p, Vp) and the empirical and
estimated variance were recalculated. The 2.5th to 97.5th percentiles of the resulting
bootstrap distribution are provided together with the point estimates. In addition to
evaluating the ratio of estimated to empirical variance, coverage properties of a nominal
95% interval were also evaluated for each of the three imputation methods.

5.3 Simulation Study: Results

Point estimates of the ratio of estimated to empirical M| variance and bootstrap intervals for
all three imputation methods are seen in Figure 2 for MCAR and Figure 3 for MAR. In
comparing the two sets of figures, we see that the difference between the MCAR and the
MAR mechanisms is slight. It appears that whether X actually drives missingness is not the
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important factor; since in both cases we condition on X in the imputations the two situations
are very similar.

The performance of the fixed effects for cluster imputation method can be summarized as
follows. When 1 = 0, the covariate doesn’t inform Y and the situation is similar to that in
Section 4 (MCAR with no covariates). The most severe overestimation of the variance is at
p = 0 and this bias decreases as p increases. As T — 1, the strength of the covariate as a
predictor of Y increases and the overestimation of the MI variance is less pronounced.
However, even when X is extremely highly correlated with Y(t = 0.9) there is still some
overestimation of variance for the lowest values of p. In the exaggerated (for CRTs) case of
p = 0.5, the results from a fixed effects for cluster imputation method are indistinguishable
from the results from the random effects for cluster imputation method.

Intuitively, we can think of the effect of t as follows. For a given unconditional ICC p, the
conditional ICC py.x will be larger than p, assuming X explains some of the total variance of
Y. In the imputation model with fixed effects for clusters, since we condition on X we are
misspecifying the conditional ICC of Y. For a given unconditional ICC, larger t leads to
larger unconditional ICC, and since we have seen that the overestimation of variance is
actually less severe for higher ICC values, the overestimation of variance will be less
pronounced for larger .

In contrast to the fixed effects for cluster model, the imputation model that ignores clusters
performs poorly for large values of p and underestimates the true Ml variance. This agrees
with results for type | error in previous studies (Taljaard et al., 2008). The strength of the
covariate does not affect the performance of this imputation method; the underestimation is
similar for all values of .

The final method, using random effects for cluster, is undoubtedly the best method in this
simulation. There is slight overestimation of variance for the smallest value of p and with an
uninformative covariate, but for all other scenarios the ratio is approximately 1. For this
method we are both imputing and analyzing the data with the same model, which is also the
data generation model, so this result is not a surprise. Clearly this method would be the
recommended method for practitioners were software readily available.

Over and underestimation of variance can also be seen when examining coverage of nominal
95% intervals. Empirical coverage for each method is shown in Table 1 for both MCAR and
MAR mechanisms. As expected, imputation with fixed effects for cluster leads to
overcoverage for small p, while ignoring clusters leads to undercoverage for large p. These
results highlight the errors in inference that may result from these types of imputation
models; either a decrease in power (fixed effects for cluster) or an increase in type | error
(ignoring clusters). Coverage is at or near nominal for the random effects imputation method
for all values of p and 7.

6 lllustration using DMSAP Data

We now illustrate the effect that uncongenial imputation can have on CRT data using data
from the Detroit Middle School Asthma Project (DMSAP), introduced in Section 1. In
particular we compare the fixed effects for cluster imputation model to an imputation model
that ignores cluster, a mixed effects imputation model with random effects for cluster, and a
complete case analysis. All imputation and analysis strategies were implemented in R.

We restricted attention to outcome measures on the child interview at the 12-month follow-
up, which include previously validated measures of asthma-related quality of life (QOL)
(Juniper et al., 1996), psychological development (Eccles et al., 1991), and peer support
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(Zimet et al., 1988). Each of the three measures are obtained via a series of questions on
Likert scales, with the final score taken as the average score. Quality of life scores range
from 1 to 7, with higher scores indicating higher asthma-related QOL; psychological
development scores range from 1 to 5, with higher scores indicating more autonomy
demonstrated by the child; peer support scores range from 1 to 7 with higher scores
indicating higher levels of social support. Histograms of residuals from regression models
for complete cases indicated approximate normality for all three outcomes.

For use as predictors in the imputation models we used the baseline value of each outcome,
as well as demographic variables hypothesized to be related to these outcomes: age, gender,
race, reporting a doctor’s diagnosis of asthma, and asthma severity level. These variables
were used in the original imputation analysis of the DMSAP data set. Since the DMSAP
data have a “swiss-cheese” pattern of missingness, with scattered item nonresponse in
addition to the large amount of unit nonresponse, we took children with complete data at
baseline on these selected variables as our analysis sample, n=1144, 89% of the total sample.
Of these, 336 (29%) were missing the follow-up QOL score, 336 (29%) were missing the
follow-up psychological development score, and 337 (29%) were missing the follow-up peer
support score. In this data set there were k = 38 clusters with an average cluster size of nT=
30 (range: 15-59).

For each of the three selected 12-month outcome measures, we separately performed
multiple imputation using a model with fixed effects for cluster, a model ignoring cluster,
and a model with a random intercept for cluster. A total of 10 multiply imputed data sets
were generated with each of the methods for each outcome. For each outcome we also
performed a complete case analysis.

Resulting inference from the imputed data sets was summarized as follows. First we
calculated the estimate of ICC resulting from each imputation method by combining
estimates over the 10 multiply imputed data sets as in Section 2.2. We calculated both the
unconditional ICC as in (4) and the ICC conditional on the variables used in the imputation,
estimated using variance components estimates from a mixed effects model with random
effect for clusters. To examine the effect of the various imputation methods on inference we
then performed an adjusted t-test to estimate the effect of intervention 1 compared to
control. Comparisons of intervention 2 to control were also performed; results were similar
and are not shown.

The resulting ICC values are presented in Table 2. For all three outcomes, and for both
unconditional and conditional ICCs, the ICC under fixed cluster effects imputation is larger
than that under random effects imputation. The inflation is most severe for the psychological
development outcome; under the random effects model the ICCs are smallest for this
outcome (0.016, 0.018) and are inflated approximately 80% above this when imputing with
fixed effects for cluster. For both types of ICCs, the smaller the ICC the larger the relative
overestimation of this ICC by the fixed cluster effect method.

Conversely, the imputation model that ignores cluster drastically reduces estimates of ICC
compared to the random effects model. More severe underestimation is evident with smaller
ICCs. The complete case ICCs tend to be smaller than the random effects imputation,
though not as small as the imputation that ignores clusters. However, missingness is likely at
random for the DMSAP data (MAR), not completely at random (MCAR), so the complete
case estimates are suspect and are merely included for comparative purposes.
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Table 3 displays results from the adjusted t-tests of the effect of intervention 1 compared to
control. The intervention did not appear to have a strong impact on any of the three outcome
measures; the estimates of the intervention effects are small and similar under all four
analysis methods. There are, however, differences in the precision of the estimates and
resulting p-values. For all three outcomes the same pattern emerges as with the ICCs;
variances are larger for the fixed effects for cluster imputation than for the random effects
imputation, which are in turn larger than those under the imputation that ignores clusters.
For the psychological development outcome, if we use the random effects imputation the
result is a borderline p-value (p = 0.06). However, under fixed effects for cluster imputation
the p-value is well outside even the borderline significance range (p = 0.18). We note this
primarily to demonstrate how the deflated variances from the fixed cluster effects
imputation might directly impact inferences; in this case all the estimated intervention
effects are small and below clinical significance and so would not be considered significant
even with borderline p-values.

As an astute reviewer pointed out, some of the difference in p-values for the fixed versus
random effects imputation methods is due to differing variance estimates, but some is also
due to the difference in point estimates (for example, 0.12 versus 0.15 for the psychological
development outcome). In order to eliminate the possibility that an “unlucky” set of
imputations was driving differences between methods, we repeated the entire MI process an
additional 10 times. On average, the point estimates from the two methods were identical.
The resulting range of p-values for the psychological development outcome was 0.10-0.19
for the fixed effects imputation and 0.05-0.15 for the random effects imputation, and the p-
value from fixed effects imputation was larger than that from random effects imputation in
nine of ten repetitions. The patterns seen in Tables 2 and 3 and described above were also
seen in all of the repetitions of the Ml process.

7 Summary

Cluster randomized trials can have high rates of nonresponse and multiple imputation is
often an attractive solution. The correct multiple imputation model is one that accounts for
the clustering through random effects; however, most software assumes independent
observations. Previous work has shown that ignoring the clustering can lead to increase
Type | error. In this paper we have shown that multiply imputing CRT data with a model
that incorporates clustering using fixed effects for cluster can lead to severe overestimation
of variance of group means, and that the overestimation is more severe for small cluster
sizes and small ICCs. The overestimation of variance leads to a decrease in power, which is
especially dangerous for CRTs which are often underpowered. With strong covariate
information one can reduce bias in the MI variance estimator, though extremely strong
covariates are not always available.

Our results were obtained under the simple case of a balanced post-test only design with
continuous variables. This allowed us to vary systematically the key elements of the
problem, namely the cluster size, ICC, and covariate strength. It seems unlikely that more
complex scenarios, such as unbalanced designs and mixed covariate types will lead to
different conclusions, though this is admittedly a possibility. A key feature of the
simulations that will be an area for future work is the lack of clustering on the covariates X.
We assumed that observations X were independent for all subjects, while in CRTs it is likely
that there will be clustering in the covariates in addition to the outcomes. We hypothesize
that the poor performance of the fixed effects for cluster imputation model might be abated
if some of the clustering in the (partially unobserved) outcome can be explained by the (fully
observed) covariate, and future work is needed in this area. Other areas that merit attention
are extension to both categorical outcomes and cluster-level covariates, both of which are
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ubiquitous in CRTSs. In the context of categorical outcomes, Yucel and colleagues (Yucel
and Raghunathan, 2006; Zhao and Yucel, 2009) have developed a software called SHRI MP
that uses hierarchical models to perform sequential regression imputation, in a manner
similar to | VEWARE. This method has not been widely used in practice, but it seems
promising for CRTs where the analysis models themselves are hierarchical models, and thus
congeniality of imputation and analysis models would be achievable. The performance of
this method in the CRT setting merits attention, especially since the method would allow for
non-monotone patterns of missingness and mixed type outcome variables.
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Appendix

A.l. Imputation procedure with fixed effects for cluster

We assume without loss of generality that the first r subjects in each cluster are the
respondents. Following the notation of Kim (2004) we can write the imputation procedure
for the imputation model given in (8) with no covariates X as follows.

[M1] For each repetition of the imputation procedure, d =1, ..., D, draw

%2 iid. >
Py " (2kr - Zk)&z//\/}kr—.?k

-~ 2 k r - 2 )
where ¢r=Z,:1 Zj:lzi:l("iﬂ = Yju)"/(2kr = 2k) j5 the estimate of residual
variance using respondent data only, and y, denotes the vector of respondent
outcomes.

[M2] Draw the cluster meansforj=1,...,kand1=1,2as

* 2 idd. - 2
Q¥ by~ Nt Bap/7)

[M3] For each missing uniti=r+1, ..., min the 2k clusters, draw
%2 iid.

% * s *2
Cina)|ay Pay ~ NO. )

Then Yjiuay=%a) +€jia) is the imputed value associated with unit i in cluster j and treatment
group | for the d™" repetition of the imputation.

A.2. Variance of the multiple imputation point estimate

The proof of (9) and (10) is similar to Kim (2004), who proves the finite sample bias for
non-clustered data under a congenial regression imputation model. We assume a different
population model as given by (1), and ignore the finite sample corrections.

Under (1) and MCAR,
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e L [+ =Dpla?/r if j=f 1=
COV(,‘ulv)i’j’l’(d))—{ 0 ifj#jorl#l (12)
and
[1+(r = Dplo? /r+(1 — p)o(1+r7Y) ifi=i’, j=j d=s
s e ) 0= Dplo?/r+(1 = p)o/r ifi# 7, j=j,d=s
COVOG Y7 19)=Y [14(r - Dplo?/r ifiti, j=j,d#s

0 ifj#jorl#l (13)

where, as in Kim (2004), the expectations are taken over the joint distribution of (1) and the
imputation [M1-M3] with fixed respondent indices. The proof of (12) and (13) follows Kim
(2004) and is omitted here for space considerations; details are available from the author
upon request. We note that in Kim (2004) there is a small sample correction, A, which for
our case would be A = 2k(r —1)/[2k(r — 1) — 2]. Since 2kr is the total number of respondents
over all clusters and treatment groups, and this is generally large for cluster randomized
trials, we assume that A ~ 1 and so the finite sample correction is omitted.

= _n1\NP @ d I —_
Note that ¢,=D ]Zdzlyf'l) and the 3", d=1,..., D are identically distributed. Thus,

Var(@,)=(1 - D7) Cov?'), 3 +D7 VG
By (12) and (13) we have,

k r k m k r k m
—(1) =(2) (D2 R ¢ ;
Cov(y,/,y ) =(km)~"Cov E E viji+ E E -"rﬁi’lk(l)’ E E Viji+ E E );‘7/‘(2)

j=1i=1 j=li=r+1 j=li=1 j=li=r+1
=(km) 2 {kr{ 1+(r — Dplo +2k(m — r)[ 1+(r — Dplo? +k(m — r)’[ 1+(r — Dplo~ /r}
=[1+(r — Dplo? /kr

which has the form of (2) with r replacing m. We also have,

k r kK m
1)
sy (5SS S,

j=li=1 j=li=r+1
=(km) 2 {kr[ 1+(r — Dplo?+2k(m — N[ 1+(r — Dplo?+k(m — [ 1+(r — Dp+( — p)1o? [r+k(m — (I — p)o~}
=[1+(r — Dplo? /kr+(m — r)(I — p)o? [kmr
Thus,
Var(,) =(1 - D")[14(r — Dplo?/kr+D~{[ 1+(r — Dplo? [kr+(m — r)(1 — p)o? [kmr}
=[14+(r — Dplo2/kr+D~(m — r)(I - p)o? [kmr
Plugging in r = mz and taking the limit as D — oo yields the result in (9).

To obtain E[Vp], we note that for a single imputation, the estimate W(® = MSC@/km as
noted in Section 2.1, where MSC(@) is the mean squares between clusters for the d*" imputed

Biom J. Author manuscript; available in PMC 2012 February 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Andridge Page 15

. . . d —(d
data set. In addition, since the clusters are independent, Var()_‘fj,)):kVar(.\'f.,)). Thus from (3)
we have that,

E[W=E[MSC [km] =E T

12 k
Z[_ " Zj— . Vur@‘v;/“)—kVar(if_‘I“ )l

= 2km(k—1)
_ ?.m[l\':\/zn'(‘\_‘(vflll )—kVar(}‘__‘/“)] -V —(d)
= (k1) =Var(v.,)

=[1+(r — Dplo?/kr+(m — r)(I — p)o? [kmr (14)

[ 2 k —(d)_~(d)\2
Z/:le:lm(“.'f’ ) }

Also, since the ¥¥ are i.i.d.,
E[B,] =VarG'})-Covi3').5%)
=(m - r)(1 — p)o/kmr (15)

Since as D — 00, Vp = W(® + By, summing (14) and (15) and plugging in r = mr yields the
result in (10).
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Figure 1.
Relative bias of the MI variance estimator as a function of ICC (p) for various combinations
of cluster size m and nonresponse rate (1 — w)

Biom J. Author manuscript; available in PMC 2012 February 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Andridge Page 18
T =0 t=0.3 t=0.5
- |
Il P ]
1.5 1 . 1 " T " T
1 L= I 7
. 1 1 1
0] T T T T
o T‘ T 1 T T [ T T
& 1.0 & 1 1 1 11 1 J — T 11 I I 1 i
s s £ 1T T II|L i T T I1lT L 4 T IT 11
© 1 A na i H A A JI_A . H A A _ILA
> i L 4 1 1 L 1 1 1 J._ L 41 1
8 . T T
£ to3 P T3
£05 s - Ey B Y
u
2 =07 =09 0001 0005 001 005 0.1 05
©
£
B 45
L
w |l
(@) [ ] T -
P 1 N T Imputation Method
k= 1 J'_ T T —=— Fixed Effects for Cluster
(h'd I T I T [ ] . T —e— Ignoring Cluster
1.0 1 L_ n I 1T aT TT J?I 1T IT IT TT —+— Random Effects for Cluster
1 .L 4 A La mA } ™ A 14 _ILA
$ I 1 n 1L ot = n n
1 - *
< - I
0.5 . -
0.001 0.005 0.01 0.05 0.1 0.5 0.001 0.005 0.01 0.05 0.1 0.5

Figure 2.

Intraclass Correlation (p)

MCAR mechanism: Ratio of average MI variance estimate to empirical variance of the Ml
mean estimator as a function of unconditional ICC (p) and correlation between outcome and
covariate (w). Lines are bootstrapped 95% intervals (2.5th to 97.5th percentiles) to show
simulation error. Results from 1,000 replicates for each parameter combination.
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Figure 3.

Intraclass Correlation (p)

MAR mechanism: Ratio of average M1 variance estimate to empirical variance of the Ml
mean estimator as a function of unconditional ICC (p) and correlation between outcome and
covariate (t). Lines are bootstrapped 95% intervals (2.5th to 97.5th percentiles) to show
simulation error. Results from 1,000 replicates for each parameter combination.
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