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Abstract
Today we can generate hundreds of gigabases of DNA and RNA sequencing data in a week for
less than US$5,000. The astonishing rate of data generation by these low-cost, high-throughput
technologies in genomics is being matched by that of other technologies, such as real-time
imaging and mass spectrometry-based flow cytometry. Success in the life sciences will depend on
our ability to properly interpret the large-scale, high-dimensional data sets that are generated by
these technologies, which in turn requires us to adopt advances in informatics. Here we discuss
how we can master the different types of computational environments that exist — such as cloud
and heterogeneous computing — to successfully tackle our big data problems.

The wave of new technologies in genomics — such as ‘third-generation’ sequencing
technologies1, sophisticated imaging systems and mass spectrometry-based flow cytometry2
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— are enabling data to be generated at unprecedented scales. As a result, we can monitor the
expression of tens of thousands of genes simultaneously3,4, score hundreds of thousands of
SNPs in individual samples5, sequence an entire human genome for less than US$5,000
(REF. 6) and relate these data patterns to other biologically relevant information.

In under a year, genomics technologies will enable individual laboratories to generate
terabyte or even petabyte scales of data at a reasonable cost. However, the computational
infrastructure that is required to maintain and process these large-scale data sets, and to
integrate them with other large-scale sets, is typically beyond the reach of small laboratories
and is increasingly posing challenges even for large institutes.

Luckily, the computational field is rife with possibilities for addressing these needs. Life
scientists have begun to borrow solutions from fields such as high-energy particle physics
and climatology, which have already passed through similar inflection points. Companies
such as Microsoft, Amazon, Google and Facebook have also become masters of petabyte-
scale data sets — as they have been linking pieces of data that are distributed over a
massively parallel architecture in response to a user’s requests and presenting them to the
user in a matter of seconds. Following these advances made by others, we provide an
overview and guidance on the types of computational environments that currently exist and
that, in the immediate future, can tackle many of the big data problems now being faced by
the life sciences.

Computational solutions range from cloud-based computing to an emerging revolution in
high-speed, low-cost heterogeneous computational environments. But are life scientists
ready to embrace these possibilities? If you are a life scientist confronted with the task of
analysing a Mount Everest of data, and you are wondering how to derive meaning from
them using Microsoft Excel 2007’s 1,048,576 row and 16,384 column limit, then this article
will take you through the steps needed to allow you to compete with more computationally
savvy groups.

In this Review, we define the typical workflows associated with the generation of high-
throughput biological data, the challenges in those workflows, and how cloud computing
and heterogeneous computational environments can help us to overcome these challenges.
We then describe how complex data sets can be distilled to obtain higher-order biological
relationships, and we discuss the direction that computation must take to help us to further
our understanding at the cellular, tissue, organism, population and community levels.

Challenges posed by large-scale data analysis
Understanding how living systems operate will require the integration of the many layers of
biological information that high-throughput technologies are generating.

As an example, the amount of data from large projects such as 1000 Genomes will
collectively approach the petabyte scale for the raw information alone. The situation will
soon be exacerbated by third-generation sequencing technologies7 that will enable us to scan
entire genomes, microbiomes and transcriptomes and to assess epigenetic changes directly8

in just minutes, and for less than US$100. To this should be added data from imaging
technologies, other high-dimensional sensing methods and personal medical records.
Although processing individual data dimensions is complex (for example, uncovering
functional DNA variation in multiple cancer samples using whole-genome sequencing), the
true challenge is in integrating the multiple sources of data. Mining such large high-
dimensional data sets poses several hurdles for storage and analysis. Among the most
pressing challenges are: data transfer, access control and management; standardization of
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data formats; and accurate modelling of biological systems by integrating data from multiple
dimensions.

Data transfer, access control and management
Analysis results can markedly increase the size of the raw data, given that all relationships
among DNA, RNA and other variables of interest are stored and mined. Therefore, it is
important to efficiently move these big data sets around the internet, to provide for access
control if the data are stored centrally (to reduce storage costs) and to properly organize
large-scale data in ways that facilitate analyses. Network speeds are too slow to enable
terabytes of data to be routinely transferred over the web. Currently, the most efficient mode
of transferring large quantities of data is to copy the data to a big storage drive and then ship
the drive to the destination. This is inefficient and presents a barrier for data exchange
between groups. One solution is to house the data sets centrally and bring the high-
performance computing (HPC) to the data. Although this is an attractive solution, it presents
access control challenges, as groups generating the data may want to retain control over who
can access the data before they are published. Furthermore, controlling access to big data
sets requires IT support, which is costly.

Mining the data for discovery crucially requires managing and organizing big data sets —
consider, for example, the task of comparing whole-genome sequence data from multiple
tumour and matched adjacent normal tissue pairs. Retrieving sequences, over all pairs, that
map to many different genomic regions would not be trivial on inappropriately organized
data.

Standardizing data formats
Different centres generate data in different formats, and some analysis tools require data to
be in particular formats or require different types of data to be linked together. Thus, time is
wasted reformatting and re-integrating data multiple times during a single analysis. For
example, next-generation sequencing companies do not deliver raw sequencing data in a
format common to all platforms, as there is no industry-wide standard beyond simple text
files that include the nucleotide sequence and the corresponding quality values. As a result,
carrying out sequence analyses across different platforms requires tools to be adapted to
specific platforms.

It is therefore crucial to develop interoperable sets of analysis tools that can be run on
different computational platforms depending on which is best suited for a given application,
and then stitch those tools together to form analysis pipelines.

Modelling the results
A primary goal for biological researchers is to integrate diverse, large-scale data sets to
construct models that can predict complex phenotypes such as disease. As mentioned above,
constructing predictive models can be computationally demanding. Consider, for example,
reconstructing Bayesian networks using large-scale DNA or RNA variation, DNA–protein
binding, protein interaction, metabolite and other types of data. As the scales and diversity
of the data grow, this type of modelling will become increasingly important for representing
complex systems and predicting their behaviour. Computationally, however, the need for
this type of modelling poses an intense problem that falls into the category of NP hard
problems9 (FIG. 1). Finding the best Bayesian network by searching through all possible
networks is a complex process; this is true even in cases in which there are only ten genes
(or nodes), given that there would be in the order of 1018 possible networks. As the number
of nodes increases, the number of networks to consider grows superexponentially. The
computational environments that are required to organize vast amounts of data, build
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complex models from them and then enable others to interpret their data in the more
informative context of existing models are beyond what is available today in the life
sciences.

Meeting the challenge
Understanding your computational problem

Addressing big data and computational challenges requires efficiently targeting limited
resources — money, power, space and people — to solve an application of interest. In turn,
this requires understanding and exploiting the nature of the data and the analysis algorithms.
Factors that must be taken into account to solve a particular problem most efficiently
include: the size and complexity of the data; the ease with which data can be efficiently
transported over the internet; whether the algorithm to apply to the data can be efficiently
parallelized; and whether the algorithm is simple (for example, an algorithm used to
compute the mean and standard deviation of a vector of numbers) or complex (for example,
an algorithm applied to reconstructing Bayesian networks through the integration of diverse
types of large-scale data) (BOX 1).

One of the most important aspects to consider for computing large data sets is the
parallelization of the analysis algorithms. Computationally or data-intensive problems are
primarily solved by distributing tasks over many computer processors. Because different
algorithms used to solve a problem are amenable to different types of parallelization,
different computational platforms (TABLE 1) are needed to achieve the best performance.

We can classify the types of parallelism into two broad categories: loosely coupled (or
coarse-grained) parallelism and tightly coupled (or fine-grained) parallelism. In loosely
coupled parallelism, little effort is required to break up a problem into parallel tasks. For
example, consider the problem of computing all genetic associations between thousands of
gene expression traits and hundreds of thousands of SNP genotypes assayed in a tissue-
specific cohort10. Each SNP–trait pair (or a given SNP tested against all traits) can be
computed independently of the other pairs, so the computation can be carried out on
independent processors or even completely separate computers. Conversely, tightly coupled
parallelism requires a substantial programming effort, and possibly specialized hardware,
because communication between the different parallel tasks using specialized frameworks
must be maintained with minimal delay. The message passing interface (MPI)11 is an
example of such a framework. In the context of the example just given involving the
genetics of gene expression, instead of testing for SNP–trait associations independently, one
could seek to partition the traits into modules of interconnected expression traits that are
associated with common sets of SNPs12. This same problem was also solved through a
Bayesian approach12 using a Markov chain Monte Carlo (MCMC) method that combines
the two types of parallelism: the construction of each Markov chain is a coarsely parallel
problem, but the construction of each chain is also an example of a fine-grained parallelism
in which the algorithm was coded using MPI.

Computational solutions
Solutions to integrating the new generation of large-scale data sets require approaches akin
to those used in physics, climatology and other quantitative disciplines that have mastered
the collection of large data sets. Cloud computing and heterogeneous computational
environments are relatively recent inventions that address many of the limitations mentioned
above relating to data transfer, access control, data management, standardization of data
formats and advanced model building (FIG. 2).
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Compared to general purpose processors (GPPs), heterogeneous systems can deliver a
tenfold increase or greater in peak arithmetic throughput for a few hundred US dollars.
Cloud computing can make large-scale computational clusters readily available on a pay-as-
you-need basis. But both approaches have trade-offs that result from trying to optimize for
peak performance (heterogeneous systems) or low-cost and flexibility (cloud computing).

It is important that the working scientists understand the advantages and disadvantages of
these different computational platforms and the problems to which they are best suited
(TABLE 1). Computational platforms can be classified by the performance characteristic
that they aim to optimize and how they allocate resources to do so. In the following sections
we attempt to address exactly this issue, with particular attention to how heterogeneous
systems and cloud computing have changed the traditional cost–capability trade-offs that
users consider when deciding on the approach that best suits their computing needs. We
provide an overview of these computational systems and directions for choosing the ideal
computational architecture for an application of interest.

Box 1 | Understanding the informatics components of your problem
Selecting the best computational platform for your problem of interest requires an
understanding of the magnitude and complexity of the data, as well as the memory,
network bandwidth and computational constraints of the problem. This is because
different platforms have different strengths and weaknesses with respect to these
constraints. One of the key technical metrics to consider is OPs/byte. Others are
described below.

Understanding the nature of the data

• Can the data be efficiently copied via the internet to the computational
environment in which it will be processed along with other data? The size of
your data set, the location of other data sets needed to process your data set and
the network speed between the data set locations and computational
environment determine whether your problem will be ‘network bound’.

• Can the data be efficiently managed on a single disk-storage device for
processing, or do they need to be distributed over many disk storage systems?
Extremely large data sets that cannot be processed on a single disk, but instead
demand a distributed storage solution for processing, are said to be ‘disk bound’.

• Can the data be efficiently managed for processing by existing computer
memory? Certain applications, such as constructing weighted co-expression
networks36, operate on the data most efficiently if they are held in a computer’s
random access memory (RAM). If the data set is too large to hold in memory for
a particular application, the application is said to be ‘memory bound’.

Disk- and network-bound applications may be more dependent on the broader system
than on the type of processor. These types of applications benefit from targeted
investment in system components or a distributed approach that assembles large,
aggregate memory or disk bandwidth from clusters of low-cost, low-power
components37. In some instances, such as during the construction of weighted co-
expression networks, expensive special-purpose supercomputing resources may be
required.

Understanding the analysis algorithms

• Does the processing require algorithms that are computationally intense, such as
the class of NP hard algorithms? Reconstructing Bayesian networks is an
example of an NP hard problem, that is, one that requires supercomputing
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resources (resources capable of trillions of floating point operations per second
or more) to solve effectively and in a timely manner. Such problems are
considered to be ‘computationally bound’.

• Computationally bound applications can benefit from a particular processor or
the use of a specialized hardware accelerator. This was the case in the early days
of DNA and protein sequencing: determining best alignments was a
computationally intense operation. Popular algorithms such as the Smith–
Waterman alignment algorithm were substantially accelerated using specialized
hardware.

Cloud computing and MapReduce
Cluster-based and grid computing

HPC has been transformed in the past decade by the maturation of ‘cluster-based
computing’ (FIG. 2). With a wide range of components available (for example, different
networks, computational nodes and storage systems), clusters can be optimized for many
classes of computationally intense applications. Consider the annotation of genes predicted
in novel bacterial genomes, an important research problem for understanding microbiomes
and how they interact with our own genomes to alter phenotypes of interest13–15. Using
BLASTP16 to search 6,000 predicted genes against, say, the non-redundant protein (NR)
database is a moderately computationally intense problem. Searching one gene against the
NR database on a standard desktop computer would take ~30 s, so searching all 6,000
predictions could take 4 days. Distributing the searches over 1,000 central processing units
(CPUs) would complete the search in less than 10 min. Although not all applications
experience improvements on this scale, cluster-based computing can markedly accelerate
these types of operations. However, there is a significant cost associated with building and
maintaining a cluster. Even after the hardware components are acquired and assembled to
build an HPC cluster, substantial costs are associated with operating the cluster, including
those of space, power, cooling, fault recovery, backup and IT support. In this sense a cluster
contrasts with grid computing, an earlier form of cluster-like computing. Here, a
combination of loosely coupled networked computers that are administrated independently
work together on common computational tasks at low or no cost, as individual computer
owners volunteer their systems for such efforts (for example, the Folding@Home project).

Cloud computing
More recently, supercomputing has been made more accessible and affordable through the
development of virtualization technology. Virtualization software allows systems to behave
like a true physical computer, but with the flexible specification of details such as number of
processors, memory and disk size, and operating system. Multiple virtual machines can
often be run from a single physical server, providing significant cost savings in server
hardware, administration and maintenance.

The use of these on-demand virtual computers17,18 is known as cloud computing. The
combination of virtual machines and large numbers of affordable CPUs has made it possible
for internet-based companies such as Amazon, Google and Microsoft to invest in ‘mega-
scale’ computational clusters and advanced, large-scale data-storage systems. These
companies offer on-demand computing to tens of thousands of users simultaneously, with
flexible computer architectures that can manipulate and process petabyte scales of data
(BOX 2).
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Advantages of cloud computing
Cloud computing platforms offer a convenient solution for addressing computational
challenges in modern genetics research, beyond what could be achieved with traditional on-
site clusters. For example, paying for cloud computing is typically limited to what you use
— that is, the user requests a computer system type on demand to fit their needs and only
pays for the time in which they used an instance of that system. Administrative functions
such as backup and recovery are included in this cost. This pay-as-you-go model provides
enormous flexibility: a computational job that would normally take 24 hours to complete on
a single virtual computer can be sped up to 1 hour on 24 virtual computers for the same
nominal cost. Such flexibility is difficult to achieve in the life sciences outside the large data
centres in the genome sequencing centres or larger research institutes, but it can be achieved
by anyone leveraging the cloud computing services offered by large information centres
such as Amazon or Microsoft. In fact, Microsoft Research and the US National Science
Foundation (NSF) recently initiated a programme to offer individual researchers and
research groups selected through NSF’s merit review process free access to advanced cloud
computing resources (see
‘Microsoft and the National Science Foundation enable research in the cloud’ on the
Microsoft News Center website).

In addition to flexibility, cloud computing addresses one of the challenges relating to
transferring and sharing data, because data sets and analysis results held in the cloud can be
shared with others. For example, Amazon Web Services provides access to many useful data
sets, such as the Ensembl and 1000 Genomes data. Also, to minimize cost and maximize
flexibility, cloud vendors offer almost all aspects of the computer system, not just the CPU,
as a service. For example, persistent data are often maintained in networked storage
services, such as Amazon S3.

Disadvantages of cloud computing
The downsides of cloud computing are a reduced control over the distribution of the
computation and the underlying hardware, and the time and cost that are required to transfer
large volumes of data to and from the cloud. Although cloud computing offers flexibility
and easy access to big computational resources, it does not solve the data transfer problem.
Network bandwidth issues make the transfer of large data sets into and out of the cloud or
between clouds impractical, making it difficult for groups using different cloud services to
collaborate easily.

Furthermore, there are privacy concerns relating to the hosting of data sets on publicly
accessible servers, as well as issues related to storage of data from human studies (for
example, those posting human data must ensure compliance with the Health Insurance
Portability and Accountability Act (HIPAA)).

MapReduce
Several years ago, a distributed computing paradigm known as MapReduce emerged to
simplify the development of massively parallel computing applications and provide better
scalability and fault tolerance for computing procedures involving many (>100)
simultaneous processes19. In the context of distributed computing, MapReduce refers to the
splitting of a problem into many homogeneous sub-problems in a ‘map’ step, followed by a
‘reduce’ step that combines the output of the smaller problems into the whole desired output.
Whereas the Google implementation of distributed MapReduce remains proprietary, an
open-source implementation of the concept is widely available through the Hadoop
project19. In addition to meeting the required computational demand, this project addresses
several of the data access and management challenges, as it provides for useful abstractions
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such as distributed file systems, distributed query language and distributed databases. An
example of a problem that can be solved using MapReduce is that of aligning raw sequence
reads that have been generated from a whole-genome sequencing run against those of a
reference genome. The homogeneous sub-problems in this case (the map step) consist of
aligning individual reads against the reference genome. Once all reads are aligned, the
reduce step consists of aggregating all of the aligned reads into a single alignment file. In a
later section, we cover in detail how you could implement this problem using the Amazon
Web Services’ Elastic MapReduce resource.

Combining MapReduce and cloud computing
The combination of distributed MapReduce and cloud computing can be an effective answer
for providing petabyte-scale computing to a wider set of practitioners. Several recent papers
have demonstrated the feasibility of this concept by implementing MapReduce workflows
on cloud-based resources for searching sequence databases20 and aligning raw sequencing
reads to reference genomes21,22. The work by Langmead21 advances this trend one step
further by converting a traditional two-stage workflow — sequence alignment followed by
consensus calling — into a single application of a MapReduce workflow. The resultant
pipeline scales well with additional computational resources: a whole-genome SNP analysis
that started with 38× sequencing coverage of the human genome was completed in less than
3 hours using a 320-CPU cluster.

The MapReduce model is often a straightforward fit for data-parallel approaches in which a
single task, such as read alignment, is split into smaller identical sub-tasks that operate on an
independent subset of the data. Many large-scale analyses in biology fit into this
‘embarrassingly parallel’ decomposition (for example, sequence searches, image
recognition, read alignments and protein ID by mass spectrometry). The use of distributed
file systems (implicit in distributed MapReduce) becomes a necessity when operating on
data sets of a terabyte scale or larger.

One of the bigger advantages of combining MapReduce and cloud computing is the reuse of
a growing community of developers and software tools, and with just a few mouse clicks
you can set up a MapReduce cluster with many nodes. For example, the Amazon EC2
cloud-computing environment provides a specific service for streamlining the set-up and
running of Hadoop-based workflows (see the Amazon Machine Images website). The ease
with which these workflows can be established has no doubt fuelled the movement of
companies such as Eli Lilly to carry out their bioinformatics analyses on Amazon’s EC2
cloud-computing environment23.

As a measure of how ready this platform is for widespread use, Hadoop is now being taught
to undergraduate students across the United States24. A new generation of computer users is
therefore being trained to view the internet, rather than a laptop computer, as its computing
device.

However, not all large-scale computations are best treated with a simple MapReduce
approach. For example, algorithms with complex data access patterns, such as those for
reconstructing probabilistic gene networks, require special treatment. Distributed
MapReduce should be viewed as an emerging successful model for petabyte-scale
computing, but not necessarily the only model to consider when mapping a particular
problem to larger-scale computing.

Box 2 | Should I run my analysis in the cloud?
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With the rise of remote, or cloud, computational resources, the ‘where’ has become as
important a question for scientific computing as the ‘how’. At the terabyte, or even
gigabyte, scale it is often more efficient to bring the computation to the data.

As a rule of thumb, 100,000 central processing unit (CPU) cycles are required to
amortize the cost of transferring a single byte of data to a remote computational resource
via the internet (equivalent to roughly 1 second per megabyte on current high-end
laptops)38. For example, constructing a Bayesian network using state-of-the-art
algorithms can require in the order of 1018 computational cycles on current high-end
general purpose processors (GPPs). Given such computational demands on problems that
may involve no more than hundreds of megabytes of data3,10,39, it is cost effective to
pipe such data through the internet to high-end computational environments to carry out
such an operation.

However, if summarizing the distribution of allele frequencies in a population of 50,000
individuals genotyped at 1,000,000 SNPs (about one trillion bytes, or a terabyte, of data),
only 1012 computational cycles are required, orders of magnitude less than the 1017

computational cycles that one would need to run to break even in piping a terabyte of
data over the internet.

Even so, remote systems can offer compelling ease of use and significant cost
efficiencies, and in many cases large shared data sets are already being hosted in the
cloud. Again, understanding how best to spend one’s resources is key. The online
presentation associated with this paper
(‘Computational solutions to large-scale data management’) provides a decision tree that
can be used to help users decide on the most appropriate platform for their problem.

Future developments and applications
Several emerging trends in cloud computing will influence petabyte-scale computing for
biology. The analysis of large biological data sets retrieved from standard gateways, such as
Ensembl, GenBank, Protein Data Bank (PDB), Gene Expression Omnibus (GEO), UniGene
and the database of Genotypes and Phenotypes (dbGAP), can incur high network traffic and,
consequently, generate redundant copies of the data that are distributed around the world. By
placing these types of data sets into cloud-based storage and attaching them to cloud-based
analysis clusters, biological analyses can be brought to the data without creating redundant
copies and with a greatly reduced transfer start-up time25. The use of cloud resources in this
context is also being seen as an ideal solution for data storage from biomedical consortia
efforts that require the consolidation of large data sets from multiple distributed sites around
the globe26,27.

Standardization and easy access to petabyte-scale computing will soon enable an ecosystem
of reusable scientific tools and workflows. One would simply transfer or point to their large
data set, select their favourite workflow of choice and receive results back in the form of
files in cloud-based storage. The foundations for this model of reusable petabyte-scale
workflows can be seen in the success of virtual appliance marketplaces such as those hosted
by Amazon, 3Tera, VMware and Microsoft.

Heterogeneous computational environments
A complementary system to cloud-based computing is the use of heterogeneous multiple
core (one-CPU) computers — integrated specialized accelerators that increase peak
arithmetic throughput by 10-fold to 100-fold and can turn individual computers, the work-
horses of both desktop and cluster computers, into mini-supercomputers28.
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The accelerators consist of graphics processing units (GPUs) that operate alongside the
multi-core GPPs that are commonly found in desktop and laptop computers. Similar to cloud
computing, heterogeneous systems are helping to expand access to HPC capabilities over a
broad range of applications. Modern GPUs were driven by the videogame industry to deliver
ever more realistic, real-time gaming environments to consumers. Although the working
scientist is more likely to encounter GPUs, some vendors sell field-programmable gate array
(FPGA)-based accelerators for genomic applications (for example, the
CLC Bioinformatics Cube). Given that every modern computer includes a GPU, many of
which are usable for general purpose computing, GPUs can be purchased for between US
$100 and US$1,500. GPUs from NVIDIA and AMD/ATI offer ‘cluster-scale’ performance
(more than one trillion floating point operations (FLOPS) per second) in an add-on card that
costs only several hundred dollars.

General purpose heterogeneous computing has become feasible only in the past few years,
but it has already yielded notable successes for biological data processing. The
Folding@Home project uses a distributed client for protein folding simulation, with clients
available for GPUs. Although GPUs constitute only 5% of the processors that are actively
engaged in this project, they contribute 60% of the total FLOPS29,30. The GPU port of
NAMD, a widely used program for molecular dynamics simulation, running on a 4-GPU
cluster outperforms a cluster with 16 quad-core GPPs (48 cores). A GPU version of the
sequence alignment program MUMmer was developed and achieved a roughly three- to
fourfold speed increase over the serial-CPU version31. Several important algorithms have
been developed for the GPU for annotating genomes, identifying SNPs and identifying RNA
isoforms. They include CUDASW++, a GPU version of the Smith–Waterman sequence
database search algorithm32, and Infernal, a novel RNA alignment tool33. Finally, in our
own work in Bayesian network learning, the GPU implementation is 5 to 7.5 times faster
than the heavily optimized GPP implementation34.

In addition to these types of applications, programmers are writing GPU-accelerated plug-
ins for commonly used functions in high-level programming frameworks such as R and
Matlab. Furthermore, GPU-optimized libraries of software functions are also being
developed, including cuBLAS for basic linear algebra operations, cuFFT for carrying out
fast Fourier transforms and Thrust for large vector operations.

Advantages of heterogeneous computing
With speed increases of fivefold to tenfold, a laptop can be used in place of a dedicated
workstation, a workstation in place of a small cluster, or a small cluster in place of a larger
cluster. The improved performance results in significant cost savings to the researcher. Data
can be stored and analysed locally without requiring any specialized infrastructure, such as
heavy-duty cooling, high-amperage power or professional system administration. In this
respect, heterogeneous systems complement cloud computing by radically changing the
cost–capability trade-offs.

Because GPUs were primarily designed for real-time graphics and gaming, they are optimal
for solving problems involving tightly coupled (or fine-grained) parallelism (TABLE 1).
However, for such an application to benefit from a GPU, it must require sufficient
computation to amortize the cost of transferring data between the GPP and the accelerator
(the local analogue of computing on a local machine versus transferring data to the cloud to
carry out computations on the data). For example, in constructing Bayesian networks with
fewer than 25 nodes, the overhead is too great, in relation to the amount of work done by the
GPU, to achieve an advantage over a GPP. By contrast, for networks with more than 25
nodes, the GPUs provide a substantial advantage. This highlights an important point: ideally,
applications such as Bayesian network reconstructions would be implemented to run on
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several different computer architectures, as the characteristics for any given problem define
the architecture that is best suited to solve that particular instance. Although not all
applications can take advantage of heterogeneous systems, when they can they will benefit
from an efficient alternative to assembling similar capabilities from clusters of general
purpose computers.

Disadvantages of heterogeneous computing
One of the primary challenges in leveraging heterogeneous computational environments for
scientific computing is that most applications of interest to geneticists and others in the life
sciences have not been ported to these environments. Significant informatics expertise is
required to develop or modify applications to run effectively on GPUs or FPGAs.
Heterogeneous systems improve performance and efficiency by exposing to programmers
certain architectural features, such as vector arithmetic units, that are unavailable in GPPs.
Not only is the code that executes on these accelerators different from its GPP counterpart,
but often entirely different algorithms are needed to take advantage of the unique
capabilities of the specialized accelerators. As a result, developing applications for these
architectures is more challenging than for traditional GPPs.

The implementation of algorithms to be run in a general purpose GPU environment is
carried out using specialized programming languages, such as CUDA programming (a
proprietary programming model for NVIDIA GPUs)35. To implement an algorithm using
CUDA, the programmer must write sequential code for a single ‘thread’ that processes a
small subset of the total data set. Then, when the associated program is run on a data set of
interest, large numbers of these individual processes are created in a grid to process the
entire data set. The GPU operates in a separate memory space from the GPP, and often uses
its own, much faster graphics memory. However, as noted above, the disadvantage here is
that, before launching the program, the programmer must explicitly copy to the GPU the
necessary data, and then copy back the results after completion.

A tutorial for computing in the clouds
The number of cloud service providers, big data centres and third-party vendors aiming to
facilitate your entry into cloud computing is growing quickly. The options for transferring
data to a cloud and begin computing on it can be overwhelming (TABLE 2). However,
service providers have now found simpler means of allowing users to access the cloud. An
example of a simpler approach to cloud computing is the
Amazon Web Services Management Console (FIG. 3). The management console — which
can be accessed from any web browser — provides a simple and intuitive interface for
several uses: moving data and applications into and out of the Amazon S3 storage system;
creating instances in Amazon EC2; and running data-processing programs on those
instances, including the analysis of big data sets using MapReduce-based algorithms.

The best way to understand how to begin processing data in the cloud is to run through an
example: aligning raw sequencing reads to a reference genome. This application is on the
rise owing to the drop in whole-genome sequencing costs and the development of third-
generation sequencing technologies, such as the Pacific Biosciences single-molecule, real-
time sequencing (SMRT sequencing) approach1,8. One of the first processing steps to be
carried out on raw sequencing reads is to align the reads to a reference genome to derive a
consensus sequence that can then be used to identify novel mutations, structural variations
or other interesting genomic features.

As discussed above, this application fits well into the MapReduce framework21. The input
data are the raw reads from the sequencing run and a reference genome to which to map the
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reads. Because the reads are mapped independently to the reference genome, the input reads
can be partitioned into sets that are then distributed over multiple processors or cores (the
map part of MapReduce) to carry out the alignments more rapidly than could be done on a
single processor. The alignment files generated in this way can then be aggregated into a
single alignment file after all reads are mapped (the reduce part of MapReduce). The lower
panel of FIG. 3 details the steps needed to carry out this type of process using the Amazon
Elastic MapReduce (EMR) resource. These steps are done in a user-guided manner using the
management console to create a job flow consisting of three simple steps: uploading your
input data and applications to Amazon S3; configuring the job flow and submitting it; and
retrieving results from S3.

Getting started: uploading input data and applications
In our example, the first step consists of assembling the input files and applications to carry
out the alignment procedure and uploading these files into your own personal ‘bucket’ on
Amazon S3. Using the management console, you simply select an option to create buckets
for the input files, for the applications and scripts used to process the data and for the output
results (FIG. 3). In the alignment problem for SMRT reads, the input data are the raw reads
from the SMRT sequencer and a reference genome of interest (in FASTA format). For
MapReduce, the raw reads need to be split into, say, hundreds of raw reads files so that they
can be distributed by the Elastic MapReduce resource over many different cores on Amazon
EC2. The long-read aligner application (ReadMatcher) and documentation for this tool can
be downloaded from the Pacific Biosciences Developers Network website. With all files
assembled, the management console can be used to upload the files onto Amazon S3.

Defining the job flow
The next step is defining the job flow via the management console, which again is a user-
guided series of steps that are initiated by clicking a ‘create workflow’ button in the
management console. In configuring the workflow the user specifies which buckets contain
the input files, the applications and the output location, and then specifies the size and
number of instances on Amazon EC2 to allocate for the job flow, which will define the
amount of memory and number of cores to make available for computing the alignments. In
the map portion of MapReduce, a wrapper script calls the ReadMatcher application with
each of the segmented raw read files. Because each segmented file contains different
information, multiple instances of ReadMatcher can operate on each file independently on
each Amazon EC2 instance. In the reduce component of MapReduce, another script takes all
of the independent alignment results and combines — or reduces — them into a single
alignment file. The mapper and reducer scripts are the only programming steps that need to
be taken for this example. The scripting for this example is straightforward and involves
substantially less development time than would traditional multi-process or multi-threading
programming.

Running the job flow
After the job flow is configured it can be launched, again by submitting the job flow via the
management console. Several tools are provided in the management console that can be
used to monitor the progress of the run. The final step is retrieving the alignment results
from Amazon S3. The results can be downloaded to your local system or can remain on S3
for shared use or for additional processing. For example, the alignment results in this
example can be fed into another application, EviCons (available at the Pacific Biosciences
Development Network), to derive a consensus sequence from the alignments, which can
then be used to identify SNPs and other types of variation of interest.
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Perspectives
The problems with data storage and analysis will continue to grow at a superexponential
pace, with the complexity of the data only increasing as we are able to isolate and sequence
individual cells, monitor the dynamics of single molecules in real time and lower the cost of
the technologies that generate all of these data, such that hundreds of millions of individuals
can be profiled. Sequencing DNA, RNA, the epigenome, the metabolome and the proteome
from numerous cells in millions of individuals, and sequencing environmentally collected
samples routinely from thousands of locations a day, will take us into the exabyte scales of
data in the next 5–10 years. Integrating these data will demand unprecedented high-
performance computational environments. Big genome centres, such as the Beijing
Genomics Institute (BGI), are already constructing their own cloud-based computational
environments with exabyte-scale data-storage capabilities and hundreds of thousands of
cores.

Choosing the optimal computer architecture for storing, organizing and analysing big data
sets requires an understanding of the problems one wishes to solve and the advantages of
each of the architectures or mixture of architectures for efficiently solving such problems.
The optimal solution may not always be obvious or may require a mixture of advanced
computational environments. We anticipate the creation of more versatile cloud-based
services that make use of computer architectures that are not limited to map-reducible
problems, as well as low-cost, high-performance heterogeneous computational solutions that
can serve as an adequate local solution for many laboratories.

Ultimately, our ability to consider very large-scale, diverse types of data collected on whole
populations for the construction of predictive disease models will demand an open, data-
sharing environment — not only from the perspective of industry but from academic
communities as well, in which there are strong incentives to restrict data distribution to
maintain competitive advantages. This will require the development of tools and software
platforms that enable the integration of large-scale, diverse data into complex models that
can then be operated on and refined by experimental researchers in an iterative fashion. This
is perhaps the most crucial milestone we must achieve in the biomedical and life sciences if
large-scale data and the results derived from them are to routinely affect biological research
at all levels.

Glossary

Petabyte Refers to 1012 bytes. Many large computer systems now have
many petabytes of storage.

Cloud-based
computing

The abstraction of the underlying hardware architectures (for
example, servers, storage and networking) that enable convenient,
on-demand network access to a shared pool of computing resources
that can be readily provisioned and released.

Heterogeneous
computational
environments

Computers that integrate specialized accelerators, for example,
graphics processing units (GPUs) or field-programmable gate
arrays (FPGAs), alongside general purpose processors (GPPs).

High-performance
computing

A catch-all term for hardware and software systems that are used to
solve ‘advanced’ computational problems.

Bayesian network A network that captures causal relationships between variables or
nodes of interest (for example, transcription levels of a gene,
protein states, and so on). Bayesian networks enable the
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incorporation of prior information in establishing relationships
between nodes.

NP hard For the purposes of this paper, NP hard problems are some of the
most difficult computational problems; as such, they are typically
not solved exactly, but with heuristics and high-performance
computing.

Algorithm A well-defined method or list of instructions for solving a problem.

Parallelization Parallelizing an algorithm enables different tasks that are carried
out by its implementation to be distributed across multiple
processors, so that multiple tasks can be carried out
simultaneously.

Markov chain
Monte Carlo

A general method for integrating over probability distributions so
that inferences can be made around model parameters or
predictions can be made from a model of interest. The sampling
from the probability distributions required for this process draws
samples from a specially constructed Markov chain: a discrete time
random process in which the distribution of a random variable at a
given point in time given the random variables at all previous time
points is only dependent on the distribution of the random variable
directly preceding it.

General purpose
processor

A microprocessor designed for many purposes. It is typified by the
×86 processors made by Intel and AMD and used in most desktop,
laptop and server computers.

OPs/byte A technical metric that describes how many computational
operations (OPs) are performed per byte of data accessed, and
where those bytes originate.

Random access
memory

Computer memory that can be accessed in any order. It typically
refers to the computer system’s main memory and is implemented
with large-capacity, volatile DRAM modules.

Cluster Multiple computers linked together, typically through a fast local
area network, that effectively function as a single computer.

Cluster-based
computing

An inexpensive and scalable approach to large-scale computing
that lowers costs by networking hundreds to thousands of
conventional desktop central processing units together to form a
supercomputer.

Computational
node

The unit of replication in a computer cluster. Typically it consists
of a complete computer comprising one or more processors,
dynamic random access memory (DRAM) and one or more hard
disks.

Central processing
unit

(CPU). A term often used interchangeably with the term
‘processor’, the CPU is the component in the computer system that
executes the instructions in the program.

Virtualization Refers to software that abstracts the details of the underlying
physical computational architecture and allows a virtual machine to
be instantiated.
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Operating system Software that manages the different applications that can access a
computer’s hardware, as well as the ways in which a user can
manipulate the hardware.

Health Insurance
and Portability
and Accountability
Act

(HIPAA.) United States legislation that regulates, among many
things, the secure handling of health information.

Distributed file
system, distributed
query language
and distributed
database

A file system, query language or database that allows access to
files, queries and databases, respectively, from many different
hosts that are networked together and that enable sharing via the
network. In this way, many different processes (or users) running
on many different computers can share data, share database and
storage resources and execute queries in a large grid of computers.

Core Typically used in the context of multi-core processors, which
integrate multiple cores into a single processor.

Graphics
processing unit

(GPU.) A specialized processor that is designed to accelerate real-
time graphics. Previously narrowly tailored for that application,
these chips have evolved so that they can now be used for many
forms of general purpose computing. GPUs can offer tenfold
higher throughput than traditional general purpose processors
(GPPs).

Field-
programmable
gated array

(FPGA). Digital logic that can be reconfigured for different tasks.
It is typically used for prototyping custom digital integrated circuits
during the design process. Modern FPGAs include many embedded
memory blocks and digital signal-processing units, making them
suitable for some general purpose computing tasks.

Floating point
operations

(FLOPS). The count of floating point arithmetic operations (an
approximation of operations on real numbers) in an application.

Single-molecule,
real-time
sequencing

(SMRT sequencing). Pacific Biosciences’ proprietary sequencing
platform in which DNA polymerization is monitored in real time
using zero-mode waveguide technology. SMRT sequencing
produces much longer reads than do current second-generation
technologies (averaging 1,000 bp or more versus 150–400 bp). It
also produces kinetic information that can be used to detect base
modifications such as methyl-cytosine.

Bucket Fundamental storage unit provided to Amazon S3 users to store
files. Buckets are containers for your files that are similar
conceptually to a root folder on your personal hard drive, but in
this case the file storage is hosted on Amazon S3.

Exabyte Refers to 1018 bytes. For context, CISCO estimates that the
monthly global internet traffic in the spring of 2010 was 21
exabytes.
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Figure 1. Generating and integrating large-scale, diverse types of data
Modelling living systems will require generating (a) and integrating (b) multidimensional
data sets. In b, large-scale, complex data sets are shown as a network in which the nodes
represent variables of biological interest, such as DNA variation, RNA variation, protein
levels, protein states, metabolite levels and disease-associated traits, and the edges between
these nodes represent causal relationships between the variables. These more granular
networks (at the gene level) can be effectively summarized into subnetworks (c) that interact
with one another both within and between tissues. In this way, a network-centred view is
obtained of how core biological processes interact with one another to define physiological
states associated with disease. Part b is adapted, with permission, from REF. 40 © (2009)
Macmillan Publishers Ltd. All rights reserved.
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Figure 2. Cluster, cloud, grid and heterogeneous computing hardware and software stacks
The hardware and software stacks comprise the different layers of a computational
environment. At the lowest level of the stack is the physical structure that houses the
hardware, with networking infrastructure coming next, and then the physical computers or
servers. Sitting on top of the physical hardware is the virtualization layer, and the operating
system lies on top of that. Finally, there are the software infrastructure and application
layers. The different types of computing can be differentiated by which of these layers are
under the user’s direct control (solid line) and which levels are provided by others, for
example, the cloud provider and grid volunteer (dashed lines). Cloud and grid services are
best suited for applications with loosely coupled, or coarse-grained, parallelism.
Heterogeneous systems include specialized hardware accelerators, such as graphics
processing units (GPUs). These accelerators are optimized for massive tightly coupled, or
fine-grained, parallelism. However, the software that runs on these accelerators differs from
its general purpose processor (GPP) counterparts, and often must be specifically written for
a particular accelerator. MPI, message passing interface.

Schadt et al. Page 19

Nat Rev Genet. Author manuscript; available in PMC 2011 June 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Amazon Web Services
Amazon Web Services provides a simple and intuitive web-based interface into the Amazon
S3 storage services and Amazon EC2 cloud resources. a | The management console
available in Amazon Web Services provides a convenient interface into Amazon’s cloud-
based services, including direct access to Amazon S3 and Amazon EC2 for data storage and
large-scale computing, respectively. b | Steps for using the management console to compute
big data using Amazon’s Elastic MapReduce resource (see main text for details).
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Table 1

Main categories of high-performance computing platforms

Large-scale
computing
platform

computing architectures Advantages Disadvantages example applications

Cluster computing Multiple computers linked
together, typically through a
fast local area network, that
effectively function as a
single computer

Cost-effective way
to realize
supercomputer
performance

Requires a
dedicated,
specialized
facility,
hardware, system
administrators
and IT support

• BLAST

• Bayesian network
reconstruction

• Computing genetic
associations in large-
scale GWA studies

Cloud computing Computing capability that
abstracts the underlying
hardware architectures (for
example, servers, storage and
networking), enabling
convenient, on-demand
network access to a shared
pool of computing resources
that can be readily
provisioned and released
(NIST Technical Report)

The virtualization
technology used
results in extreme
flexibility; good
for one-off HPC
tasks, for which
persistent
resources are not
necessary

Privacy concerns;
less control over
processes;
bandwidth is
limited as large
data sets need to
be moved to the
cloud before
processing

• Searching sequence
databases

• Aligning raw
sequencing reads to
genomes

• General purpose
genomics tools (for
example, GeneSifter
from Geospiza)

• Most applications
running on a cluster can
be transferred to a cloud

Grid computing A combination of loosely
coupled networked computers
from different administrative
centres that work together on
common computational tasks.
Typified by volunteer
computing efforts (such as
Folding@Home), which
‘scavenge’ spare
computational cycles from
volunteers’ computers

Ability to enlist
large-scale
computational
resources at low or
no cost (large-
scale volunteer-
based efforts)

Big data transfers
are difficult or
impossible;
minimal control
over underlying
hardware,
including
availability

• Protein folding
(Folding@Home)

• Proteome analysis

• Protein prediction
(Rosetta@Home)

• Predicting interactions
between small
molecules and proteins
(FightAIDS@Home)

• Condor project

Heterogeneous computing Computers that integrate
specialized accelerators — for
example, GPUs or
reconfigurable logic (FPGAs)
— alongside GPPs

Cluster-scale
computing for a
fraction of the cost
of a cluster;
optimized for
computationally
intensive fine-
grained
parallelism; local
control of data and
processes

Significant
expertise and
programmer time
required to
implement
applications; not
generally
available in
cluster- and
cloud-based
services

• Bayesian network
learning

• Protein folding
(Folding@Home)

• Molecular dynamics
simulation (NAMD)

• BLAST

• CLUSTALW

• HMMER

• Reconstruction of
evolutionary trees

The above categories are not exclusive. For example, heterogeneous computers are often used as the building blocks of cluster, grid or cloud
computing systems; the shared computational clusters available in many organizations could be described as private Platform as a Service (PaaS)
clouds. The main differences between the platforms are degree of coupling and tenancy — grid and cloud computers are designed for loosely
coupled parallel workloads, with the grid resources allocated exclusively for a single user, whereas the underlying hardware resources in the cloud
are typically shared among many users (multi-tenancy). Cluster computers are typically used for tightly coupled workloads and are often allocated
to a single user. FPGA, field-programmable gate array; GPP, general purpose processor; GPU, graphics processing unit; GWA, genome-wide
association; HPC, high-performance computing; NIST, National Institute of Standards and Technology.
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Table 2

Examples of cloud and heterogeneous computational environments

Environment URL

Cloud computing

Amazon Elastic Compute Cloud http://aws.amazon.com/ec2

Bionimbus http://www.bionimbus.org

NSF CluE http://www.nsf.gov/cise/clue/index.jsp

Rackspace http://www.rackspacecloud.com

Science Clouds http://www.scienceclouds.org

Heterogeneous computing

NVIDIA GPUs http://www.nvidia.com

AMD/ATI GPUs http://www.amd.com

Heterogeneous cloud computing

SGI Cyclone Cloud http://www.sgi.com/products/hpc_cloud/cyclone

Penguin Computing On Demand http://www.penguincomputing.com/POD/Summary

GPU, graphics processing unit; NSF, US National Science Foundation.
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