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Abstract

Monoamine oxidase (MAO) A and MAO B are a crucial pair of isoenzymes, which oxidatively
deaminate monoamine neurotransmitters and dietary amines with a production of hydrogen
peroxide. These two isoenzymes have different but overlapping substrate and inhibitor
specificities. MAO A and MAO B share 70% amino acid sequence identity and show different
temporal and spatial expressions in both humans and mice. Abnormal MAO A or MAO B activity
has been implicated in numerous neurological and psychiatric disorders. A better understanding of
the transcriptional regulation of MAO A and MAO B genes may help explain the differential
tissue-specific expression of these two isoenzymes and provide insights into the molecular basis of
the disorders associated with MAO dysfunction. This review discusses the recent progress in the
transcriptional regulation and multiple functions of MAO A and MAO B genes.
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Introduction

Monoamine oxidase (MAO) [amine: oxygen oxidoreductase (deaminating) (flavin-
containing); MAO; E.C. 1.4.3.4.] oxidatively deaminates a number of biogenic and dietary
amines in the brain and peripheral tissues and generates the byproduct hydrogen peroxide.
MAOQ exists in two isoenzymes, MAO A and MAO B, with different but overlapping
substrate and inhibitor specificities. MAO A preferentially oxidizes serotonin (5-
hydroxytryptamine, 5-HT), norepinephrine (NE) and epinephrine and is irreversibly
inhibited by low doses of clorgyline. MAO B preferentially oxidizes phenylethylamine
(PEA) and is irreversibly inhibited by low doses of deprenyl (selegiline). Dopamine (DA)
and tyramine are common substrates for both MAO A and MAO B (Shih et al. 1999). The
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success in cDNA cloning of MAO A and MAO B has demonstrated unequivocally that
MAO A and MAO B are made of two different proteins, coded by two genes (Bach et al.
1988). They have identical exon—intron organization, suggesting that they are derived from
the same ancestral gene by duplication (Bach et al. 1988; Grimsby et al. 1991). They are
both located on the X chromosome (Xp11.23) (Lan et al. 1989). MAO A and MAO B
proteins share 70% amino acid sequence identity and are located in the outer membrane of
mitochondria. Although MAO A and MAO B are widely co-distributed in the central and
peripheral nervous systems, MAO A is predominantly found in catecholaminergic neurons,
whereas MAO B is more abundant in serotonergic and histaminergic neurons and glial cells
(Shih et al. 1999).

Abnormal MAO activity has been implicated in a variety of neurological and psychiatric
disorders, such as depression and social anxiety (Bortolato et al. 2008). MAO A deficiency
caused by a spontaneous mutation in the MAO A gene led to impulsive aggressive behaviors
and mild mental retardation in affected males in a Dutch family (Brunner et al. 1993).
Consistent with humans, MAO A knock-out (KO) mice also show aggressive behaviors
(Cases et al. 1995; Scott et al. 2008). Low platelet MAO B activity with the increased levels
of PEA is associated with alcoholism and stress-related disorders (Devor et al. 1993; Faraj et
al. 1994; Grimsby et al. 1997). Moreover, MAO B KO mice show behavioral disinhibition
and reduced anxiety-like behaviors (Bortolato et al. 2009). In addition, MAO B activity is
significantly increased in the brain with age in rats (Arai and Kinemuchi 1988) and humans
(Fowler et al. 1997), suggesting that MAO B may play a role in aging process.

MAO inhibitors have long been developed and widely used in clinics for the treatment of
many neuropsychiatric and neurodegenerative disorders. MAO A inhibitors have been
shown to be effective antidepressant drugs (Bortolato et al. 2008). Recent evidence shows
that MAO A inhibitors, such as moclobemide, also have antiparkinsonian effects by
improving motor function (Sieradzan et al. 1995; Youdim and Riederer 2004). MAO B
inhibitors, such as selegiline (deprenyl) and rasagiline (Azilect®, N-propargyl-1-(R)-
aminoindan), have been effectively used for the treatment of Parkinson’s disease (PD), and
their neuroprotective mechanisms have been substantially studied over the past decades
(Foley et al. 2000; Mandel et al. 2003). These inhibitors protect neurons by preventing cell
damage from neurotoxins (Naoi et al. 2000; Wu et al. 1995), free radical formation (Carrillo
et al. 2000; Chiueh et al. 1992) and apoptosis (Maruyama et al. 2000; Weinreb et al. 2004)
as well as stimulating the expression of neurotrophic factors (e. g. NGF, BDNF and GDNF)
(Mizuta et al. 2000; Weinreb et al. 2004). Recently, structure—activity studies provide
evidence indicating the important association of neuroprotection with the intrinsic
pharmacological action of the propargylamine moiety in MAO B inhibitors (e.g. rasagiline),
which leads to the development of multifunctional chimeric propargylamine-derivatives,
such as M30 (BarAm et al. 2005; Zheng et al. 2005; Youdim 2006). M30, an iron-chelator,
possesses the same neuroprotective propargylamine moiety as rasagiline but is a brain
selective MAO A and MAO B inhibitor, which shows no cheese effect in response to
tyramine, an unwanted side effect associated with earlier inhibitors (Gal et al. 2005, 2010a,
b). In addition, these propargylamine-derivative compounds regulate the processing of
amyloid-g protein precursor by the non-amyloidogenic a-secretase pathway (Avramovich-
Tirosh et al. 20074, b; Bar-Am et al. 2010), suggesting the potential use in Alzheimer’s
disease. Undoubtedly, the studies on the development and the molecular mechanisms of
MAO inhibitors not only provided the basis for the clinical treatment of neuropsychiatric
and neurodegenerative disorders, but also demonstrated the important role of MAO in the
brain.

The transcriptional regulation of MAO A and MAO B genes has been extensively studied in
recent years after both MAO A and MAO B genes were cloned (Bach et al. 1988). Using a
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series of 5'-flanking sequences linked to a human growth hormone receptor gene, we
identified the maximum promoter activities for MAO A and MAO B in a 0.14-kb Pvull/
Drall and 0.15-kb Pstl/Nael fragment, respectively. Both fragments are GC-rich, contain
potential Sp1-binding sites and share approximately 60% sequence identity (Zhu et al.
1992). Sp1 and Sp4 trans-activate MAO A and MAO B promoter activities by directly
interacting with Sp1 sites, whereas this activation can be repressed by Sp3 and a related
family member BTEB2 via the competition for binding to Sp1 sites (Wong et al. 2001; Zhu
et al. 1994). However, the organization of transcription factor binding elements is different
between the two promoters. The MAO A 0.14-kb promoter lacks a TATA box, consists of
four Sp1-binding sites and exhibits bi-directional promoter activity (Zhu et al. 1994). The
MAO B 0.15-kb promoter consists of two clusters of overlapping Sp1-bindng sites separated
by a CACCC element (Ou et al. 2004). Moreover, a 30-bp variable number tandem repeat
(VNTR) polymorphism is found 1.2 kb upstream of the MAO A coding sequences in human
MAOQO A promoter (Zhu and Shih 1997). This 30-bp VNTR is present in 3, 3.5, 4 or 5 copies
in different individuals across ethnic groups. The polymorphism has been associated with
MAO A promoter/enzymatic activity, and alleles with 3.5 or 4 copies of the repeat are more
efficiently transcribed than those with 3 or 5 copies of the repeat (Sabol et al. 1998). The
different promoter organization of MAO A and MAO B genes may underline their different
tissue- and cell-specific expressions.

Regulation of MAO B gene by TIEG2

The CACCC element flanked by two clusters of overlapping Sp1 sites in MAO B promoter
was demonstrated to be a repressor element. The basal MAO B promoter activity increases
by eightfold when this element is mutated. Moreover, transforming growth factor--
inducible early gene (TIEG) 2 exhibits dual functions at the MAO B promoter. TIEG2 acts
as a repressor at the CACCC element but an activator at the distal Sp1 sites of MAO B
promoter. TIEG2 is capable of directly interacting with the CACCC element and distal Sp1
sites both in vitro and in vivo. Since TIEG2 has a higher affinity to the Sp1 sites than
CACCC element, TIEG2 exerts an overall activating effect on MAO B promoter activity
and mRNA level (Ou et al. 2004).

Recently, we and our collaborators have demonstrated that glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and MAO B play a contributory role in alcoholism associated
with ethanol-induced brain cell damage, which is mediated by the up-regulation of MAO B
by TIEG2. Ethanol significantly increases the levels of nuclear GAP-DH and MAO B in
neuronal cells as well as in human and rat brains. Moreover, nuclear GAPDH interacts with
TIEG2 and further augments TIEG2-mediated MAO B trans-activation, which results in cell
damage, correlating with increased levels of hydrogen peroxide, when exposed to ethanol
(Ou et al. 2009, 2010). These studies suggest that the interference with TIEG2-MAO B
interaction could be an alternative approach in addition to the MAO B inhibitors for treating
neuropsychiatric symptoms associated with alcoholism.

Identification of a novel transcriptional repressor R1 (RAM2/CDCA7L/JPO2)
for MAO A gene

To search for additional novel transcription factors, which may interact with Sp1 sites and
regulate MAO promoters, we used three copies of Sp1-binding motifs derived from MAO B
core promoter as bait to screen a human cDNA library in the yeast one-hybrid system. Two
novel transcription factors have been identified, one of which was named R1 (RAM2/
CDCA7L/JPO2) by us. The other one is currently under investigation.
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The R1 cDNA encodes a protein with 454 amino acids, and the C-terminal of R1 protein
encompassing 77 amino acid residues (349-425) shows 87% identity with c-Myc targeting
protein JPO1, which ultimately leads to tumorigenesis (Chen et al. 2005; Huang et al. 2005).
Further analysis of this region reveals 12 conserved cysteine residues and 4 CXXC zinc
finger putative DNA-binding domains, which provides bases for proper protein confirmation
for DNA binding. This region is highly conserved between human and mouse R1 with 94%
sequence identity. Moreover, a nuclear targeting sequence (amino acids 301-318) and
multiple potential phosphorylation sites have been identified, suggesting the cellular location
of R1 may be dependent on its phosphorylation level. Similar to MAO genes, R1 is widely
expressed in the human brain and peripheral tissues. At the cellular level, R1 is found in
both the nucleus and cytosol (Chen et al. 2005). Our studies and that of other groups have
further shown that R1 is a c-Myc interacting protein that potentiates and complements c-
Myc transforming activity (Huang et al. 2005; Ou et al. 2006b).

Subsequent experiments showed that R1 acts as a transcriptional repressor of MAO A gene
and represses MAO A promoter activity by competing with Spl for binding to Sp1 sites. R1
is capable of directly interacting with Sp1 sites under both in vitro and in vivo conditions.
Moreover, overexpression of R1 in stable neuronal cell lines down-regulates MAO A
enzymatic activity, suggesting its physiological effect (Chen et al. 2005). Given the multiple
functions of R1 in certain cellular events, such as cell proliferation, the possible indirect
mechanisms, i. e. other than direct transcriptional regulation, by which R1 regulates MAO A
gene, remain to be studied. The regulatory effect/mechanism of R1 on MAO B gene is
currently under investigation as well.

Regulation of X-located MAO A gene by sex-determining region gene on
the Y chromosome (SRY)

The fact that MAO is located on the X chromosome has driven us to hypothesize whether
there is a sex-specific transcription factor regulating MAO gene expression, which provides
us bases to speculate the sex dimorphism as observed in several neuropsychiatric disorders
associated with abnormal MAO activity, such as depression (Dulcan 1997; Williams et al.
2008; Wright et al. 2009) and autism (Williams et al. 2008). Recently, we and our
collaborators have identified MAO A as a novel neural target for the SRY gene in a
genome-wide ChIP and promoter tiling microarray analysis. The SRY gene, encoding a
putative transcription factor, is the master switch regulator responsible for initiating the
testis determination and differentiation during embryogenesis (Wilhelm et al. 2007).

SRY activates both MAO A promoter and enzymatic activities via a functional SRY -binding
site (—117/-111, AT-rich) in the MAO A core promoter. Sp1 synergistically enhances the
SRY activation of MAO A promoter in a dose-dependent manner. Moreover, Spl interacts
and forms a transcriptional regulatory complex with SRY at the natural MAO A core
promoter, which potentiates SRY binding to MAO A promoter (Wu et al. 2009a). This is the
first study showing that the Y-encoded transcription factor SRY is capable of regulating an
X-located gene, suggesting a novel molecular mechanism for sexual dimorphism in neural
development, brain functions and initiation/progression of neural disorders associated with
MAO A dysfunction.

Previous studies have demonstrated that various cofactors interact with SRY to form
transcriptional complex that regulate SRY target genes (Li et al. 2006; Oh et al. 2005). Since
other factors, such as Sp3, Sp4 and R1, also utilize the same Sp1 sites, neighboring the SRY
site, in their transcriptional regulation of MAO A, it would be interesting to determine
whether these MAO A regulators could also interact with SRY, thereby exerting potentially
complex transcriptional interplay and sexually dimorphic physiological effects (Fig. 1).
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Moreover, recent studies have suggested that some neuropsychiatric disorders, such as
autism, may originate in early embryonic development (Ploeger et al. 2010). Hence,
understanding how the transcriptional network coordinated by SRY or other sex-
determining factors regulates MAO A gene during brain development may provide insights
into addressing the role of MAO genes in these mental disorders which show sexual
dimorphism and MAO dysfunction. These studies are currently under investigation.

Regulation of MAO genes by methylation

Hormonal

Several lines of direct and indirect evidence suggest DNA methylation can be a factor/
mechanism contributing to the regulation of MAO genes. For example, variations of MAO
activity have been associated with their methylation status of promoters in smoking groups
(Launay et al. 2009). The most direct evidence is the identification of functional CpG
islands (CGls) in the MAO promoters. There is a putative CGI containing 22 potential CpG
methylation sites in the MAO B promoter (—261/-58). In vitro demethylation of MAO B
promoter with 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, up-regulates
MAQO B gene expression in both HeLa and Caco-2 cells (Wong et al. 2003). Since the CGI
in the MAO B promoter encompasses several Spl sites (GC-rich), the lower MAO B
promoter activity under methylation status could also be likely due to its altered chromatin
structure, which impedes the recruitment of transcription factors, such as Sp1, to this region.

Recently, other groups report that the extended MAO A regulatory region contains two
CGils, one of which overlaps with the canonical MAO A promoter and the other is located
further upstream. Both CGls exhibit sensitivity to differential methylation (Shumay and
Fowler 2010). Moreover, the effect of VNTR on the MAO A transcription may have
epigenetic nature, as this polymorphic region resides within the CGI of MAO A promoter
and itself contains CpG sites. Thus, the number of repeats, correlating with the number of
methylatable cytosines in the MAO A promoter, could exert a possible effect on the
transcriptional activity of MAO A.

regulation of MAO A and MAO B genes

Emerging evidence has shown that steroid and non-steroid hormones are involved in the
regulation of many neuropsychiatric processes in which MAO also plays a critical role, such
as responses to stress, behavioral adaption and mood (de Kloet et al. 1990). For instance,
significant hypersecretion of glucocorticoids has been shown to be associated with
depression (Duval et al. 2006), and anti-glucocorticoid agents have been used in the
treatment of depression (Wolkowitz and Reus 1999). We have been dedicated to
investigating the hormonal regulation of MAO genes and the corresponding mechanisms at
the molecular level in recent years. To date, we have demonstrated that androgen,
glucocorticoid (Ou et al. 2006a) and retinoic acid (RA) (Wu et al. 2009b) activate both
MAO A and MAO B gene expression albeit to different extents in human neuronal cell
models, whereas estrogen shows tissue-specific effect on MAO A and MAO B genes
(Holschneider et al. 1998). Since these hormones play a pivotal role(s) in many
physiological and pathological states, our findings may thus also provide insights into the
potential new functions of MAO genes in these hormone-controlled steps/processes.

Androgen and glucocorticoid

Androgen and glucocorticoid show their capabilities to up-regulate MAO A gene ina
canonical way by directing their receptors to bind to a functional androgen/glucocorticoid
response element (—289/-275) in the MAO A promoter. On the other hand, both androgen
and glucocorticoid receptors interact with Sp1 sites indirectly via Sp1, and such interaction
is enhanced in response to ligands. Moreover, glucocortcoid but not androgen induces R1
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translocation. R1 is translated into the nucleus upon 12-h dexamethasone (a synthetic
glucocorticoid) and re-located into the cytosol after 24- or 48-h treatment (Ou et al. 2006a).

Retinoic acid

Estrogen

Similarly, RA activates the MAO B transcription by both ligand-receptor interaction and
crosstalk between the receptor and transcription factor Sp1 as well. Retinoic acid receptor «
(RAR &), but not retinod X receptor «, binds to a functional RA response element
(—303/—287) in the MAO B promoter. Mutation of Sp1 sites or interference of Sp1-binding
ability down-regulates the RA activation of MAO B promoter, suggesting a mediating role
of Spl in this activation. Further analysis shows that RAR « interacts with Sp1 via the zinc
finger domains in Sp1. Furthermore, RAR « is able to be recruited by Spl and forms a
transcriptional regulation complex with Sp1 at the Sp1 sites in the MAO B promoter in vivo,
which enhances Sp1-binding ability (Wu et al. 2009b).

The interplay of estrogen receptors (ERs) and estrogen-related receptors (ERRS) in the
regulation of MAO B promoter activity has been studied in breast cancer cells. ERR a
recognizes a variety of estrogen response elements (EREs) and shares many target genes and
cofactors with ER a. ERR a and ERRY up-regulate MAO B gene expression, whereas this
up-regulation is repressed by ER o and ER g in both ligand-dependent and -independent
manners. In contrast to ER-negative HeLa cells, the ability of ERRs to stimulate MAO B
promoter activity is reduced in ER-positive MCF-7 and T47D cells. Several EREs
responsible for the up-regulation by ERRs are located in the MAO B promoter, and ERs
compete with ERRs for binding to the MAO B promoter at selective ERR motifs (—1,762,
—1,468, and —289/—286), thereby changing the chromatin status and cofactor recruitment to
a repressed state (Zhang et al. 2006).

MAO genes in apoptosis and stem cell proliferation

MAQO A has long been suggested as a pro-apoptotic gene. MAQO A expression increases
during the apoptosis induced by the withdrawal of neurotrophic factors in PC12 cells, which
is mediated via p38 kinase pathway (De Zutter and Davis 2001). Moreover, clogyline, a
MAO A inhibitor, shows protective effects from serum starvation-induced apoptosis in
human melanoma M14 cells (Malorni et al. 1998). Recently, the roles of MAO A and its
novel transcriptional repressor R1 in apoptosis and cell proliferation are further studied in a
human neuronal cell model and MAO A KO mice. In response to serum starvation, the
expression of p38, MAO A and caspase-3 increases, whereas Bcl-2 and R1 levels decrease.
MAO A and R1 are demonstrated downstream of p38 kinase and Bcl-2 but upstream of
caspase-3. Consistently, the serum starvation-induced apoptosis is reduced in cortical brain
cells from MAOQO A-deficient mice in comparison with the wild-type control. Furthermore,
cyclin D1 and E2F show negative correlation with MAO A in an R1-modulated manner and
act as downstream targets of MAO A- and R1-mediated cellular proliferative pathway (Ou
et al. 2006b).

In contrast to MAO A, MAO B is induced by phorbol-12-myristate 13-acetate (PMA), a
tumor-promoting agent, which is mediated via the activation of PKC and MAPK signaling
pathways. Further studies show that transcription factor Egr-1 and c-Jun are ultimately
responsible for the induction of MAO B gene by directly interacting with the overlapping
Sp1/Egr-1/Spl-binding sites (—246/—225) in MAO B core promoter (Wong et al. 2002).
Since PMA has shown to stimulate cell proliferation in a number of cell models (Amos et al.
2005; Isakov et al. 1993), this regulation may suggest a potential role of MAO B in
regulating cell proliferation.
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One possible mechanism by which MAO genes influence cell proliferation is via the control
of specific neurotransmitter levels, such as serotonin. Numerous studies have well
documented the role of serotonin along with its receptors in stimulating cell proliferation
and tumor growth in an array of cancer cell models, such as prostate and hepatocellular
carcinomas (Siddiqui et al. 2006; Soll et al. 2010). Moreover, our recent study shows that
mice lacking both MAO A and MAO B (MAO AB double KO) exhibit diminished
proliferation of neural stem cells in late embryonic and early postnatal development, which
is mediated by serotonin (Cheng et al. 2010). It would be interesting to study the
transcriptional regulatory patterns of MAO genes during embryonic and early postnatal
developmental stages, which may provide new clues for understanding the profound
changes in cell proliferation capacity caused by altered neurotransmitter levels.

Summary and future prospective

The current knowledge on the promoter organization and transcriptional regulation of MAO
A and MAO B genes has been reviewed here. The Spl-binding sites and Sp-family/Sp-
family-like transcription factors were identified to be the major players for regulating both
MAO A and MAO B promoters. On the other hand, MAO A and MAO B also show
differential regulatory mechanisms in terms of their responses to different transcription
factors, cellular signal transductions and hormones. For example, MAO A is up-regulated by
SRY, whereas MAO B shows the induced responses to TIEG2. In contrast to MAO A,
which is involved in a c-Myc- and R1-mediated apoptotic signaling pathway, MAO B is
activated by PKC and MAPK cascades. Moreover, MAO A and MAO B are distinctly
regulated by diverse hormones in terms of their extent of responses in different cell models
and tissue regions. These differential regulations may contribute to the differences in the
temporal/spatial expression and physiological functions between these two isoenzymes. In
addition, the identification of novel/unique transcription factors of MAO genes (e.g. R1, a c-
Myc interacting protein which enhances c-Myc transforming activity) may provide insights
into the new functions of MAO genes (e.g. a potential role in tumor progression) as well as
the molecular basis of neuropsychiatric disorders associated with MAO dysfunction.
Modulation of endogenous levels of such factors could be considered as an alternative
approach to maintain normal MAQ activity in addition to using MAO inhibitors. The
translational values of these findings will be further investigated.
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A schematic diagram of the 2-kb promoter organization, transcriptional regulation and
regulatory effects of MAO genes. The size is not proportional to the promoter structure
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