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Neuropeptide PDF (pigment-dispersing factor)-secreting large ventrolateral neurons (ILN,s) in the Drosophila brain regulate daily patterns of
rest and arousal. These bilateral wake-promoting neurons are light responsive and integrate information from the circadian system, sleep
circuits, and light environment. To begin to dissect the synaptic circuitry of the circadian neural network, we performed simultaneous dual
whole-cell patch-clamp recordings of pairs of ILN s. Both ipsilateral and contralateral pairs of ILN,s exhibit synchronous rhythmic membrane
activity with a periodicity of ~5-10s. This rhythmicILN, activity is blocked by TTX, voltage-gated sodium blocker, or a-bungarotoxin, nicotinic
acetylcholine receptor antagonist, indicating that action potential-dependent cholinergic synaptic connections are required for rhythmic ILN,
activity. Since injecting current into one neuron of the pair had no effect on the membrane activity of the other neuron of the pair, this suggests
that the synchrony is attributable to bilateral inputs and not coupling between the pairs of ILNs. To further elucidate the nature of these synaptic
inputs to ILN s, we blocked or activated a variety of neurotransmitter receptors and measured effects on network activity and ionic conduc-
tances. These measurements indicate the ILN s possess excitatory nicotinic ACh receptors, inhibitory ionotropic GABA , receptors, and inhibi-
tory ionotropic GluCl (glutamate-gated chloride) receptors. We demonstrate that cholinergic input, but not GABAergic input, is required for
synchronous membrane activity, whereas GABA can modulate firing patterns. We conclude that neuropeptidergic ILN,s that control rest and

arousal receive synchronous synaptic inputs mediated by ACh.

Introduction
Drosophila melanogaster flies exhibit robust daily rhythms of rest
and activity, consisting of two crepuscular bouts of activity with
an afternoon siesta in between. This complex daily pattern of
activity is generated coordinately by (1) the circadian rhythm
control circuit, (2) a homeostatic process regulating sleep, and
(3) light input (Cirelli and Bushey, 2008; Dubruille and Emery,
2008; Nitabach and Taghert, 2008).

The Drosophila neural circadian control system is comprised
of ~150 clock neurons (Renn et al., 1999; Kaneko et al., 2000;
Blanchardon et al., 2001; Helfrich-Forster, 2004, 2005; Nitabach
and Taghert, 2008). Intercellular communication among time-
keeping neurons via neuropeptide signaling and classical neu-
rotransmission is essential for circadian rhythmicity in both
insects and mammals (Wagner et al., 1997; Liu and Reppert,
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2000; Harmar et al., 2002; Albus et al., 2005; Aton et al., 2005,
2006; Schneider and Stengl, 2005; Maywood et al., 2006;
Mertens et al., 2007). The fly large ventrolateral neuron (ILN,)
subset of circadian neurons secretes the neuropeptide pigment-
dispersing factor (PDF) and their electrical activity has been
shown to be directly light-responsive and is modulated by a
blue light-activated photopigment called cryptochrome (CRY)
(Sheeba et al., 2008a). These neurons are wake-promoting and
critical for the regulation of arousal and sleep patterns (Collins et
al., 2005; Helfrich-Forster et al., 2007; Parisky et al., 2008;
Shang et al., 2008; Sheeba et al., 2008b). The functional signals
from these neurons to downstream targets include activity-
modulated PDF secretion (Nitabach et al., 2002, 2006; Wu et
al., 2008a,b). These functional outputs are modulated by the
intrinsic circadian timekeeping mechanism (Cao and Nit-
abach, 2008), direct activation by light (Sheeba et al., 2008a),
and by synaptic inputs, the nature of which are mostly un-
known, but likely include GABAergic input (Parisky et al.,
2008; Chung et al., 2009).

To begin to unravel the synaptic circuitry of the fly circadian
neural network, we used whole-cell patch-clamp physiology in
intact whole-brain explants. Simultaneous dual-cell recordings
from pairs of ILN s, regardless of whether they were in ipsilateral
or contralateral hemispheres of the brain, revealed highly syn-
chronous rhythmic membrane activity. Rhythmic ILN, activity is
abolished by treating the preparation with either tetrodotoxin
(TTX), which blocks action potentials, or c-bungarotoxin or cu-
rare, which blocks nicotinic acetylcholine receptors. These data
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suggest that cholinergic synaptic communication is required for
ILN, rhythmic membrane activity.

To identify the nature of synaptic inputs to ILN,s, we used
pharmacological methods to inhibit or activate a variety of neu-
rotransmitter systems and measured the effect on ILN, mem-
brane activity and ionic conductances. ILN s receive excitatory
input via nicotinic acetylcholine receptors (nAChRs) and inhib-
itory input via both GABA , receptors and glutamate-gated chlo-
ride channels (GluCls). Cholinergic inputs are required for ILN,
synchrony, whereas GABAergic input is not required to maintain
this synchrony, but likely plays a modulatory role in ILN, mem-
brane activity.

Materials and Methods

Clock neuron electrophysiology

Adult Drosophila whole-brain explant preparation. Flies were maintained
at 25°C in a 12 h light/dark (LD) cycle. pdf-gal4;UAS-DsRedII fly lines
were used as described previously (Brand and Perrimon, 1993; Renn et
al., 1999; Wu etal., 2008a). For the experiments looking at paired record-
ings between ILN s and non-LNs, pdf-Gal4/201Y-Gal4;UAS-dsRED
flies were used and the neurons were identified by both fluorescence and
anatomical position. Three to 7 d posteclosion female flies that express
red fluorescent protein, DsRed, solely in ventral lateral clock neurons
(LN,s) were collected for electrophysiological recordings. Whole-cell re-
cordings on large LN, (ILN,s) of fly brain explants were performed as
described previously (Gu and O’Dowd, 2006; Cao and Nitabach, 2008;
Wu et al., 2008a), and all individual recordings were done in light phase
of LD cycle. All paired recordings were performed between zeitgeber time
22 (ZT22) and ZT23. Briefly, the fly brains were dissected in external
recording solution, which consisted of the following (in mm): 101 NaCl,
3 KCl, 1 CaCl,, 4 MgCl,, 1.25 NaH,PO,, 5 glucose, 20.7 NaHCO;, pH
7.2, with osmolarity of 250 mmol/kg. The brain was placed ventral side
up, secured in a recording chamber with a mammalian brain slice “harp”
holder, and was continuously perfused with external solution bubbled
with 95% O,/5% CO, at room temperature (22°C). ILN s were visualized
by DsRed fluorescence, and subsequently, the immediate area surround-
ing the ILN s was enzymatically digested with focal application of pro-
tease XIV (2 mg/ml; Sigma-Aldrich).

Whole-cell patch-clamp electrophysiology. Whole-cell recordings were
performed using borosilicate standard wall capillary glass pipettes (Sutter
Instrument). Recording pipettes were filled with internal solution con-
sisting of the following (in mm): 102 potassium gluconate, 17 NaCl, 0.085
CaCl,, 4 Mg-ATP, 0.5 Na-GTP, 0.94 EGTA, and 8.5 HEPES, pH 7.2, and
osmolarity of 235 mmol/kg. The resistance of filled pipettes was between
8 and 12 M(). Gigaohm seals were achieved before breaking in to whole-
cell configuration in voltage-clamp mode, followed by break-in to
whole-cell configuration while in voltage-clamp mode. To confirm
maintenance of a good seal and absence of damage to the cell, a 40 mV
hyperpolarizing pulse was imposed on each cell while in whole-cell
voltage-clamp mode from a holding potential of —80 mV. Only if the
resulting inward leak current was less than —100 pA was that cell used for
subsequent current-clamp measurements of resting membrane potential
(RMP), action potential (AP) firing rate, and membrane resistance. RMP
was determined after stabilization of the membrane potential after the
transition from voltage-clamp to current-clamp mode, and for cells with
oscillating membrane potential was defined at the trough of the oscilla-
tion. AP firing rate was computed over the 5 min period after the transi-
tion from voltage-clamp to current-clamp configuration. Burst rate
firing was defined as the number of bursts occurring in the last 60 s of the
5 min period after the transition from voltage-clamp to current-clamp
configuration, divided by 60 s. Membrane resistance was measured by
injecting —20 pA current in current-clamp recording mode. Voltage
clamp was then used to record neurotransmitter-induced currents on
ILN,s held at different holding potentials in the presence of 2 um TTX
(Sigma-Aldrich), which inhibits action potential firing of neurons and
communication of neural network. Glutamate-induced currents were
also recorded in external solution with reduced [Cl ] by replacing NaCl
with equal molar of Na-gluconate.
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Data acquisition and analysis. Signals were measured using a Multi-
clamp 700B (Molecular Devices) and a Digidata 1440A (Molecular
Devices).

The degree of synchrony of the pair recordings was determined by
filtering 100 s of current clamp data using a low-pass Guassian filter, and
then running cross-correlation analysis on the pair of recordings
(Clampfit). The peak correlation value for each pair was determined.
Autocorrelation was used to analyze the rhythmic RMP oscillations in
201Y+/ILN, pairs. Again, 100 s of current-clamp data was filtered using
alow-pass Guassian filter, and then autocorrelation was run (Clampfit).
Pairs exhibiting strong burst firing were used for statistical analysis.

The amplitudes of neurotransmitter-induced currents were measured
in Clampfit, which is part of the pClamp 10 software package. The sig-
nificance tests were performed using ANOVA with Tukey—Kramer mul-
tiple comparisons on the difference of the cross-correlations of paired
recordings and reversal potentials for glutamate-gated current in differ-
ent [Cl ], solutions.

Drosophila brain immunostaining

Brains from pdf-Gal4/201Y-Gal4;UAS-dsRED flies were dissected, fixed
with 4% paraformaldehyde, and then stained with both mouse anti-PDF
(1:50) (Developmental Studies Hybridoma Bank, University of Iowa,
Towa City, IA) and rabbit anti-dsRED (1:1000) (Invitrogen) primary
antibodies. PDF and dsRED were visualized using a Cy2-conjugated
anti-mouse antibody (1:300) (Jackson ImmunoResearch) and a Cy3-
conjugated anti-rabbit antibody (Jackson ImmunoResearch), respec-
tively. The images were collected with a 20X objective of a Zeiss
AxioExaminer Z1 microscope, using AxioVision 4 software.

Results

ILN,s receive synchronous synaptic inputs

To address whether 1LN,s that regulate patterns of rest and
arousal exhibit synchronous firing, as has been observed in neu-
ral circuits in the mushroom bodies regulating memory (Rosay et
al., 2001), we performed whole-cell patch-clamp physiology on
pairs of ILN,s simultaneously (Fig. 1A). All paired recordings
were performed at ZT22-7T23, which was chosen to maximize
the number of burst firing neurons, as the largest percentage of
burst firing ILNs occurs at this time (Sheeba et al., 2008a). Pairs
of ILN,, neurons residing in the same hemisphere exhibited syn-
chronized rhythmic membrane activity, such that the depolar-
ized and hyperpolarized phases occurred simultaneously. This
synchrony was exhibited in all pairs from the same hemisphere
that exhibited strong burst firing [peak correlation of 0.8395 *
0.059 (SEM); n = 8], whereas two pairs of ILN,s that were toni-
cally firing did not show rhythmic membrane activity, and there-
fore synchrony could not be detected (Fig. 1 E). We next recorded
from pairs of ILNs from contralateral hemispheres (Fig. 1B).
Interestingly, all of the pairs of bursting neurons also exhibited
tight synchrony of electrical activity [peak correlation of
0.9112 = 0.044 (SEM); n = 5], whereas three contralateral pairs
that exhibited a mixture of tonic and burst firing showed de-
creased synchrony (Fig. 1E). The recordings that we performed
suggest that each member of the pair can switch firing modes,
from burst to tonic and vice versa, independently, but exhibit
synchrony only in the burst firing mode. It has been suggested
that this modulation between firing states may be regulated by
voltage-gated calcium channels (Sheeba et al., 2008a).

To investigate whether the robust synchrony that we observed
between ILN s represented a general synchrony of all neurons in
the whole-brain preparation [analogous to epileptiform activity
seen in mammalian brain slices (Fisahn, 2005) or other forms of
synchronous neuronal activity] or whether it had some specificity
to neurons associated with the circadian and arousal circuits, we
performed paired recordings between 1LN, and a stereotyped
neuron that is positive for the well studied driver 201Y-Gal4 and
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Figure 1.  Bilaterally synchronous membrane activity of ILN, rest/arousal neurons. 4, B,
Representative simultaneous whole-cell current-clamp recordings of two ILN,s, either from
ipsilateral (n = 10) (A) or contralateral (n = 8) (B) hemispheres in situ. €, Simultaneous
recording shows the partially synchronized firing patterns of one ILN, and one 201Y+ neuron.
These neurons exhibit partial synchronized membrane activity, sharing a common input, but
also receiving unique input (n = 5). All paired recordings were performed between 2122 and
1123. D, Drosaphila brain at 20X magnification stained for the neuropeptide PDF in green and
for dsRED (expressed using both pdf-Gal4 and 201Y-Gal4, a well characterized neuronal driver).
The white arrows indicate the location and identity of the neuron pair used for 201Y+/ILN,
paired recordings. The 201Y+ neuron was PDF— and located dorsomedial to the ILN,s. The
dashed white line indicates the midline of the brain, with dorsal (d) up and ventral (v) down. E,
Cross-correlation analysis of paired recordings. Al paired recordings, ipsilateral ILN,, contralat-
eral LN,, and 201Y +/ILN,,, were filtered with a low pass Guassian filter, and then their degree of
synchrony was determined by cross-correlation. The circles represent the correlational value of
each pair; the gray circles indicate pairs exhibiting strong burst firing, whereas the unfilled
circles represent pairs exhibiting differing degrees of tonic firing. The black squares show the
mean degree of synchrony of all the bursting neurons for each condition with the error bars
representing the SEM. The n are indicated, with the number of bursting pairs included in the
mean in parentheses. The degree of synchrony of these groups were significantly different from
each other (ANOVA, p = 0.02). An asterisk denotes statistical significance. F, Autocorrelation
analysis of two representative pairs of 201Y+ (black) and ILN, (red) neurons show that they
share one common synchronized peak of membrane activity but that the 201Y+ neurons
exhibit a second peak of membrane activity that is not shared by the ILN,s.
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Figure 2. Synchronous membrane activity of ILN, is attributable to synchronized synaptic

input, not to coupling between the two neurons. 4, In this paired recording, this representative
trace depicts one ILN, that was injected with —20 pA for 30 s (top), whereas the response was
simultaneously recorded in another ILN, in the same brain hemisphere (second panel from top).
In this example, the LN, that was injected with negative current hyperpolarized, whereas the
other ILN, was unaffected (n = 6). Synchrony of rhythmic membrane activity between the two
ILN,s was unaffected. All paired recordings were performed between ZT22 and Z123. B, Simi-
larly, when 20 pA was injected for 30 sinto one ILN, (bottom), the second neuron maintains its
baseline resting membrane potential and is not affected by the depolarization and action po-
tentialsinduced in thefirst ILN, (n = 6). C,Zooming in on thefirst 15 of the depolarizing current
injection into the first ILN,,, it is clear that there is no postsynaptic response of the second ILN, to
the action potential firing in the first. D, Quantification of the effect of current injection on both
neurons during paired recordings, described above (n = 6). Theinjected neurons (black) exhibit
clear changes in membrane potential as a result of being injected with either positive or nega-
tive current, whereas each paired neuron that is concurrently recorded but not injected (gray)
does not show any change in membrane potential.

islocated dorsal to the ILN s (n = 5) (Fig. 1C,D). All201Y+/ILN,,
pairs exhibited one peak of synchronized membrane activity, but
the 201Y+ neurons all demonstrated an additional peak of
rhythmic membrane activity of a different phase, not seen in the
ILN,s (Fig. 1C,F). In addition, the degree of synchrony that we see
between these pairs of 201Y+ and ILN,, neurons is significantly
different from the robust synchrony seen in contralateral ILN,~
ILN, pairs (ANOVA, p = 0.02, p < 0.05) (Fig. 1E). These data
show that, whereas both ILN,s and the 201Y+ neurons receive
some common rhythmic inputs, the 201Y+ neurons also receive
unique inputs and are less synchronized with 1ILN,s than ILNs
are to each other.

To determine whether this highly synchronized electrical ac-
tivity between pairs of ILN, neurons is a result of synchronized
synaptic inputs or, rather, because of direct communication be-
tween ILN,s, we examined the effect of silencing or exciting one
member of a pair on the membrane activity of the other. To do
this, we achieved paired recordings from two ILN,s from ipsilat-
eral (n = 5) or contralateral (n = 4) hemispheres, then injected
negative or positive current into one of the pair to induced either
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silencing or activation, respectively, and A
observed the pattern of firing in the other
member of the pair. Injection of negative
current into ILN, 1 hyperpolarized the
neuron and suppressed much of its action Fomy
potential firing; the membrane potential B
of this neuron continued to oscillate

Ach

Nicotine

T M
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2 A, top trace), indicating that this neuron
was still receiving rhythmic synaptic in-
puts. When we simultaneously observed
the electrical activity of LN, 2, it exhibited
unchanged membrane activity, continu-
ing to fire action potentials, in the same
way as before the current injection into its
counterpart (Fig. 2A, second trace from
top). These two ILNs still exhibited syn- Fomv

chronized rhythmic membrane activity. Curare
We observed no effect on the membrane
activity of one ILN, by injecting negative
current into another in all pairs examined
(n = 9; 5 ipsilateral pairs, 4 contralateral
pairs). Similarly, when one ILN, was in-
jected with positive current, the neuron
was triggered to fire a burst of action po- Somy
tentials, whereas its pair stayed at a resting
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phase before both neurons receive syn-
chronized synaptic inputs (Fig. 2B). De-
spite this positive current injection into
ILN, 1, 1LN, 2 continued to receive synap-
tic input, as evidenced by its exhibiting
postsynaptic potentials (PSPs). This input
was not from its paired ILN, since the ac-
tion potentials fired in ILN,, 1 did not cor-
respond to the PSPs seen in ILN,, 2 (Fig.
2C). We observed similar results with all
pairs injected with positive current (n =9
5 ipsilateral pairs, 4 contralateral pairs). In
all cases, current injection into one ILN,
caused a change in membrane potential in
that neuron, but not in the ILN, that was
simultaneously being recorded from (Fig.
2 D). This suggests that ILNs receive syn-
chronous synaptic inputs from neuron
populations distinct from the ILN,s them-
selves. An additional possibility is that si-
lencing one ILN, in the context of the
network of eight ILNs is not sufficient
perturbation to disrupt the rhythmic
membrane activity of another ILN,, even
if these neurons are synaptically con-
nected. We do not believe this is the case,
however, since severing the posterior op-
tic tract, a manipulation that blocks com-
munication from all ILNs in the contralateral hemisphere, had
no effect on synchronous membrane activity of contralateral
pairs of ILN,s (data not shown).

60my.
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Figure 3.

Nicotinic acetylcholine receptors mediate excitatory inputs

to ILN,s

Since acetylcholine is the most prevalent excitatory fast synaptic
neurotransmitter in the insect CNS (Bossy et al., 1988; Schuster et
al., 1993; Yasuyama and Salvaterra, 1999; Littleton and Ganetzky,

<

B A

M Baseline
[m] Drug

ns ns

Modulation of ILN, membrane activity by nAChR agonists and antagonists. A-D, Representative whole-cell current-
clamp recordings of single ILN,s in situ. A, This recording shows one example of an ILN, treated two times consecutively with 1 mm
ACh for 5's. ACh increased membrane activity of the ILN,, depolarizing membrane potential and increasing firing rate. This effect
was reversible and replicable (n = 4). B, One example of ILN, current-clamp recording showing the effect of the nAChR agonist
nicotine. The ILN, was exposed to 2 mm nicotine for 10 5. Membrane potential and action potential firing rate were dramatically
increased (n = 8). After the end of nicotine exposure, the RMP and AP firing rate decreases slowly and the neuron exhibits a
refractory phase. The bottom and middle panels show the rest of the washout of the drug, which was only partially reversible in
seven of eight neurons. C, D, These are representative recordings of ILN, s treated with nAChR antagonists curare (200 i) (n = 6)
(€) or a-bungarotoxin (0.5 wum) (D). The inhibitory effects of curare are reversible, whereas the effects of a-bungarotoxin were
irreversible, not reversing after >30 min of washout (data not shown). E, Quantification of changes in membrane potential
because of drug treatment. The black bars indicate the mean resting membrane potential of the neurons before drug treatment,
whereas the gray bars show the RMP of the cell after pharmacological manipulation. The error bars represent the SEM. Both ACh
and nicotine induced significant changesin RMP (p = 0.0016 and p = 0.0007, respectively), whereas curare and c-bungarotoxin
did not. N > 5 for each treatment. *, Statistically significant difference; ns, not significant.

2000), we reasoned that cholinergic input was likely a major in-
fluence on ILN, membrane activity. To test this hypothesis, we
examined the participation of cholinergic signals in ILN, mem-
brane activity by performing whole-cell patch-clamp recordings
on single ILN s in current-clamp mode, with bath application of
agonists or antagonists of acetylcholine receptors. The represen-
tative ILN,, in Figure 3A exhibits oscillations in RMP between
—55 and —40 mV with a burst of six to eight action potentials
during the depolarized phase. When the preparation was bath-
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treated with 1 mm acetylcholine (ACh), the membrane dramati-
cally depolarized and experienced a burst of APs, lasting tens of
seconds (Fig. 3A, E). After returning to normal saline bath, the mem-
brane gradually repolarized and membrane activity returned to
baseline. This effect on membrane potential was repeatable and sig-
nificant not only in this same neuron, but also in other ILN s in
independent whole-brain explants (p = 0.004; n = 4).

Two different types of ACh receptors have been identified in
the Drosophila nervous system, ionotropic and metabotropic
(Bossy et al., 1988; Schuster et al., 1991; Blake et al., 1993). To
specifically test the effect of ionotropic ACh receptors on mem-
brane activity of ILN,s, we bath-applied a specific ionotropic ag-
onist, nicotine, and recorded the resulting response in current-
clamp mode. When 2 uM nicotine was added to the external
solution, ILN,s underwent dramatic depolarization of their
membrane potential, which, after a small amount of repolariza-
tion, was followed by a burst of AP firing and then a plateau (Fig.
3B,E). The depolarized plateau ranged from —20 to —6 mV
(mean, —10.97 = 1.31 mV) with a duration of 14 t0 200 s (n = 8),
continuing long after the removal of nicotine from the bath so-
lution. The membrane potential during nicotine treatment sig-
nificantly elevated over baseline (p < 0.00001). The prolonged
nature of this effect could possibly be attributable to the very high
affinity for this agonist to its receptor. The depolarized state grad-
ually gave way to repolarization of the RMP and a decrease in AP
firing. Interestingly, these neurons exhibited a refractory phase
before returning to rhythmic AP firing. This effect was only par-
tially reversible, as only one neuron of eight tested returned back
to its firing rate before nicotine application. This complex re-
sponse of ILN,s to nicotine raises the possibility that this nAChR
agonist not only excites ILN, membrane activity but also excites
inhibitory synaptic inputs to ILN s, as suggested by the refractory
phase after repolarization. To test the effect of metabotropic ACh
receptors on ILN, membrane activity, muscarine, a metabotropic
AChR agonist, was applied to the external solution and the re-
sponse was recorded (supplemental Fig. 1, available at www.
jneurosci.org as supplemental material). This treatment induced
no significant depolarization or change in interval between bursts
of APs but did result in an increase in AP number (mean baseline
AP firing rate, 1.925 & 0.248 Hz; mean muscarine AP firing rate,
4.1 = 0.414 Hz; p < 0.004), which was a less dramatic response
compared with that elicited by the ionotropic agonist, nicotine.

Given that the nicotinic agonist induced such a strong re-
sponse from ILN s, we examined the effect of nAChR antagonists,
curare and a-bungarotoxin (e-BuTX) on ILN, membrane activ-
ity. Bath application of 200 uM curare eliminated AP firing al-
most immediately, but did not change membrane potential, and
was completely reversible on washout of the drug in four of six
neurons tested (one neuron showed only partial recovery) (Fig.
3C,E). Similarly, a-BuTX inhibited membrane activity of ILNs,
but did not change membrane potential (n = 14) (Fig. 3D, E),
although the kinetics of its effect were slower than that of curare,
possibly because of the fact that curare is a small molecule, as
opposed to a peptide like a-BuTX, and therefore was able to
diffuse into (and out of) the whole-brain preparation more
quickly. In the representative trace shown in Figure 3D, on addi-
tion of 0.5 uM a-BuTX, the ILN, exhibited progressively de-
creased firing with an ~5 mV oscillation in RMP, which
transitioned to complete abolition of AP firing and a relatively
stable RMP (Fig. 3D). Of the 14 neurons tested, a-BuTX caused
complete cessation of AP firing in 10 ILN,s and partial block of
AP firing in the other four. The inhibitory effect of this toxin was
not reversible, as washout led to only partial recovery in eight
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Figure 4.  nAChR currents of ILN,s. 4, Representative trace of ILN, spontaneous activity in
current-clamp mode (A, top) or voltage-clamp mode with a holding potential of —80 mV (4,
middle). The bottom two traces in A are enlargements of parts of the rest phase that are boxed
in the panel directly above each one. B, Representative current-clamp recording of ILN, treated
with TTX. TTX abolished action potentials and rhythmic membrane activity. €, Representative
current-clamp (left) and voltage-clamp (right) recordings from a single ILN, treated with TTX
and magnified views of the regions boxed in each top panel, respectively. Miniature postsyn-
aptic potentials (left) and currents (right) are visible. D, E, Voltage-clamp recordings of ACh- (D)
or nicotine-induced (E) currentsinindividual ILN,s at a range of holding potentials (10,0, — 10,
—20, or —30 mV). ACh- and nicotine-induced currents reversed around —10 mV.

neurons and no detectable recovery in six. Importantly, curare or
a-BuTX blockade of nAChR each resulted in loss of rhythmic
oscillation in membrane potential, indicating that these oscilla-
tions are not intrinsic pacemaker potentials, but rather are im-
posed by synchronized synaptic inputs.

The inhibition of action potential firing in ILN s by curare and
a-BuTX and dramatic depolarization induced by nicotine sug-
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5).Intwotrials on the same ILN,, GABA reversibly

abolished action potentials and rhythmic membrane activity. B, Quantification of the effect of GABA on RMP and action potential firing of ILN,s. The black bars represent the mean RMP (left) or action potential
firing rate (right), before and after GABA treatment. The errors bars equal the SEM. Treatment of ILN, s with GABA causes a significant decrease in AP firing (p = 0.029) while causing no changein RMP (p > 0.05).
* Statistically significant difference; ns, not significant. C, Voltage-clamp measurement of GABA (1 mm)-induced currents at a range of holding potentials (— 30, —40, —45, —50,or —70 mV) in the presence
of TTX. GABA-induced currents reversed between —45 and —50 mV, near the calculated equilibrium potential of (I ™. D, Representative current-clamp recording of ILN, treated with the chloride channel
antagonist picrotoxin (100 pum) (n = 9). Picrotoxin causes the trough of rhythmic membrane activity to be more depolarized and increases the number of action potentials in each burst (top). Bottom traces are
enlargements of boxed regions in the top trace. E, Quantification of the effect of picrotoxin on RMP, action potential firing, and burst firing frequency of ILN,s. The black bars represent the mean RMP (left), action
potential firing rate (middle), or burst firing frequency (right) before and after picrotoxin treatment. The errors bars equal the SEM. Treatment of ILN,s with picrotoxin causes a significantincreasein AP firing (p =

0.0025) and in burst firing frequency (p = 0.0008) while causing no significant change in RMP (p > 0.05). *

gest that nAChRs mediate excitatory synaptic input to these neu-
rons. However, this does not rule out the possibility that the
observed effects are not attributable to direct cholinergic synaptic
input into ILNs, but rather indirect effects from intermediary
neurons interposed between cholinergic neurons and ILNs. To
directly assess nAChR-mediated currents in ILN s, we used volt-
age clamp to measure ACh-induced currents in the presence of
bath-applied TTX. TTX blocks voltage-gated sodium channels in
all neurons in the whole-brain explant, thus inhibiting AP firing
in all neurons and thereby preventing all nonspontaneous synap-
tic activity. In normal bath solution, ILN s exhibit spontaneous
action potential firing, tonic or bursting, and often oscillations in
RMP (Fig. 4 A, top trace). In voltage-clamp mode with a holding
potential of —80 mV, ILNs exhibit rhythmic large inward cur-
rents of ~100 pA, corresponding to AP-dependent excitatory
synaptic inputs, and also showed small inward currents, ranging
in amplitude from 2 to 10 pA, during the resting phase (Fig. 4B,
bottom traces). When TTX was added to the bath solution, action
potential firing and rhythmic membrane activity were blocked
(Fig. 4B). However, small TTX-resistant transient depolariza-
tions could still be observed in current clamp (Fig. 4C, left traces)
and corresponding inward currents in voltage clamp (Fig. 4C,

, Statistically significant difference; ns, not significant.

right traces). It is reasonable to conclude that the TTX-resistant
small inward currents are miniature postsynaptic currents
(mPSCs), mediated by spontaneous vesicle release by presynaptic
neurons with input into ILN,s. The amplitude of these miniature
currents is similar to those observed in Kenyon cells in the Dro-
sophila mushroom body (Su and O’Dowd, 2003). The effect of
TTX on ILN, that we observe is consistent with the effect of TTX
on ILN,s previously reported (Sheeba et al., 2008a), despite the
fact that they used a 20-fold lower dose.

In our experimental paradigm, we first established a robust
recording, assessing the membrane activity of a ILN, in current-
clamp mode, and then added TTX and monitored the loss of APs,
as in Figure 4 B. We then recorded AChR agonist-induced cur-
rents at a series of holding potentials and determined the reversal
potential for these currents by assuming a linear relationship in
this range of holding potentials for each individual neuron. In the
representative recording in Figure 4 D, application of 1 mM ACh
induced an outward current at potentials positive to —10 mV and
an inward current at potentials negative to —20 mV (Fig. 4D).
After the reversal potential was determined for multiple individ-
ual ILN s (n = 7), the reversal potential of the current was deter-
mined by averaging the reversal potentials of each individual
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a variety of factors, including kinetics of
wash-in of the agonist to various regions
of the extensive dendritic arbors of the 1L-

U N,s, on and off binding kinetics of agonist

with the receptor, desensitization of the
receptors, or the inability to hold the
whole surface of the neuron at the holding
potential set at the soma.

GABA , receptors mediate inhibitory
synaptic inputs to LN, s

GABA is a major inhibitory neurotrans-
mitter in insects and is widely distributed
in the CNS (ffrench-Constant et al., 1991;
Aronstein and ffrench-Constant, 1995;
Hosie et al., 1997; Littleton and Ganetzky,
2000). Since ILN s have been shown to ex-
press the GABA, receptor and since flies
with decreased GABA, receptor expres-
sion in their LN,s show disrupted rest
(Parisky et al., 2008; Chung et al., 2009),
we hypothesized that GABA might be an
important inhibitory input into ILN s. To
test this, we first examined the effect of
GABA application on the membrane ac-
tivity of ILN,s in current-clamp mode.
When GABA (1 mMm) was added to the

171ar,

40 eyt mewsmmesmen  external solution, AP firing was rapidly
blocked (n = 5), but the membrane po-

g gl '30_;\ 10 s tential was not significantly altered (p >
o " 0.05). This effect was reversible and could

— o e P be repeated in the same neuron (Fig.

-7ow 60 \ —
30pA|__ 30pA [
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Figure 6.

bars) versus the calculated reversal potential. The error bars depict the SEM.

neuron (supplemental Fig. 2, available at www.jneurosci.org as
supplemental material). The reversal potential for the ACh-
induced current was —8.9 = 1.4 mV (SEM). Similarly, we re-
corded nicotine-induced currents in ILN,s (representative trace)
(Fig. 4 E) and subsequently determined the reversal potential for the
nicotine-induced current to be —14.9 = 1.4 mV (supplemental Fig.
2, available at www.jneurosci.org as supplemental material). As
expected, the experimentally measured reversal potentials for ACh-
and nicotine-induced currents are near the predicted reversal poten-
tial for a nonselective monovalent cation channel. These data
confirm that nAChRs are present in ILN,s and mediate excitatory
synaptic input.

Both the ACh- and nicotine-induced currents displayed a
slightly delayed onset in relation to the bath application of the
agonist and also exhibited repeatable complex time courses of
activation. These repeatable time courses could be attributable to

Glutamatergic modulation of LN, membrane activity. Representative current-clamp recording of ILN,, responses to
bath-applied glutamate (1 mu). 4, In two trials on the same ILN,, glutamate (1 m) reversibly abolished action potentials and rhythmic
membrane activity (n = 5). B, Quantification of the effect of glutamate on RMP and action potential firing of ILN, . The black bars represent
the mean RMP (left) or action potential firing rate (right), before and after glutamate treatment. The errors bars equal the SEM. Treatment
of ILN,s with glutamate causes asignificant increase in RMP (p = 0.0008) and a concurrent decrease in AP firing (p = 0.003). *, Statistically
significant difference; ns, not significant. €, Voltage-clamp measurement of glutamate (1 mu)-induced currents in the presence of TTX.
Glutamate-induced currents reversed at holding potentials that varied with [(I ], and were near the calculated reversal potentials (I ~ at
each [(1 ~],. D, Quantification of the experimentally observed reversal potentials of glutamate-induced currents at different [Cl ], (black

5A, B). This activation of GABA receptors
also resulted in a loss of oscillations in
resting membrane potential in ILN,s.
Conversely, when picrotoxin, a GABA,
receptor antagonist, was bath applied, it
increased firing rate (mean baseline AP
firing, 1.7 = 0.474 Hz; mean picrotoxin
AP firing rate, 5.94 = 1.09 Hz; p = 0.0025)
and also increased the frequency of firing
bursts (mean baseline burst frequency,
0.346 * 0.114 Hz; mean picrotoxin burst
frequency, 0.9 * 0.057; p = 0.0008). The
picrotoxin effect was also reversible.

To determine whether this response
could result from GABA-induced cur-
rents within ILN s themselves, we performed voltage-clamp re-
cordings in the presence of TTX (as in Fig. 4 above). Application
of GABA induced an outward current at holding potentials at
—45 mV or above and an inward current at potentials of —50 mV
or below (Fig. 5C). We determined the reversal potential of the
GABA-induced current in ILNs to be —48 * 0.6 mV (n = 5)
(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material), which is near the calculated equilibrium poten-
tial for C1~, —48.1 mV. These results strongly suggest that the
GABA, receptor is present in ILN,s and that these receptors
mediate fast inhibitory synaptic inputs, which are important
for appropriate regulation of rest and arousal (Parisky et al.,
2008; Chung et al., 2009). These data are consistent with previous
physiological recordings demonstrating GABA ,-mediated cur-
rents in dissociated PDF-positive neurons in culture (Chung et
al., 2009).

20pA |

50 sec
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inhibitory input to ILN s

Glutamate is an important inhibitory
neurotransmitter in invertebrate nervous
systems, as it gates the GluCl that is not
present in mammals or other vertebrates
(Cully et al., 1994, 1996; Dent et al., 1997,
2000; Laughton et al., 1997; Vassilatis et
al., 1997; Cook et al., 2006). GluCl criti-
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cally regulates patterns of locomotor
activity and pharynx function in Caeno-
rhabditis elegans (Dent et al., 1997; Cook
et al., 2006). Although this neurotrans-
mitter receptor was cloned in Drosophila
by homology with its C. elegans counter-
part (Cully et al., 1994) and its physiology
has been characterized in vitro (Cully et
al., 1996), we are unaware of any func-
tional role for GluCl that has been identi- B
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-40mv
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-40mV

Curare
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fied in Drosophila in vivo. To test the
hypothesis that GluCl inhibits network
activity, we recorded from ILN. in
current-clamp mode and applied 1 mm
glutamate in the bath. As predicted by
GluCl biophysical properties, glutamate
application immediately blocked AP fir-
ing, and stabilized membrane potential at
around —40 mV, which was reversed on

-50mV
ILNv #2

-60mV
Washout

10 mV
5 Sec

washout (Fig. 6A) (n = 5). The mean
baseline resting membrane potential be-
fore addition of glutamate was —57.0 *
2.43 mV, but depolarized to —40.8 = 1.97
mV after glutamate treatment (p =
0.0008) (Fig. 6B).

To determine whether this effect of
glutamate on ILN, membrane activity C -Somv
could be mediated by direct activation of S
GluCl channels in ILN s themselves, we
performed voltage-clamp recordings in
the presence of bath-applied TTX to re-
cord glutamate-induced currents of
ILN,s. Glutamate induces an inward cur- 0zl
rent at holding potentials of —45 mV or

ILNv #1

-50mV
ILNv #2

Cross-Correlation
5

10 mV
10 Sec

Cross-Correlation
°
?

00

below and an outward current at —40 mV Before
or above, as shown in a representative cell
in Figure 6C. After repeating this in mul-
tiple ILN s (n = 8), we determined the
reversal potential to be —44.1 £ 0.6 mV
(supplemental Fig. 2, available at www.
jneurosci.org as supplemental material),
which, similar to the GABA-induced cur-
rent (Fig. 5), is close to the equilibrium
potential of Cl™. To confirm that the
ionic basis for the glutamate-induced current in ILN s is Cl ~, we
recorded the glutamate-induced current in external solutions
with reduced [Cl ~],. When we reduced [C] "], the reversal po-
tential of the current became significantly more depolarized (p <
0.001, ANOVA) (Fig. 6 D; supplemental Fig. 2, available at www.
jneurosci.org as supplemental material), and closely tracked the
predicted Cl ~ equilibrium potentials. Together, these data indi-
cate that Cl ~ is the primary ionic basis for the glutamate-induced
current and that GluCl channels in ILN s contribute to their syn-
aptic inhibition. One alternative possibility, however, is that the

Figure 7.

n = 6, respectively).

Acetylcholine Treatment

Duvring After

Curare Treatment

DJring After Before

Activation of ACh receptors or inhibition of cholinergic inputs disrupts ILN, synchrony. A, Representative
simultaneous whole-cell current-clamp recordings of two ipsilateral ILN s treated with ACh (1 mm) (n = 5), which was then
washed out (bottom traces). All paired recordings were performed between 2122 and ZT23. B, Representative simultane-
ous whole-cell current-clamp recordings of two ipsilateral ILN,s treated with curare (200 wm) (n = 6), which was then
washed out (bottom traces). €, Quantification of the correlation of membrane activity between pairs of ILN,s before,
during, and after ACh (left) or curare (right) treatment. Each pair that was treated with these agents is shown (n = 5 and

effect of glutamate on ILN, firing rate is not attributable to GluCl
conductance, but rather attributable to activation of metabo-
tropic glutamate receptors, whose downstream G-protein-
dependent signaling causes the opening of a chloride ion channel,
resulting in a current that reverses at the chloride reversal poten-
tial. Although this is a formal possibility, we consider it more
likely that GluCl is responsible for the current we observe, as the
role of mGluR on ionic conductance has been widely investigated
in the literature and no such activation of chloride channels by
mGluR signaling has been observed.
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Similarly, when ILN s were treated

ILNv #1

“50mv
ILNv #2
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Washout

with glutamate, all synchronous mem-
brane activity between ILN,, pairs was lost
(Fig. 8) (n = 5). In several cases, synchro-
nized burst firing returned on washout
(four of five pairs), but as with cholinergic
agent washout, the timing of the return to
synchrony was variable, with two pairs be-
ginning burst firing simultaneously and
two regaining rhythmic membrane activ-
ity independently.

In contrast, treatment of these neurons
with picrotoxin, which inhibited endoge-
nous GABAergic input to these neurons,
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Cholinergic inputs, but not GABAergic inputs, are required
for ILN, synchrony

Our data suggest that ILN s receive cholinergic, GABAergic, and
glutamatergic inputs, so we next investigated the neurochemical
basis for the robust synchronous synaptic inputs that we ob-
served in pairs of ILN, neurons. To do this, we performed whole-
cell patch-clamp physiology on ipsilateral pairs of ILN,s
simultaneously, then applied either ACh, curare, glutamate, or
picrotoxin to the bath and observed the response of both neu-
rons. All pairs of ILN s treated with ACh or curare, to activate or
inhibit cholinergic synaptic input, showed a dramatic decrease in
synchrony during treatment (Fig. 7) (n = 5 and n = 6, respec-
tively). On washout, 6 of 11 pairs regained synchronous mem-
brane activity (Fig. 7C). Of the pairs that regained synchrony on
washout, four regained burst firing simultaneously. In the case of
the other two pairs, one cell regained burst firing first, whereas
the other fired tonically, but regained burst firing later in the
washout.

Activation of glutamate receptors silences synchronous ILN, firing. A, Representative simultaneous whole-cell
current-clamp recordings of two ipsilateral ILN,s treated with glutamate (1 mm) (n = 5), which was then washed out (bottom
traces). All paired recordings were performed between 2122 and ZT23. B, Quantification of the correlation of membrane activity
between pairs of ILN,s before, during, and glutamate treatment. Each pair that was treated with these agents is shown (n = 5).

did not lead to loss of synchrony between
the two neurons (Fig. 9A,B) (n = 5). In
fact, two pairs of neurons that were toni-
cally firing, and therefore not exhibiting
synchronous firing before picrotoxin
treatment, began burst firing and became
more synchronized with picrotoxin treat-
ment (Fig. 9C). These data are a stark con-
trast to the effect we observed when we
inhibited endogenous cholinergic signal-
ing with curare. In the case of curare, in-
hibition of the endogenous cholinergic
input lead to complete abolition of syn-
chronous membrane activity between
ILN, pairs. Because of the lack of a specific
GluCl antagonist, we could not directly
test the necessity of endogenous glutama-
tergic input in ILN,, synchrony. Together,
these data suggest that endogenous cho-
linergic input is essential for ILN, syn-
chronous membrane activity, whereas
GABAergic input is not required, but
can modulate the firing properties of the
neurons.

10mV|

10 Sec

Discussion

Through the use of simultaneous dual
whole-cell patch-clamp recordings in
Drosophila whole-brain explants, we ob-
served synchronous membrane activity in
ILN,s mediated by bilateral synaptic in-
puts. Pairs of ILN s from either the same
or contralateral hemispheres exhibited synchronous rhythms of
membrane activity (Fig. 1 A, B). Our data indicate that this robust
synchrony is attributable to synchronized network synaptic in-
puts, as opposed to direct electrical or synaptic coupling between
ILN s, as manipulation of the membrane activity of one neuron
through negative or positive current injection did not alter the
membrane activity of its synchronous pair (Fig. 2).

It has been previously shown that neural circuits responsible
for generating circadian rhythms and also those neural networks
controlling rest and arousal exhibit synchronous membrane ac-
tivity both in mammals and in insects (Nitz et al., 2002; Schneider
and Stengl, 2005; Welsh et al., 2010). Furthermore, it has been
shown that neuropeptides, VIP and PDF, in mammals and flies,
respectively, and the classical neurotransmitter, GABA, play crit-
ical roles in this synchrony (Inouye and Kawamura, 1979; Welsh
etal., 1995; Wagner et al., 1997; Liu and Reppert, 2000; Shirakawa
et al., 2000; Albus et al., 2005; Aton et al., 2005, 2006; Schneider
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and Stengl, 2005). Furthermore, we found A
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that stereotyped neurons that were posi-
tive for a well studied driver exhibited
varying degrees of synchrony with ILN,
membrane activity (Fig. 1C,E). This is
consistent with a model in which certain

neurons receive some of the same inputs U
as ILN,s and some unique inputs. Similar ~ -somv
to our observations in Drosophila, neu- S
rons in some mammalian brain regions
outside the suprachiasmatic nucleus
(SCN) exhibit synchronized membrane Ub

ILNv #1

N

activities with SCN neurons (Inouye and
Kawamura, 1979). Our data do not, how-
ever, preclude the possibility that the syn-
chrony that we observe is attributable to B
widespread epileptiform or other wide-

spread synchronous brain activity that is 10
not specific to ILN,s. We do not favor this
explanation because we have observed
ILN, pairs exhibiting varying degrees of
synchrony and also ILN, pairs in which
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cording pharmacology experiments. Even Before Duting
ifit is the case that the synchronized activ-
ity that we see is attributable to some sort
of epileptiform or other widespread syn-
chronous activity, the nature of and
mechanisms underlying this activity are
still informative, as it provides insight into
the connectivity of the network.

To characterize the nature of synaptic
inputs to ILN,s, we used a combination
of agonists and antagonists against neu-
rotransmitter receptors in both current-
clamp and voltage-clamp mode. Current-clamp mode was used
to monitor modulation of membrane activity in the ILN s in the
context of the functional neural network, whereas voltage-clamp
mode was used to determine the presence of underlying receptors
in the ILN,s themselves. We found that ILN_s receive excitatory
cholinergic input through nAChR (Figs. 3, 4D, E). Treatment of
brains with cholinergic receptor agonists, acetylcholine and nic-
otine, enhances membrane activity, depolarizing the neurons
and increasing action potential firing rate, whereas treatment
with ACh receptor antagonists, curare and «-BuTX, inhibits
membrane activity (Fig. 3). Voltage-clamp recordings in the
presence of TTX revealed that ACh- and nicotine-induced cur-
rents occur in ILN,s themselves, and these currents reverse near
the equilibrium potential for nonselective monovalent cation
channels, as expected for currents through nicotinic acetylcho-
line receptors (Fig. 4 D, E). In insects, acetylcholine is the primary
excitatory neurotransmitter in the CNS (Sattelle et al., 1989;
Gundelfinger and Hess, 1992), and nAChRs are widely expressed
in the Drosophila brain (Schuster et al., 1993). These receptors are
known to mediate fast synaptic transmission in Kenyon cells in
the adult mushroom body (Su and O’Dowd, 2003; Gu and
O’Dowd, 2006). A previous study has also shown that dissociated
PDEF-positive neurons from the larval Drosophila brain, which are
developmental precursors of the LN s, express nAChRs and ex-
hibit both ACh-induced and nicotine-induced increases in intra-
cellular calcium that are dependent on both external sodium and
calcium concentrations (Wegener et al., 2004). Our findings con-

Figure 9.
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Inhibition of GABAergic inputs does not block ILN, synchrony but does modulate ILN, firing pattern. 4,
Representative simultaneous whole-cell current-clamp recordings of two ipsilateral ILN, s treated with picrotoxin (100 zum)
(n = 5). All paired recordings were performed between 2722 and Z123. B, Quantification of the correlation of membrane
activity between pairs of ILN,s before, during, and after picrotoxin treatment. Each pair that was treated with picrotoxin is
shown (n = 5). C, Representative trace of a pair of ILN,s that switch their mode of firing from tonic to bursting as a result
of picrotoxin treatment (n = 2).

firm that ILNs in the adult circadian neural network possess
nAChRs and that these receptors mediate excitatory synaptic in-
put and synchrony of rhythmic firing.

GABA is a major neurotransmitter in the Drosophila CNS
(ffrench-Constantetal., 1991), mediating fast inhibitory synaptic
transmission through the GABA, receptor. This receptor has
been shown to be expressed in LN, s and has been shown geneti-
cally to play a major role in the regulation of arousal and sleep by
ILN,s specifically (Parisky et al., 2008; Shang et al., 2008; Chung et
al., 2009). GABA-induced decreases in intracellular calcium and
Cl™ currents have been recorded in dissociated PDF neurons
from the larval and adult fly brain, respectively (Hamasaka et al.,
2005; Chung et al., 2009), but previous studies have not analyzed
effects of GABA on ILN, membrane activity in the context of the
intact circadian rest/arousal control network. We demonstrate
that GABA inhibits the membrane activity of ILN s, whereas the
ionotropic GABAR antagonist, picrotoxin, is excitatory (Fig.
5A,B,D,E). In contrast, the study by Hamasaka et al. shows no
rescue of the inhibitory effect of GABA by picrotoxin on PDF+
LN, precursors (Hamasaka et al., 2005) but does show alleviation
of GABA-induced inhibitory responses in these neurons by
metabotropic GABAgR antagonists. Although our studies do not
exclude arole for GABARs in ILN s, the discrepancy of the effect
of picrotoxin could be attributable to changes in different
GABAR subtype expression at different developmental stages.

Through an extensive series of voltage-clamp experiments we
determined that GABA induces currents in ILN s that reverse at
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the equilibrium potential of Cl , indicating that these currents
are mediated by GABA ,Rs (Fig. 5C). These data demonstrate that
ILN,s express the GABA,R and that ILNs receive GABAergic
inhibitory synaptic input. Our data from paired recordings in
ILN,s show that GABAergic synaptic input, in conjunction with
PDF signaling, plays a critical role in modulating the membrane
activity of ILN,s (Fig. 9C) but is not required for the robust syn-
chrony of firing in these neurons, as application of picrotoxin
does not abolish synchronous firing (Fig. 9). Conversely, in the
cockroach, picrotoxin leads to desynchrony within circadian
neural networks (Schneider and Stengl, 2005). In this system,
PDF also serves to synchronize these neural populations by in-
hibiting GABAergic interneurons (Schneider and Stengl, 2005).
This mechanism does not seem to be conserved in Drosophila,
but additional experiments are needed to elucidate the effect
of PDF on the synchronous electrical activity of the circadian
neural circuit.

Glutamate and its excitatory ionotropic receptors, homologs
of the AMPA, kainate, and NMDA receptors in mammals, have
been shown to mediate fast excitatory neurotransmission at the
neuromuscular junction (NMJ) in Drosophila (Jan and Jan, 1976;
Ultsch et al., 1992, 1993; Schuster et al., 1993; Littleton and
Ganetzky, 2000; Volkner et al., 2000). Interestingly, our data
demonstrate that treatment of ILN,s with glutamate led to an
inhibition of membrane activity (Fig. 6A), which is opposite to
the effect seen at the NMJ. Through voltage-clamp experiments,
we show that this glutamate-induced current in ILNs reverses
near the equilibrium potential of C1~ (Fig. 6C). Furthermore,
when we altered the C1 ™~ concentration of the external solution
and measured the reversal potential of the current, the experi-
mental value was well predicted by the calculated equilibrium
potential for each specific Cl ~ concentration (Fig. 6C,D). These
data together indicate that ILN,s possess a glutamate-gated Cl ~
channel. Members of the GluCl family have been cloned from
both Drosophila and C. elegans (Cully et al., 1994, 1996; Vassilatis
et al., 1997) but have not been found in vertebrate species. Their
functional roles in neural circuits in Drosophila remain enig-
matic. Our studies indicate these channels are present in ILNs,
which also express metabotropic glutamate receptors (Hamasaka
et al., 2007). Their role in synchronous membrane activity be-
tween ILN_ s remains to be elucidated.

Given the variety of the synaptic inputs to ILN s described
here, the ability of ILN s to autonomously detect light through
the blue light-activated photopigment CRY, and the conver-
gence of the arousal and circadian circuits on ILNs, these
neurons are clearly in a position to integrate complicated sig-
nals from all these systems. Our data also show that the rhyth-
mic oscillation in membrane activity seen in these neurons is
most likely not attributable to intrinsic pacemaking, but in-
stead arises from synchronized synaptic inputs, both excit-
atory and inhibitory. It remains to be determined where these
cholinergic, GABAergic, and glutamatergic synaptic inputs
converging on ILN s originate. Previous studies have demon-
strated that the Hofbauer—Biichner adult eyelets, which are
derived developmentally from Bolwig’s organ in the larvae,
send axon bundles to the dendritic region on LN s (Helfrich-
Forster et al., 2002). These cholinergic neurons may provide
excitatory input to ILN,s via nAChRs (Yasuyama et al., 1995;
Yasuyama and Salvaterra, 1999; Helfrich-Forster et al., 2002).
However, we do not consider it likely that Hofbauer—Biichner
cholinergic inputs to the ILN,s contribute to rhythmic activity
in the whole-brain explant. As far as anatomical characteriza-
tion of the inhibitory inputs into ILNs, varicosities in the
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accessory medulla, which abut ILN, dendrites, express glu-
tamic acid decarboxylase, a marker for GABAergic neurons
(Chung et al., 2009); however, it is not known where cell bod-
ies reside from which these processes originate. In addition, it
has been previously shown that other circadian clock neurons
are glutamatergic (Hamasaka et al., 2007; Daniels et al., 2008).
The axon terminals of these neurons are in close proximity to
the dendritic arbors of the ILN s in the larval optic center and
in the accessory medulla of the adult fly (Hamasaka et al,,
2007; Daniels et al., 2008). These data, in combination with
our findings, suggest that GluCl within ILN,s may mediate
inhibitory synaptic inputs from other clock neurons in the
circadian circuit.

Through the use of whole-cell patch-clamp electrophysiol-
ogy techniques, we have demonstrated synchronous mem-
brane activity of ILNs of the circadian rest/arousal neural
network of Drosophila arising from bilateral synchronized
synaptic inputs. This synchronous membrane activity is me-
diated by cholinergic inputs to the ILN_s themselves (Fig. 7).
However, GABAergic inputs modulate membrane activity of
these neurons but are not required for synchrony (Fig. 9). The
role of glutamatergic signaling in synchronous membrane ac-
tivity between ILN,, pairs remains to be revealed, as agents to
pharmacologically inhibit GluCl are not currently available.
Building on these findings, future studies are required to elu-
cidate the overlapping neural circuitry of the circadian, rest/
arousal, and light input systems, and will discern how these
systems are integrated and finely coordinated to generate a
robust and complex pattern of behavior.
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