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Abstract

Decision making and learning in a real-world context require organisms to track not only the choices they make and the
outcomes that follow but also other untaken, or counterfactual, choices and their outcomes. Although the neural system
responsible for tracking the value of choices actually taken is increasingly well understood, whether a neural system tracks
counterfactual information is currently unclear. Using a three-alternative decision-making task, a Bayesian reinforcement-
learning algorithm, and fMRI, we investigated the coding of counterfactual choices and prediction errors in the human
brain. Rather than representing evidence favoring multiple counterfactual choices, lateral frontal polar cortex (lFPC),
dorsomedial frontal cortex (DMFC), and posteromedial cortex (PMC) encode the reward-based evidence favoring the best
counterfactual option at future decisions. In addition to encoding counterfactual reward expectations, the network carries a
signal for learning about counterfactual options when feedback is available—a counterfactual prediction error. Unlike other
brain regions that have been associated with the processing of counterfactual outcomes, counterfactual prediction errors
within the identified network cannot be related to regret theory. Furthermore, individual variation in counterfactual choice-
related activity and prediction error-related activity, respectively, predicts variation in the propensity to switch to profitable
choices in the future and the ability to learn from hypothetical feedback. Taken together, these data provide both neural
and behavioral evidence to support the existence of a previously unidentified neural system responsible for tracking both
counterfactual choice options and their outcomes.
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Introduction

It is widely agreed that a network of brain areas centered on

ventromedial prefrontal cortex (VMPFC) and including anterior

and posterior cingulate cortex encodes the values of choices that

are taken [1–3]. Such a representation is assumed to be important

for two functions. First, a representation of choice value is needed

for decision making [1]. Second, a representation of a choice’s

value is needed for comparison with the subsequently experienced

outcome [4,5]. The discrepancy between the two, called the

prediction error, is thought to be fundamental for learning because

it partly determines the degree to which future reward expecta-

tions for the choice should be revised [6,7].

While it is essential for organisms to represent the value of the

choices that they take, there may also be considerable adaptive

advantages associated with representing the reward potential of

choices that are untaken. We refer to such potential, but untaken,

choices as counterfactual choices. Such representations may confer

both decision-making and learning advantages. First, if the reward

potential of such choices is maintained neurally, then the organism

may be better able to choose them in the future when it is beneficial,

even in the absence of learning. Second, such a representation

would make it possible to learn valuable information about what

would have ensued had another choice been taken without having

to incur both the energetic and opportunity costs that making the

choice would have entailed. These representations would therefore

enable us to exploit valuable, otherwise discarded, information and

in turn make superior decisions in complex environments ranging

from foraging in the wild to investing in financial markets. Unlike

regret-related influences on behavior, which can lead to suboptimal

biases in decision making, learning from counterfactual prediction

errors should lead to more optimal decision making.

There is preliminary evidence that the lateral frontal polar

cortex (lFPC) may contribute to such a decision-making repre-

sentation during binary choice; lFPC activity increases with the

potential future reward associated with the unchosen option [8].

Organisms, however, are frequently confronted with choices be-

tween multiple uncertain prospects, and whether and how lFPC

activity might guide decision making in such situations is un-

known. When a decision-making problem is no longer binary,

several potential schemes for coding unchosen options emerge.

First, lFPC may represent the potential future reward of both

unchosen options (Figure 1A). There may, however, be limits to

the number of potential alternative courses of action that can be
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represented [9,10]. A second possible scheme, therefore, is that

lFPC codes for the opportunity cost of the chosen option—that is,

the value of the best of the unchosen options—and discards the

worst option (Figure 1B). However, a third coding scheme is also

possible; the FPC may weigh up the best unchosen option relative to

the other options—in other words, relative to both the chosen

option and the other unchosen option (Figure 1C). Such a system

would be indicative of a mechanism for evaluating the merit of

choosing the best pending option at forthcoming decisions rather

than a system for evaluating whether it is beneficial to choose

either pending option in the future. Such a coding scheme might

allow for very efficient transitions in behavior in a changing

environment, but as we explain below, it predicts more effective

switching to some options than others.

There has been considerable recent interest in the possibility

that the brain encodes fictive information [11,12]. Specifically, it

has been shown that activity in the dorsal striatum and parietal

cortex is sensitive to the difference between the best possible out-

come that could have been attained and the experiential outcome

over gains but not losses [9]. Furthermore, single neurons in

monkey dorsal anterior cingulate cortex are sensitive to the size of

untaken outcomes [12]. It remains unclear, however, whether the

brain encodes prediction errors for counterfactual choices—the

discrepancy between the outcome for an untaken choice and the

reward expectation associated with making that choice—in a

separate and parallel manner to experiential prediction errors.

This is necessarily difficult to establish in any paradigm in which

there is a systematic relationship between the outcomes of counter-

factual and experiential choices [11,12].

To tackle these and related issues, we conducted an FMRI

experiment in which human subjects made voluntary decisions

between three options with independent reward probabilities,

followed on most trials by decisions between the remaining two

options that were unchosen during the first decision. Choices were

made on the basis of two pieces of information: the probability of

reward associated with each stimulus (which the participant had to

estimate from recent outcomes of both chosen and unchosen

options) and the reward magnitude associated with each stimulus

(which was displayed on the screen beneath each stimulus and

changed unpredictably from trial-to-trial). A Bayesian model was

used to infer the reward outcome probabilities [13]. These

manipulations enabled us to dissociate the relevant variables

guiding immediate decisions (the three option expected values) from

those guiding future decisions (the three option reward probabilities)

and to test for the independent representation of counterfactual

prediction errors during learning. Here we show that the lFPC,

Figure 1. Theoretical LFPC coding schemes. Three hypothetical
coding schemes for the LFPC are presented based on the findings of
Boorman et al. (2009) [8]. (A) According to one possible scheme, there is
a positive correlation with reward probabilities of both of the unchosen
options and a negative correlation with the reward probability of the
chosen option. This scheme might be expected if the LFPC encodes the
average of the two unchosen options relative to the chosen option. (B)
In the second hypothetical system, there is a positive correlation with
the reward probability of the best unchosen option and a negative
correlation with the reward probability of the chosen option, while the
worst option is discarded altogether. This would be consistent with a
system encoding the opportunity cost of the decision. (C) In the third
scheme presented, the reward probability of the best unchosen option
is encoded positively, while the reward probability of both of the
alternatives—the chosen and worst unchosen options—are encoded
negatively. This system would be useful for appraising the worthiness of
switching to the best pending option. Pch, chosen reward probability;
P2, highest unchosen reward probability; P3, lowest unchosen reward
probability.
doi:10.1371/journal.pbio.1001093.g001

Author Summary

Reinforcement learning (RL) models, which formally
describe how we learn from direct experience, can explain
a diverse array of animal behavior. Considering alternative
outcomes that could have been obtained but were not
falls outside the purview of traditional RL models.
However, such counterfactual thinking can considerably
accelerate learning in real-world contexts, ranging from
foraging in the wild to investing in financial markets. In this
study, we show that three brain regions in humans
(frontopolar, dorsomedial frontal, and posteromedial
cortex) play a special role in tracking ‘‘what might have
been’’, and whether it is worth choosing such foregone
options in the future. These regions encode the net benefit
of choosing the next-best alternative in the future,
suggesting that the next-best alternative may be privi-
leged over inferior alternatives in the human brain. When
people subsequently witness feedback indicating what
would have happened had they made a different choice,
these same regions encode a key learning signal—a
prediction error that signals the discrepancy between
what would have happened and what people believed
could have happened. Further analysis indicates these
brain regions exploit counterfactual information to guide
future changes in behavior. Such functions may be
compromised in addiction and psychiatric conditions
characterized by an inability to alter maladaptive behavior.

Counterfactual Choice and Learning in FPC
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DMFC, and PMC encode key parameters for both selecting and

learning about counterfactual options.

Results

Experimental Design
Participants performed a decision-making task in which they

repeatedly chose between a face, house, and body stimulus that

were presented at one of three locations at random (Figure 2A).

On each trial random integers between 1 and 100 were displayed

beneath the stimuli that indicated the size of potential reward

associated with selecting that option. Participants were informed

that since these reward magnitudes were generated randomly on

each trial, it was not advantageous to track them across trials.

However, participants were not directly cued about the probability

with which each option would be rewarded if chosen. Instead,

participants were told that these reward probabilities depended

only on the recent outcome history. To produce a changeable

environment, these reward probabilities varied from trial to trial

according to a fixed volatility [13] during the course of the experi-

ment. On two-thirds of trials (conditions 2 and 3), participants

encountered a second decision between the two options that were

foregone at the first decision, a manipulation that enabled more

accurate estimates of participants’ own ranking of the two unchosen

options. Following the second decision, feedback on chosen and

counterfactual options was presented, thereby allowing us to search

for neural correlates of counterfactual prediction errors. On the

other third of trials (condition 1), there was no second decision;

instead feedback on the two unselected options was presented

(Figure 2A).

An optimal Bayesian learner [13] was used to model participant

estimates of the probabilities of reward associated with the options

given the history of recent choice outcomes (i.e., rewarded or

unrewarded chosen and unchosen options) (Figure 2B). The

Bayesian learner enabled us to select a reward schedule that de-

correlated the reward probabilities associated with each option.

In the selected reward schedule, there was limited correlation

between the reward probability associated with the three options

(mean r across participants between body part and face

stimuli = 2.4; body part and house stimuli = 0.01; face and house

stimuli = 2.4) and between the expected value (reward probabil-

ity6reward magnitude) associated with the three options (mean r

between body part and face stimuli = 2.2; body part and house

stimuli = 0.03; face and house stimuli = 20.14). Although we could

not know what choices our participants would ultimately make,

this increased the likelihood that chosen and unchosen reward

probabilities or expected values would also be de-correlated. As

anticipated, there was indeed limited correlation between chosen

and unchosen option reward probabilities (mean r for chosen and

best unchosen ,2.1; chosen and worst unchosen = 2.2; best

unchosen and worst unchosen = .37). Similarly, there was little

correlation between the chosen and unchosen option values (mean

r for chosen and best unchosen ,.1; chosen and worst unchosen

,.1; best unchosen and worst unchosen = .43) (Figure 3A). It is

important to note that the random trial-by-trial fluctuations in

reward magnitude meant that only option probabilities had to be

maintained for making future choices. This feature of the experi-

mental design also meant that it was optimal to learn about option

reward probabilities but not reward magnitudes.

Choice Behavior
Before searching for evidence of a neural representation of un-

chosen options, it is important to assess whether there is behavioral

evidence that people not only update their future reward

expectations experientially, from the feedback provided for the

chosen option, but also counterfactually, from the feedback

provided for unchosen options. Similarly, it is important to establish

whether or not there is evidence that behavior is influenced by the

values of the different possible options that might be taken.

To assess the fit to behavior of the optimal Bayesian model,

which used both experiential and counterfactual feedback to

update estimates of options’ reward probabilities, we computed the

log likelihood and Bayesian Information Criterion and compared

the fit to two alternative models (Table 1; Figure S4). To test

whether people learn from counterfactual feedback, we compared

the fit of the optimal Bayesian model to the fit of an alternative

model that we term an ‘‘experiential Bayesian model’’ because it is

identical to the optimal model except that it does not update

unchosen options. As can be seen from Table 1, the optimal

Bayesian model clearly outperformed the experiential Bayesian

model, implying that people learned from both experienced and

counterfactual feedback. Finally, we also compared the optimal

model with a conventional Rescorla Wagner model that updates

both chosen and unchosen options. The optimal model was also a

far better fit to behavior than the Rescorla Wagner model that

updates both chosen and unchosen options (Table 1; Text S1). It is

notable that these Bayesian models have some parallels with

learning models used previously to analyze behavior during

experimental games [14].

To further assess whether the optimal Bayesian model captured

choice behavior, as well as which variables influenced participant

choices, we performed logistic regression analyses. This analy-

sis aimed to determine the degree to which choosing the most

valuable option was influenced by the outcome probabilities as

estimated by the optimal Bayesian model and reward magnitudes

associated with the best, mid, and worst options (see Text S1 for

details). This analysis revealed a strong positive effect of the best

option (reward probability: t(18) = 7.56, p,0.0001; reward mag-

nitude: t(18) = 5.45, p,0.0001), a strong negative effect of the mid

option (reward probability: t(18) = 28.50, p,0.0001; reward

magnitude: t(18) = 24.86, p,0.0001), and a modest but highly

consistent effect of the worst option (reward probability: t(18) =

22.27, p = 0.02; reward magnitude: t(18) = 25.16, p,0.0001) on

choices of the best option (i.e., optimal choices) (Figure 3B). In

other words, the reward probabilities estimated by the optimal

Bayesian model and the explicitly presented reward magnitudes

were both strong predictors of participants’ choices. Consistent

with the experimental design, the reward magnitude from the

previous trial by contrast did not have any impact on current

choices of the best option (best reward magnitude trial i-1:

t(18) = 0.49, p = 0.31; mid reward magnitude trial i-1: t(18) = 0.67,

p = 0.25; worst reward magnitude trial i-1: t(18) = 0.59, p = 0.28).

Thus, optimal estimates of reward probability and current but not

past reward magnitudes strongly influenced participant behavior

(see Text S1 for more details). The analyses described above indi-

cate that although the best and mid options principally drive

choice, the worst option also consistently explains a small amount

of variance in participant choices of the best option.

Whether people learn differently from experiential and counter-

factual feedback remains an open question. To address this we

constructed an additional model in which separate learning rates

scaled chosen and unchosen prediction errors (Text S1). These two

participant-specific learning rates were fitted to each participant’s

choices using standard estimation procedures. In our experimental

task, there was no difference between the learning rates for chosen

and unchosen feedback (t(18),.25, p.0.4), suggesting that people

may not learn differently from counterfactual feedback and

Counterfactual Choice and Learning in FPC
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Figure 2. Experimental task, reward probabilities, and expected values. (A) Participants were faced with decisions between a face, whole
body, and house stimulus, whose locations on the screen were randomized across trials. Participants were required to combine two pieces of
information: the reward magnitude associated with each choice (which was shown in yellow beneath each stimulus) and the reward probability
associated with each stimulus (which was not shown but could be estimated from the recent outcome history). When the yellow question mark
appeared in the center of the screen, participants could indicate their choices by making right-hand button responses that corresponded to the
location of the stimulus. The selected option was then highlighted by a red frame and the outcome was presented in the center of the screen: a
green tick or a red X indicating a rewarded or unrewarded choice, respectively. If the choice was rewarded, the red points bar at the bottom of the
screen updated towards the gold rectangular target in proportion to the number of points won. Each time the bar reached the target, participants
were rewarded with £2. One of three conditions followed in pseudorandom order. In condition 1 the outcomes (rewarded or unrewarded) of the two
unselected options were presented to the left of each stimulus, followed by the next trial. The points bar did not move in this condition. In conditions
2 and 3 participants had the opportunity to choose between the two options they had foregone at the first decision. In condition 2 the points
associated with each stimulus remained the same as at the first decision. In condition 3 the points both changed to 50. In both conditions 2 and 3,
when the yellow question mark appeared for the second time, participants indicated their second choices. This was followed immediately by
feedback for both the chosen option, which once again was highlighted by a red frame, and the unchosen option, to the left of each stimulus. If the
chosen option at the second decision was rewarded, the red points bar also moved towards the target in proportion to the number of points won.
This second feedback phase was followed by presentation of the next trial. (B) The probability of reward associated with the face, body, and house
stimuli as estimated by an optimal Bayesian learner (Experimental Procedures) are plotted over trials in cyan, magenta, and purple respectively. The
underlying reward probabilities varied from trial-to-trial according to a fixed volatility. The reward probabilities associated with each option were

Counterfactual Choice and Learning in FPC
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experiential feedback when these sources of information are both

available and equally informative.

The Reward-Based Evidence Favoring Future Switches to
the Best Pending Option

In order to search for evidence of neural activity encoding the

reward association of the best unchosen option, we first tested for

voxels across the whole brain where activity correlated with the

reward probability of the best unchosen option—one of the

relevant metrics to track across trials to inform future switches. We

also included the reward probability of the chosen and worse

unchosen options as separate terms in the general linear model

(Table S1). This analysis revealed three regions with a positive

effect of the reward probability of the best unchosen option

(Z.3.1, p,0.001 uncorrected; cluster extent .10 voxels): left

lateral frontopolar cortex (lFPC; Z = 3.50, MNI x = 236, y = 58,

de-correlated (Results; Figure 3A). (C) The expected value (reward probability6reward magnitude) associated with face, body, and house stimuli are
plotted across trials in turquoise, light pink, and light purple, respectively. Reward magnitudes were selected so that the correlation between
expected values was also limited.
doi:10.1371/journal.pbio.1001093.g002

Figure 3. Cross-correlation matrix and behavioral regression coefficients. (A) Group cross-correlation matrix depicting mean correlation (r)
across participants between reward probabilities, expected values, and reward magnitudes of chosen, next best, and worst options. (B) Mean
regression coefficients (i.e., parameter estimates) related to the reward probabilities (left column) and reward magnitudes (right column) of the
options with the highest, middle, and lowest expected value derived from a logistic regression on optimal choices (i.e., choices of the option with the
highest expected value). Error bars represent standard error of the mean (s.e.m.).
doi:10.1371/journal.pbio.1001093.g003

Counterfactual Choice and Learning in FPC
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z = 24; Z = 3.64, x = 232, y = 46, z = 22), posteromedial cortex

(PMC; Z = 3.70, x = 2, y = 262, z = 38), and dorsomedial frontal

cortex (DMFC; Z = 3.33, x = 6, y = 34, z = 42) (Figure 4A; Table

S2). Although no activations exceeded the threshold in right lFPC,

an activation emerged at the reduced threshold of p,0.003,

uncorrected (see Figure 4A). It is important to note that we have

deliberately refrained from using the most sensitive regressor in

this analysis because the purpose was to define ROIs that will be

unbiased for later tests. When the best unchosen probability relative

to the chosen probability is instead used as the regressor, there is a

more robust effect in the lFPC (Figure S1; Z = 3.99, MNI x = 236,

58, 26), as expected based on a previous demonstration that the

lFPC encodes a relative signal in a binary choice task [8].

To test whether and how the lFPC, PMC, and DMFC might

also encode alternative options, we performed orthogonal analyses

on the time courses of these regions identified by the whole-brain

analysis. In addition to a positive correlation with the best un-

chosen reward probability, the lFPC signal correlated negatively

with the reward probability for both the chosen (t(18) = 23.46,

p,0.005) and other unchosen option (t(18) = 22.21, p,0.03)

during the decision-making phase (Figure 4B). The lFPC signal

correlates positively with the reward potential of the best alter-

native and negatively with the reward potential of both the chosen

option and the worse unchosen option, suggesting that lFPC

forecasts the evidence in favor of choosing the better of the two

unchosen options at future choices. Such an activity pattern is

inconsistent with FPC simply maintaining a representation of the

advantage to be gained from switching to any alternative action. It

would, however, be predicted if lFPC represented only one

alterative action in a pending state. Under such a scheme, the

negative encoding of the reward probability of both the chosen

option and the worse unchosen option can be interpreted as

reflecting the potential opportunity cost of foregoing the chosen

action or the other alternative action if there were to be a switch in

behavior to the pending state.

We also identified evidence for a very similar pattern of activity

in PMC and a closely related one in DMFC. In PMC there was a

significant negative correlation with the chosen option

(t(18) = 22.23, p,0.02) and the other unchosen option during

the decision-making phase (t(18) = 22.0, p,0.03), whereas in

DMFC, there was a significant negative correlation with the

chosen option (t(18) = 21.9, p,0.04), but the effect of the worse

unchosen option was not significant (t(18) = 21.24, p.0.11) during

the decision-making phase.

We repeated these analyses on only those trials on which a

single decision had to be made in order to exclude the possibility

that activity related to a second decision could confound activity

related to the feedback phase of a first decision. Because of the

short temporal interval between the first feedback phase and the

second decision-making phase in our experiment on some trials,

activity related to late time points during the first feedback period

is difficult to dissociate from activity related to the second decision

in these time course analyses. When there is a second decision the

effect of the worst unchosen option flips from being encoded

negatively to positively when it frequently becomes the best (and

only) unchosen option at the second decision-making period. To

circumvent such issues, we reexamined the time course during

condition 1 in which there was not a second decision that could

interfere with the lFPC response to the first decision and feed-

back phases. Although the number of trials in this analysis is

substantially reduced, there were still significant negative effects of

the chosen probability (t(18) = 22.93, p,0.005) and worst

unchosen probability (t(18) = 22.62, p,0.01) (Figure 5A) in lFPC.

Similarly, the PMC signal was significantly and negatively

correlated with the chosen reward probability (t(18) = 22.17,

p,0.03) and worst unchosen reward probability (t(18) = 22.06,

p,0.03). However, in DMFC there was still only a significant

Figure 4. The reward-based evidence favoring future choices
of the best pending option. (A) Axial and sagittal slices through z-
statistic maps relating to the effect of reward probability of the
unchosen option with the highest reward probability. Maps are
thresholded at z.2.8, p,0.003 for display purposes, and are displayed
according to radiological convention. (B) Time course of the effects of
the reward probability for the chosen option (blue), the unchosen
option with the highest reward probability (red), and the unchosen
option with the lowest reward probability (green) are shown across the
first decision-making and feedback phases. Time courses are not
corrected for the hemodynamic lag. Thick lines: mean effect size.
Shadows: 6 s.e.m. Top row: LFPC; middle row: PMC; bottom row: DMFC.
doi:10.1371/journal.pbio.1001093.g004

Table 1. Comparison of model fits for the optimal Bayesian,
experiential Bayesian, and Rescorlar Wagner models.

Model Parameters Log Likelihood BIC

Optimal Bayesian 3 (0 predictor) 22,080 4,175.6

Experiential Bayesian 3 (0 predictor) 22,265.8 4,547.1

Rescorla Wagner 4 (1 predictor) 22,634.2 5,289.1

doi:10.1371/journal.pbio.1001093.t001

Counterfactual Choice and Learning in FPC
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negative effect of the chosen option (chosen option: t(18) = 22.36,

p,0.02; worst unchosen option: t(18) = 20.98, p.0.17).

The interpretation that this signal reflects the future evidence in

favor of choosing the best unchosen option at subsequent decisions

makes a testable prediction about behavior. Participants in whom

this evidence is better represented should go on to choose the best

pending option more frequently. It is important to note that during

the initial decision, it is the unchosen option with the highest

reward probability that is likely to be the best option at second

decisions. In accord with the hypothesis, the greater the effect of

the best unchosen probability relative to the worst unchosen

probability in the lFPC across participants in conditions 2 and 3

(i.e., when there was a second decision), the more frequently

participants chose the pending option that was associated with the

highest reward probability at second decisions (Figure 5C).

The identified lFPC coding scheme further suggests that people

may be better at adapting behavior to the next best alternative

than to the worse alternative when confronted with decisions

between multiple options. Such a scheme makes an intriguing

prediction about behavior. It is possible that people switch

choices to the next best alternative more effectively than they do

to the worse alternative. This prediction is testable in our task

because the previously worst option might become the best

option when random reward magnitudes are introduced at the

onset of a new trial. Consistent with this proposition, we found

that participants adapted choices to the best pending option when

it was optimal significantly more frequently than they did to the

worse pending option when it was optimal, even when the

analysis was restricted to trials matched for value difference

(t(18) = 2.17, p = 0.02).

Counterfactual Prediction Errors
A valuable source of information during learning comes not

only from the experienced outcomes of actions that are taken but

also from the consequences of alternative potential actions that

might be taken in the future. It was hypothesized that brain re-

gions that encode future reward expectations related to unchosen

options might also be involved in updating those expectations.

This prediction is based upon recent evidence demonstrating that

prediction error-like signals can be identified in brain regions

thought to be specialized for visual and social processing when

participants must their expectations during visual and social

learning, respectively [15–22]. We reasoned that the same prin-

ciple might hold true for learning about unchosen options.

Analysis of the time course of the lFPC, DMFC, and PMC

regions identified by the whole-brain analysis revealed a significant

correlation with the unchosen, but not chosen, prediction error

following the delivery of feedback for the second decision in each

region (unchosen prediction error: lFPC: t(18) = 2.01, p,0.05;

DMFC: t(18) = 2.8, p,0.01; PMC: t(18) = 4.35, p,0.0005; chosen

prediction error: lFPC: t(18) = .39, p.0.3; DMFC: t(18) = .29,

p.0.35; PMC: t(18) = 20.11, p.0.45). Moreover, the pattern of

activity in these regions elicited by counterfactual rewards

(Figure 6) was similar to that displayed by dopaminergic neurons

for experienced rewards [23]. Activity correlated positively with

the probability of reward for the unchosen option before the

outcome was revealed (lFPC: t(18) = 1.89, p,0.05; DMFC:

t(18) = 3.55, p,0.005; PMC: t(18) = 2.06, p,0.05). Following the

delivery of feedback, activity correlated negatively with this same

probability (lFPC: t(18) = 21.78, p,0.05; DMFC: t(18) = 21.92,

p,0.05; PMC: t(18) = 21.90, p,0.05) and positively with the

unchosen outcome (lFPC: t(18) = 1.81, p,0.05; DMFC: t(18) =

2.65, p,0.01; PMC: t(18) = 4.31, p,0.0005). These regions’

activity therefore reflected both components of the counterfactual

prediction error—the counterfactual outcome minus the expecta-

tion (Figure 6). Replicating previous findings, we identified experien-

tial reward prediction errors in the ventral striatum, among other

regions (Figure S2; Table S2).

We further considered the possibility that neural counterfactual

prediction error signals might have an impact on behavior. We

Figure 5. LFPC effect predicts individual differences in
behavior. (A) Time course is plotted on the subset of trials during
which there was no second decision across the entire trial. (B) Time
course of LFPC effects of the best minus the worst unchosen probability
(red) and the chosen probability (blue) in condition 1 are shown plotted
across the trial. Conventions are the same as in Figure 4. (C) Between-
subject correlation is plotted across the trial. The curve depicts the
correlation (r) between the effect of the best minus the worst unchosen
probability in the LFPC from conditions 2 and 3 (i.e., when there was a
second decision) and the proportion of trials on which participants
chose the option with the highest reward probability at the second
decision. Inset: scatterplot of the effect size against the behavioral index
at the time of the first peak in the effect of the best relative to the worst
unchosen probability from condition 1 shown in (B). The time point
selected for the scatterplot is thus unbiased with respect to the data
used for the between-subject analysis.
doi:10.1371/journal.pbio.1001093.g005
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reasoned that people in whom there is a greater effect of coun-

terfactual prediction errors may learn more effectively from

counterfactual feedback. To test this hypothesis, we compared the

model fit to behavior of the optimal Bayesian model that updates

both chosen and unchosen options and the experiential Bayesian

model that only updates the chosen option. The difference in the

fit to behavior of these models provided an index of the extent to

which people learned from counterfactual feedback. Across the

sample of participants, there was a tight relationship between the

effect size for the counterfactual prediction error and the dif-

ference between the fits of the optimal and experiential models in

the PMC (r = 0.64, p,0.005; Figure 6). There was a similar

tendency in lFPC, though this did not reach statistical significance

(lFPC: r = 0.39, p = 0.10), but not in DMFC (r = .24, p.0.3).

Regret should theoretically grow as the difference between the

reward magnitude of the foregone outcome and the chosen out-

come increases, independently of the reward expectation [24,25].

Unlike regret-related FMRI signals that have been identified

previously [11,25], activity in the lFPC, DMFC, and PMC was

not sensitive to the difference between the size of the outcomes for

the unselected and the selected options (lFPC: t(18) = 20.44, p.0.3;

DMFC: t(18) = 20.86, p.0.2; PMC: t(18) = 20.59, p.0.25). Taken

together, these findings demonstrate that counterfactual prediction

errors are dissociable from regret in the lFPC, DMFC, and PMC.

Discussion

A number of brain regions have been implicated in the repre-

sentation of value during learning and decision making [17,26],

but in general the focus has been on the choices that participants

make and the rewards they experience. Within the frontal cortex,

the orbitofrontal and anterior cingulate cortical regions have most

often been the focus of such research. Here, however, we show

that the lPFC maintains a representation of the net profit to be

expected from choosing the next best alternative in the future. The

lFPC BOLD signal increases as the probability of obtaining

reward from the next best alternative increases. The reward that

might be sacrificed by switching away from the current action may

be represented as a cost of switching to the alternative; lFPC

BOLD activity decreases as the probability of reward associated

with the current course of action increases. Similarly, the reward

that might be lost by foregoing the worst unchosen option can be

conceived of as a cost; lFPC BOLD decreases as the probability of

reward associated with the worst foregone option increases. When

there are multiple alternatives to choose between, the pattern of

lFPC activity is therefore consistent with a system that forecasts the

reward potential of the best alternative option and the costs of not

taking both the current course of action and the other alternative.

This coding scheme is consistent with a system that accumulates

evidence in favor of choosing the best pending option in the future

so that it can be switched to effectively.

There were several plausible schemes according to which the

lFPC could represent unchosen alternatives. The data presented

here provide evidence in favor of the system depicted in Figure 1C—

namely that the lFPC encodes the merit of potential future switches

to the next best alternative. This interpretation is supported by a

between-subject correlation between the effect of the reward

probability associated with the best relative to the worst unchosen

Figure 6. Counterfactual prediction errors. The time course of the
fictive prediction error is plotted decomposed into its component parts:
the expectation of reward for the unchosen option (pink) and the
outcome of the unchosen option (cyan). The time course is plotted
from the onset of the initial feedback for the first decision. There is a
positive effect of the fictive outcome and a negative effect of the fictive

expectation after the revelation of the outcome in each region.
Conventions are the same as in Figure 4. Bottom row inset plots the
counterfactual prediction error effect size in the PMC against the
difference between the fit to behavior of the optimal and experiential
Bayesian models, where each point represents a single subject.
doi:10.1371/journal.pbio.1001093.g006
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option in the lFPC and choices of the best pending option. It is also

supported by the finding that participants are superior at adapting

behavior to the next best alternative than to the worse alternative

when these choices are optimal. The lFPC signal, as in a previous

study [8], contained peaks during both the decision-making and

feedback phases (see Figure 4A). This time course is consistent with

the notion that the lFPC tracks the relevant decision variable across

time for forthcoming choices.

Several accounts propose that the FPC maintains information

across time for future deployment [9,27–31]. FPC activity has

been shown to increase when an intention or a task set has to be

maintained during a delay and then implemented [28–30,32,33],

while damage to left anterior prefrontal cortex, including left FPC,

disrupts effective switching between task sets in such paradigms

[34]. It was recently shown that monkey FPC encodes the decision

(left or right response) over an extended delay around the time of

feedback, particularly when it was advantageous to maintain this

information for use on the next trial [35]. Furthermore, FPC is

selectively recruited when participants must maintain information

in working memory whilst performing a subtask for the purpose of

using the pending information upon completion of the subtask

[27], particularly when the time at which the pending information

must be used is unpredictable [36]. On the basis of such findings,

it has been posited that FPC has a special role in cognitive

branching—the maintenance of pending information related to a

previous behavioral episode during an ongoing behavioral epi-

sode for future use [9,37]. Following this framework, in our

experiment the current decision could be conceived of as the

ongoing behavioral episode, and the best unchosen option as the

pending information, which may be selected in the future. While

our findings are consonant with such accounts, we have shown

that the FPC not only represents pending information or inten-

tions for future use, but that it encodes the evidence in favor of their

future deployment. Moreover, we have demonstrated that when

people are confronted with more than two alternatives, the FPC

specifically encodes the evidence in favor of the unchosen alter-

native that would be most advantageous to be selected in the

future, a finding consistent with the view that there may be limits

to FPC coding during decision making [9].

In our experimental setup, participants should have expected to

encounter a second decision on approximately two-thirds of trials.

Despite this manipulation we found no evidence that this know-

ledge influenced participants’ initial decisions (see Text S1, Experi-

mental Procedures). It is nevertheless possible that participants

anticipated having to make a second decision at which point

reward magnitudes would either remain the same as they were or

equate to 50. In a previous investigation in which participants

made binary choices with no intervening second decision, the

lFPC was shown to encode the unchosen option positively and the

chosen option negatively, consistent with the positive coding of the

next best alternative and negative coding of the chosen option we

have revealed here in a multi-option context. It would be inter-

esting to examine the coding of lFPC when people make decisions

between multiple alternatives in the absence of any requirement to

make decisions between the remaining unchosen options.

lFPC appears to be only one component of a network of areas

that are interconnected and whose activity tracks the advantage to

be gained from switching to the next best alternative. The activa-

tion in PMC may be in area 31 of the posterior cingulate cortex

[38,39], while the DMFC activation appears to be situated between

the pre-SMA and dorsal anterior cingulate cortex (dACC). Antero-

grade and retrograde studies have examined the anatomical con-

nections between these regions in monkeys. Area 31 of the monkey

has reciprocal connections with both FPC and parts of DMFC [38],

and FPC also projects to parts of DMFC [40]. A recent study in

macaque monkeys has identified neurons in a neighboring region of

the PMC that are selective for exploration and switching between

four different response alternatives [41]. Moreover, the pre-SMA

has been implicated in switching between task sets [42]. Taken

together, these findings suggest that the lFPC, PMC, and DMFC

regions might form part of an interconnected network dedicated to

tracking the evidence in favor of future switches to the best pending

option and, in collaboration with the mid-IPS, implementing such

switches [8,43]. It is notable that the three components of the

counterfactual choice circuit are some distance from foci in ventral

DMFC, ventral PMC, and VMPFC in which the BOLD signal is

correlated with the value of the action that is chosen [1,3,8,44–47].

Reinforcement-learning models theorize that agents should

learn from both chosen and unchosen outcomes [6]. Nevertheless,

to our knowledge prediction error signals related to unchosen options

have yet to be identified in the mammalian brain. Lohrenz and

colleagues [9] have reported activity in the dorsal striatum and

posterior parietal cortex that they refer to as a fictive error signal.

Although this metric influences behavior in interesting ways [11,

48], it is distinct from the one that we report here because it

correlates with the best possible outcome that could have been

attained minus the experienced outcome received, over gains but

not losses. Crucially such fictive signals pertain to the choice of a

different level of the taken action. They do not contain infor-

mation about alternative actions with independent probabilities of

success. By contrast, a counterfactual prediction error—the counter-

factual outcome minus its expectation—should theoretically be pro-

portional to the degree to which future reward expectations of

unchosen options are updated. We found that the lFPC, DMFC,

and PMC—regions whose activity is sensitive to the unchosen

option with the highest reward probability during initial decisions—

encoded counterfactual prediction errors when participants wit-

nessed counterfactual outcomes of subsequent decisions.

A prediction error should theoretically signal the prediction of

an event before its revelation and, following its revelation, the

discrepancy between the event’s occurrence (or non-occurrence)

and the prediction—a prediction error [6]. It has been well docu-

mented, in the context of experienced rewards, that both signals

are closely approximated by the firing rate of phasically active

dopamine neurons [23]. The pattern of activity in lFPC, DMFC,

and PMC similarly exhibited both of these components but in

relation to counterfactual rewards: before the outcome was revealed

there was a positive correlation with the expectation of reward for

the unchosen option; once the outcome was witnessed, there was a

negative correlation with this same expectation and a positive

correlation with the outcome (reward or no reward for the unchosen

option). Notably, in our experimental setup unchosen reward pro-

babilities were relevant for future predictions, but unchosen reward

magnitudes were of no relevance because they changed randomly

from trial to trial. Counterfactual prediction error coding in lFPC,

DMFC, and PMC thus reflected the relevant information for

learning about unchosen options in our task—reward probabilities.

Consistent with the claim that lFPC, DMFC, and PMC encode

counterfactual prediction errors, but not regret [25], activity in these

regions was not sensitive to the difference between the reward

magnitudes of obtained and unobtained outcomes. These data

therefore constitute the first neural dissociation of counterfactual

prediction errors from regret. Intriguingly, neurons that encode

counterfactual rewards have recently been identified in the monkey

dACC [12], which neighbors and is interconnected with the DMFC

region identified here [39,49] and is also interconnected with the

PMC and FPC [38,40]. These observations raise the possibility that

unchosen reward signals in dACC might be integrated with

Counterfactual Choice and Learning in FPC

PLoS Biology | www.plosbiology.org 9 June 2011 | Volume 9 | Issue 6 | e1001093



unchosen expectations to compute counterfactual prediction errors

in lFPC, DMFC, and PMC.

We also tested whether there exists a relationship between the

neural coding of counterfactual prediction errors and the pro-

pensity to learn from counterfactual information. In the PMC there

was a strong relationship between the effect of counterfactual

prediction errors and how effectively participants learned from

counterfactual outcomes. This finding suggests that neural coding of

counterfactual information in PMC influences counterfactual

learning behavior.

In neuroscience, there is an emerging view that predictive

coding extends beyond the domain of experienced reward [18,

50,51]. In the perceptual domain, unsigned prediction error (or

surprise) responses have been identified in inferior temporal gyrus

(ITG) when participants observe gabor patches whose orientation

does not match the orientation of a template during A, not A

decisions [18]. When the stimuli are faces or houses, rather than

gabor patches, fusiform face area (FFA) and parahippocampal

place area (PPA) are sensitive to unsigned prediction errors related

to predictions concerning faces and houses, respectively [19,22], a

modulation that at least partly contributes to the phenomenon of

repetition suppression in the FFA [19]. During incidental audio-

visual learning, the BOLD response in primary visual cortex and

putamen was shown to correlate with unsigned prediction errors,

when the appearance (or absence) of a black and white shape

stimulus was unpredicted (or predicted) by an auditory tone [20].

In the social domain, two recent investigations [15,21] have

revealed signed prediction error responses in the superior temporal

sulcus (STS) and dorsomedial prefrontal cortex (DMPFC)—brain

regions implicated in theory of mind tasks [52,53]—when parti-

cipants have to learn about the behavior of another individual.

Prediction errors in these regions have been discovered when the

objective was to learn about the reputation of a social partner [15],

or when it was to learn about the influence of an opponent’s choice

on the likely future behavior of the opponent [21]. Collectively,

these investigations in the perceptual and social domains carry

fundamental implications: First, they suggest that prediction error

coding is more ubiquitous than previously thought and, second,

that brain regions specialized for a given class of information may

also encode prediction errors specifically related to that class of

information. The present finding that regions which encode infor-

mation related to unchosen options also encode unchosen pre-

diction errors adds counterfactual information to the classes of

information for which prediction error signals have been identified.

In summary, we have delineated the functional contribution of a

network centered on lFPC, DMFC, and PMC when human

subjects decide between multiple alternatives. The results indicate

that this network both forecasts reward expectations related to

selecting untaken alternatives in the future and also updates those

expectations—key computations for deciding and learning when

to take the road less traveled.

Materials and Methods

Participants
Twenty-two healthy volunteers participated in the fMRI experi-

ment. Two volunteers failed to use either the reward probabilities

or reward magnitudes in the task, as indicated by values of nearly

0 for each of the free parameters in the behavioral model, and one

volunteer failed to use reward probability, as indicated by values of

0 for both b and c in the behavioral model (see Behavioral Model

description below). These participants’ data were therefore dis-

carded from all analyses. The remaining 19 participants (10

women) were included in all further analyses. All participants gave

informed consent in accordance with the National Health Service

Oxfordshire Central Office for Research Ethics Committees (07/

Q1603/11).

Experimental Task
In our fMRI paradigm, participants decided repeatedly between

three stimuli based on their expectation of reward and the num-

ber of points associated with each stimulus option (Figure 2A).

Although the number of points was generated randomly and

displayed on the screen, the expectation of reward had to be

estimated from the recent outcome history. The three stimuli were

pictures of a real face, whole body, and house. The identities of the

face, body, and house were fixed for the duration of the experi-

ment and across participants. During the first decision-making

phase, the three options and their associated points were displayed

at three locations on the screen: left, upper middle, and right. The

location at which each stimulus was displayed was randomized

across trials. When the yellow question mark appeared in the

centre of the screen, participants indicated their choices with right-

hand finger responses on a button box corresponding to the

location of each stimulus. Immediately after participants indicated

their choice, the first feedback phase was presented: the selected

option was highlighted by a red rectangle that framed the chosen

stimulus and the chosen outcome (reward or no reward) was

presented. If the participant’s choice was rewarded, a green tick

appeared in the centre of the screen, and the red prize bar also

updated toward the gold rectangular target in proportion to the

amount of points won on that trial. Each time the prize bar

reached the gold target, participants were rewarded with £2. If the

participant’s choice was not rewarded, a red X appeared in the

centre of the screen, and the red prize bar remained stationary.

These initial decision-making and chosen feedback phases were

presented on every trial in the experiment.

After presentation of the chosen feedback, one of three different

conditions followed in pseudorandom order. In condition 1 the

outcomes for the two remaining unchosen options were presented. A

green tick or a red X appeared on the left of the two options that

were unchosen during the first decision-making phase, depending

on whether they were rewarded or unrewarded. The red prize bar

did not move. This event was followed by presentation of the next

trial. This condition was critical because it enabled us to isolate

activity during the first decision-making and feedback phases

uncontaminated by activity related to a second decision. In condi-

tions 2 and 3, participants had the opportunity to choose between

the two remaining options that were unselected by the participant

at the first decision. These two remaining stimuli maintained their

spatial locations on the screen. In condition 2, the option reward

probabilities and points associated with the two options remained

identical to what they were at the first decision (Figure 2A). The

purpose of this condition was to use the participants’ responses at

the time of the second decision to improve our ability to rank the

two unchosen options at the time of the first decision on the basis

of expected value. However, in condition 3 only the reward proba-

bilities remained the same; the points for both remaining options

were changed to 50 (Figure 2A). Therefore, the only information

guiding participant decisions in condition 3 should theoretically be

the reward probabilities. This condition was introduced to more

accurately rank the two unchosen options at the first decision on

the basis of reward probability. For both conditions 2 and 3,

participants indicated their choice after a yellow question mark

appeared. This was followed by simultaneous feedback for the

chosen and unchosen options from the second decision. During

this second feedback phase, a red rectangle framed the selected

option and a green tick or red X was presented to the left of the
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chosen and unchosen options, depending on whether these options

were rewarded or unrewarded. If the choice at the second decision

was rewarded, the red prize bar updated in proportion to the

number of points won. This event was followed by presentation of

the next trial. There was no inter-trial interval in any condition.

Each event was jittered between 2.5 and 5.5 s (uniform distri-

bution). There were 60 trials in each condition, making 180 trials

in total. Conditions were pseudorandomly interleaved and were

uncued. Participants earned between £20 and £28 on the task,

depending on their performance.

The true reward probabilities associated with each stimulus type

varied independently from one trial to the next over the course of

the experiment at a rate determined by the volatility, which was

fixed in the current experiment. More specifically, the true reward

probability of each stimulus was drawn independently from a beta

distribution with a fixed variance and a mean that was determined

by the true reward probability of that stimulus on the preceding

trial. The true reward probabilities that participants tracked are

shown in Figure S3.

FMRI Data Acquisition and Analysis
FMRI data were acquired on a 3T Siemens TRIO scanner with

a voxel resolution of 36363 mm3, TR = 3 s, TE = 30 ms, Flip

angle = 87u. The slice angle was set to 15u and a local z-shim was

applied around the orbitofrontal cortex to minimize signal dropout

in this region [54], which has previously been implicated in other

aspects of decision making. The mean number of volumes acquired

was 999, giving a mean total experiment time of approximately

50 min (see Text S1, Experimental Procedures for further details).

A general linear model (GLM) was fit in pre-whitened data

space [55]. Twenty-four regressors were included in the GLM (see

Table S1 for a summary): the main effect of the first decision-

making phase; the main effect of the first feedback phase; the main

effect of the foregone outcome phase (condition 1); the main effect

of the second decision-making phase (conditions 2 and 3); the main

effect of the second feedback phase (conditions 2 and 3); the

interaction between chosen probability and the first decision-

making phase; the interaction between chosen probability and the

first feedback phase; the interaction between the best unchosen

probability as determined by the model in conditions 1 and 2 and

the first decision-making phase; the interaction between the best

unchosen probability as determined by participant choices in

condition 3 and the first decision-making phase; the interaction

between the best unchosen probability as determined by the model

in conditions 1 and 2 and the first feedback phase; the interaction

between the best unchosen probability as determined by parti-

cipant choices in condition 3 and the first feedback phase; the

interaction between the worst unchosen probability as determined

by the model in conditions 1 and 2 and the first decision-making

phase; the interaction between the worst unchosen probability as

determined by participant choices in condition 3 and the first

decision-making phase; the interaction between the worst unchosen

probability as determined by the model in conditions 1 and 2 and

the first feedback phase; the interaction between the worst unchosen

probability as determined by participant choices in condition 3 and

the first feedback phase; the outcome at the first feedback phase; the

outcome at the second feedback phase; and six motion regressors

produced during realignment. Because there were not any notable

differences between z-statistic maps based on the model or parti-

cipant choices, we defined contrasts of parameter estimates (COPEs)

for the best and worst unchosen probability as the combination of

the regressors based on the model and participant choices. Based on

the evidence from our previous investigation [8] that the lFPC

encodes reward probability during both the decision and feedback

phases, the reward probability regressors were modeled across

both phases. To do so, additional COPEs defined the chosen, best

unchosen, and worst unchosen probabilities as the sum of regressors

over the first decision-making and feedback phases (Table S1).

For group analyses, EPI images were first registered to the high

resolution structural image using 7 degrees of freedom and then

to the standard [Montreal Neurological Institute (MNI)] space

MNI152 template using affine registration with 12 degrees of

freedom [56]. We then fit a GLM to estimate the group mean

effects for the regressors described above. FMRIB’s Local

Analysis of Mixed Effects (FLAME) was used to perform a mixed

effects group analysis [57,58]. All reported fMRI z-statistics and

p-values arose from these mixed effects analyses on all 19

participants. We report clusters of greater than 10 voxels that

survived a threshold of z.3.1, p,0.001, uncorrected. It should

be noted that our analyses carefully avoid selection bias in

identifying regions related to probability. Based on the findings of

our previous study and other investigations [8,45,46], we were

confident that lFPC would encode the relative probability rather

than either chosen or unchosen probability in isolation. One of the

central aims of this experiment, however, was to test the hypothesis

that the lFPC encoded the best unchosen probability and either the

chosen probability, worst unchosen probability, or both (see

Figure 1). For the probability-based analysis, rather than search

for regions encoding the relative unchosen probability (e.g., the best

unchosen probability relative to the chosen probability or the best

unchosen probability relative to the average of the other

probabilities), for which there are large effects in the lFPC (see

Figure S1), we have searched only for regions that encode the best

unchosen probability. We have used this analysis because it is

orthogonal to the worst unchosen and chosen probability regressors

and thus enables us to perform orthogonal tests on the regions of

interest (ROIs) identified to test competing hypotheses. ROI

analyses are presented in detail in Text S1, Experimental

Procedures.

Behavioral Model
We used an optimal Bayesian reinforcement-learning algorithm

[13] to model participant estimates of the reward probabilities and

their eventual choices. This model has been described in detail in

previous investigations [8,13,15]. Briefly, the model is composed of

a ‘‘predictor’’ that estimates the reward probability associated with

each option and other environmental statistics given only the

observed data (i.e., the reward outcomes of chosen and unchosen

options) and a ‘‘selector’’ that chooses actions on the basis of these

estimates. Because feedback is given on each option on each trial

in our experimental task, the model updates the reward probability

associated with each option upon receipt of feedback, as is optimal.

These estimates of the reward probabilities were then combined

with reward magnitude according to participant-specific free para-

meters that can differentially weigh probability, magnitude, and

their product, to derive estimates of the subjective expected values.

We found no evidence that participants’ choices at the first de-

cision were influenced by the prospect of a second decision at which

reward magnitudes could either remain the same or both change to

50 (Text S1). We therefore assumed that subjective value at both

decisions was computed on the basis of the current decision alone:

gsi
~brsi

zlmsi
zcrsi

msi
, ð1Þ

where gsi
, rsi

, and msi
are the subjective value, reward probability,

and reward magnitude associated with the stimulus (face, house, or

body) on trial i. We fitted b, l, and c to each individual participant’s
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behavioral data using standard non-linear minimization procedures

implemented in Matlab 7 (Mathworks). Finally, the selector assumed

that participants chose stimulus s according to the following softmax

probability distribution:

P(s)~
exp(gs)

PNs
s0~1

exp(gs0 )
, ð2Þ

where gs is the subjective expected value of the stimulus, and Ns is the

total number of stimuli to choose between (Ns = 3 at the first decision,

Ns = 2 at the second decision).

Supporting Information

Figure S1 Relative unchosen probability. (A) Axial and coronal

slices through z-statistic maps relating to the effect of the best

unchosen reward probability minus the chosen reward probability.

Activations are displayed at z.3.1, p,0.001, uncorrected, though

left lFPC survives whole brain cluster correction at z.2.3, p,0.05.

(TIF)

Figure S2 Chosen reward prediction errors. (A) Axial slice

through z-statistic map relating to the conjunction of the effects of

chosen prediction error at decisions 1 and 2. Activations are displayed

at z.3.1, p,0.01, cluster-corrected at the whole brain level. (B)

Time course from an ROI centered on the maximum of left ventral

striatum showing a positive correlation with outcome (reward or no

reward) and a negative correlation with chosen reward probability

in response to presentation of feedback on the chosen option.

(TIF)

Figure S3 True reward probabilities. The true reward proba-

bility that generated actual rewards is shown for faces, bodies, and

houses in cyan, pink, and purple, respectively.

(TIF)

Figure S4 Comparison of actual choice frequencies and model-

based choice probabilities. Top row: Group mean 6 SEM for

choices of the best option is plotted against the optimal choice

probability as predicted by the Bayesian model for decisions 1 (left)

and 2 (right). Bottom row: Group mean 6 SEM for choices of the

second best option is plotted against the model-based probability

of choosing the second best option for decisions 1 (left) and 2

(right). Participants chose between three options at decision 1 and

two options at decision 2.

(TIF)

Table S1 Summary of interactions and contrasts included in the

design matrix.

(DOC)

Table S2 Activated clusters resulting from the whole-brain

analysis, for the interactions of interest.

(DOC)

Text S1 Supplemental data and supplemental experimental pro-

cedures provide further details of the experimental task and analyses.

(DOC)

Acknowledgments

We thank Rogier Mars for help with scanning and technical assistance and

Mark Walton, Laurence Hunt, and Jill O’Reilly for helpful discussions.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: EDB TEB MFR.

Performed the experiments: EDB. Analyzed the data: EDB TEB MFR.

Contributed reagents/materials/analysis tools: EDB TEB. Wrote the paper:

EDB MFR.

References

1. Rangel A, Camerer C, Montague PR (2008) A framework for studying
the neurobiology of value-based decision making. Nat Rev Neurosci 9:

545–556.

2. Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal
and cingulate cortex. Nat Neurosci 11: 389–397.

3. Seo H, Lee D (2008) Cortical mechanisms for reinforcement learning in
competitive games. Philos Trans R Soc Lond B Biol Sci 363: 3845–3857.

4. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new

perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev
Neurosci 10: 885–892.

5. Kable JW, Glimcher PW (2009) The neurobiology of decision: consensus and
controversy. Neuron 63: 733–745.

6. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction MIT
Press, Cambridge, Massachusetts.

7. Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by

dopamine neurons. Science 307: 1642–1645.

8. Boorman ED, Behrens TE, Woolrich MW, Rushworth MF (2009) How green is

the grass on the other side? Frontopolar cortex and the evidence in favor of
alternative courses of action. Neuron 62: 733–743.

9. Koechlin E, Hyafil A (2007) Anterior prefrontal function and the limits of

human decision-making. Science 318: 594–598.

10. Charron S, Koechlin E (2010) Divided representation of concurrent goals in the

human frontal lobes. Science 328: 360–363.

11. Lohrenz T, McCabe K, Camerer CF, Montague PR (2007) Neural signature of

fictive learning signals in a sequential investment task. Proc Natl Acad Sci U S A

104: 9493–9498.

12. Hayden BY, Pearson JM, Platt ML (2009) Fictive reward signals in the anterior

cingulate cortex. Science 324: 948–950.

13. Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning the

value of information in an uncertain world. Nat Neurosci 10: 1214–1221.

14. Camerer CF, Ho T (1999) Experience-Weighted Attraction (EWA) learning in
normal-form games. Econometrica 67: 827–874.

15. Behrens TE, Hunt LT, Woolrich MW, Rushworth MF (2008) Associative
learning of social value. Nature 456: 245–249.

16. Behrens TE, Hunt LT, Rushworth MF (2009) The computation of social

behavior. Science 324: 1160–1164.

17. Rushworth MF, Mars RB, Summerfield C (2009) General mechanisms for

making decisions? Curr Opin Neurobiol 19: 75–83.

18. Summerfield C, Koechlin E (2008) A neural representation of prior information

during perceptual inference. Neuron 59: 336–347.

19. Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T (2008)

Neural repetition suppression reflects fulfilled perceptual expectations. Nat

Neurosci.

20. den Ouden HE, Friston KJ, Daw ND, McIntosh AR, Stephan KE (2009) A dual

role for prediction error in associative learning. Cereb Cortex 19: 1175–1185.

21. Hampton AN, Bossaerts P, O’Doherty JP (2008) Neural correlates of

mentalizing-related computations during strategic interactions in humans. Proc

Natl Acad Sci U S A 105: 6741–6746.

22. den Ouden HEM, Daunizeau J, Roiser J, Daw NN, Friston KJ, et al. (2009)

Striatal prediction error activity drives cortical connectivity changes during

associative learning. Hum Brain Mapp Abstracts.

23. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and

reward. Science 275: 1593–1599.

24. Camille N, Coricelli G, Sallet J, Pradat-Diehl P, Duhamel JR, et al. (2004) The

involvement of the orbitofrontal cortex in the experience of regret. Science 304:

1167–1170.

25. Coricelli G, Critchley HD, Joffily M, O’Doherty JP, Sirigu A, et al. (2005)

Regret and its avoidance: a neuroimaging study of choice behavior. Nat

Neurosci 8: 1255–1262.

26. Rangel A, Hare T (2010) Neural computations associated with goal-directed

choice. Curr Opin Neurobiol 20: 262–270.

27. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the

anterior prefrontal cortex in human cognition. Nature 399: 148–151.

28. Sakai K, Rowe JB, Passingham RE (2002) Active maintenance in prefrontal area

46 creates distractor-resistant memory. Nat Neurosci 5: 479–484.

29. Sakai K, Passingham RE (2006) Prefrontal set activity predicts rule-specific

neural processing during subsequent cognitive performance. J Neurosci 26:

1211–1218.

30. Burgess PW, Scott SK, Frith CD (2003) The role of the rostral frontal cortex

(area 10) in prospective memory: a lateral versus medial dissociation.

Neuropsychologia 41: 906–918.

Counterfactual Choice and Learning in FPC

PLoS Biology | www.plosbiology.org 12 June 2011 | Volume 9 | Issue 6 | e1001093



31. Ramnani N, Owen AM (2004) Anterior prefrontal cortex: insights into function

from anatomy and neuroimaging. Nat Rev Neurosci 5: 184–194.
32. Simons JS, Scholvinck ML, Gilbert SJ, Frith CD, Burgess PW (2006) Differential

components of prospective memory? Evidence from fMRI. Neuropsychologia

44: 1388–1397.
33. Soon CS, Brass M, Heinze HJ, Haynes JD (2008) Unconscious determinants of

free decisions in the human brain. Nat Neurosci 11: 543–545.
34. Rowe JB, Sakai K, Lund TE, Ramsoy T, Christensen MS, et al. (2007) Is the

prefrontal cortex necessary for establishing cognitive sets? J Neurosci 27:

13303–13310.
35. Tsujimoto S, Genovesio A, Wise SP (2010) Evaluating self-generated decisions in

frontal pole cortex of monkeys. Nat Neurosci 13: 120–126.
36. Koechlin E, Corrado G, Pietrini P, Grafman J (2000) Dissociating the role of the

medial and lateral anterior prefrontal cortex in human planning. Proc Natl Acad
Sci U S A 97: 7651–7656.

37. Koechlin E (2008) The cognitive architecture of human lateral prefrontal cortex.

In: Haggard P, Rossetti Y, Kawato M, eds. Sensorimotor foundations of higher
cognition. Oxford: Oxford University Press. pp 483–509.

38. Parvizi J, Van Hoesen GW, Buckwalter J, Damasio A (2006) Neural connections
of the posteromedial cortex in the macaque. Proc Natl Acad Sci U S A 103:

1563–1568.

39. Beckmann M, Johansen-Berg H, Rushworth MF (2009) Connectivity-based
parcellation of human cingulate cortex and its relation to functional

specialization. J Neurosci 29: 1175–1190.
40. Petrides M, Pandya DN (2007) Efferent association pathways from the rostral

prefrontal cortex in the macaque monkey. J Neurosci 27: 11573–11586.
41. Pearson JM, Hayden BY, Raghavachari S, Platt ML (2009) Neurons in posterior

cingulate cortex signal exploratory decisions in a dynamic multioption choice

task. Curr Biol 19: 1532–1537.
42. Rushworth MF, Croxson PL, Buckley MJ, Walton ME (2008) Ventrolateral and

medial frontal contributions to decision-making and action selection. In:
Bunge SA, Wallis JD, eds. Neuroscience of rule-guided behavior. New York:

Oxford University Press. pp 129–158.

43. Jubault T, Ody C, Koechlin E (2007) Serial organization of human behavior in
the inferior parietal cortex. J Neurosci 27: 11028–11036.

44. Glascher J, Hampton AN, O’Doherty JP (2009) Determining a role for

ventromedial prefrontal cortex in encoding action-based value signals during
reward-related decision making. Cereb Cortex 19: 483–495.

45. FitzGerald TH, Seymour B, Dolan RJ (2009) The role of human orbitofrontal

cortex in value comparison for incommensurable objects. J Neurosci 29:
8388–8395.

46. Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical
substrates for exploratory decisions in humans. Nature 441: 876–879.

47. Hampton AN, Bossaerts P, O’Doherty JP (2006) The role of the ventromedial

prefrontal cortex in abstract state-based inference during decision making in
humans. J Neurosci 26: 8360–8367.

48. Chiu PH, Lohrenz TM, Montague PR (2008) Smokers’ brains compute, but
ignore, a fictive error signal in a sequential investment task. Nat Neurosci 11:

514–520.
49. Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor

areas in the rhesus monkey. J Comp Neurol 336: 211–228.

50. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol
Sci 360: 815–836.

51. Seymour B, McClure SM (2008) Anchors, scales and the relative coding of value
in the brain. Curr Opin Neurobiol 18: 173–178.

52. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and

social cognition. Nat Rev Neurosci 7: 268–277.
53. Saxe R (2006) Uniquely human social cognition. Curr Opin Neurobiol 16:

235–239.
54. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for

fMRI studies of the orbitofrontal cortex. Neuroimage 19: 430–441.
55. Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorre-

lation in univariate linear modeling of FMRI data. Neuroimage 14: 1370–1386.

56. Jenkinson M, Smith S (2001) A global optimisation method for robust affine
registration of brain images. Med Image Anal 5: 143–156.

57. Beckmann CF, Jenkinson M, Smith SM (2003) General multilevel linear
modeling for group analysis in FMRI. Neuroimage 20: 1052–1063.

58. Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM (2004)

Multilevel linear modelling for FMRI group analysis using Bayesian inference.
Neuroimage 21: 1732–1747.

Counterfactual Choice and Learning in FPC

PLoS Biology | www.plosbiology.org 13 June 2011 | Volume 9 | Issue 6 | e1001093


