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Abstract

A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and
phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly
studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association
between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the
early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the
pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran
diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological
stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the
strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other
causal life-history traits correlated with parasitism may also play an important role.
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Introduction

A central focus in evolutionary research is the interaction

between molecular evolution and selection at the level of the

phenotype, the interface of which unifies aspects of evolutionary

research often examined independently [1]. Such an approach

offers insight into the factors shaping the rate of molecular

evolution, and into the link between genome evolution and species

divergence [2]. Strepsiptera is an order of insect parasitoids which

display a variety of unusual genetic and phenotypic features [3–8].

Targeting groups with complex biologies such as Strepsiptera is

useful for testing the validity and generality of ecological and

evolutionary theory [9,10]. However, insufficient molecular data

have prevented the study of a number of interesting questions,

such as the relationship between genotypic and phenotypic

evolution. Strepsiptera display characteristics that are close to

the parasite/parasitoid boundary [4,11]. Female morphology is

highly derived (eyes, antennae, mouthparts, legs, wings and

reproductive characters are lost) and accompanied by an

endoparasitic lifestyle that is host-dependent throughout the

lifecycle (except for the family Mengenillidae). In contrast the

male is free-flying as an adult and possesses typical insect

characteristics. Strepsiptera infect a broad range of hosts, and

are recorded from at least 34 families of insects distributed across 7

orders [3,4,12]. As with many other parasitic taxa, relatively little

research has examined the evolution of host-usage in the group

and its effect on speciation. However, recognition of the

contribution of parasitic taxa to total animal diversity [13] has

emphasised the need to understand the basis of parasite

diversification and host usage [14].

The relationship between genotype and phenotype can be

examined in a variety of ways. Positive selection in candidate gene

phylogenies has been paired with extant phenotypic traits on

terminal or internal branches of a phylogeny [15,16]. Alternative-

ly, a null model of evolution can be compared against models that

specify positive selection [17]. These methods specifically target

associations in genes responsible for particular phenotypic

adaptations (i.e. those under positive selection). Another approach

focuses instead on the differing molecular evolutionary rates

between species, and in identifying potential life-history traits that

influence molecular evolution. Understanding is limited by the

availability of suitable methodology, since the field has emerged

recently in response to increased DNA sequence data [2].

Investigations have searched for meaningful associations between

the rate of molecular evolution and key phenotypic or other

extrinsic factors [18,19], or between phenotypic factors and

significant shifts in the pattern of lineage diversification [20].

Results from such studies must be carefully interpreted [21,22],

due to errors associated with phylogeny and rate estimation, or

ancestral state reconstruction [1,2,23].

Here we investigate the nature and underlying cause of a

common feature of higher-level insect phylogenetic analyses: the

long-branch separating Strepsiptera from other insect groups [24–

30]. We explore the link between the strepsipteran phenotype’s

evolution and: i) variation in the rate of molecular evolution: ii) the

pattern of lineage diversification. We reconstruct the first robust
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molecular phylogeny of Strepsiptera, and use this as a framework

to investigate the history of morphological and host-use evolution.

Key characteristics include the loss of compound eyes, antennae,

legs, wings and reproductive structures in the female, and

modifications to the legs and tarsi, and loss of mandibles in some

males. The questions we address include the point at which

strepsipteran traits evolved, if they emerged more than once and

how they are associated with variation in molecular evolution. We

explore the hypothesis that the parasitic lifestyle exerts an effect on

the rate of molecular evolution [31], an assertion that few studies

have so far been able to support [32,33]. To do so, we examine

molecular rate variation in Strepsiptera, and establish a model of

evolutionary history that encompasses both molecular and

phenotypic evolution.

Results

Strepsiptera phylogeny
We used 41 strepsipteran taxa, across 16 genera, and data from

four genes: the mitochondrial genes cytochrome c oxidase I (cox1),

NADH dehydrogenase I (nad1), and small subunit ribosomal RNA (16S

rRNA), and the nuclear gene small subunit ribosomal RNA (18S rRNA)

to generate a final alignment of 3930 nucleotides. This consisted of

967 bp 803 bp, and 2160 bp for the 18S rRNA, 16S rRNA, and

cox1+nad1 partitions respectively.

Across all phylogenetic analyses, we identified monophyletic

groupings for extant Strepsiptera, Stylopidia and Stylopiformia,

corroborating the findings from previous studies [3,4,12,34] using

molecular data for the first time. In the concatenated Bayesian

Inference (BI) analyses, all nodes (bar one) at and above the family

level receive 100 posterior support (Figure 1A). Maximum

Likelihood (ML) bootstrap values are $75/100 with Lychnocolax

(except one: node within grey oval); and $80/100 without

Lychnocolax. We find Myrmecolacidae as the sister-clade to all

remaining families within Stylopiformia, and a sister-group

relationship between Stylopidae (which parasitize bees) and

Xenidae (which parasitize crabronid, sphecid, eumenid and vespid

wasps), and between Halictophagidae and Elenchidae that

predominantly parasitize Auchenorrhyncha (a ‘‘true bug’’ group,

containing amongst others the cicadas, leafhoppers, treehoppers,

planthoppers and spittlebugs). The genus Lychnocolax has no host

records, and was historically placed within Myrmecolacidae [3].

Here, we find evidence that it is an older taxon, as the sister-group

to Stylopidae, Xenidae, Elenchidae and Halictophagidae. Its

position in the analyses is supported by ribosomal nucleotide

composition data (Figure S1), but this is only moderately

supported in the concatenated phylogenetic analyses (Figure 1A,

grey oval). Removal of Lychnocolax led to increased ML bootstrap

support in a descendent node (Figure 1A; green oval). Genera are

all returned as monophyletic except Halictophagus, which occurred

as a poorly resolved polyphyletic grouping with Tridactylophagus

and Callipharixenos. The latter species is placed within Halictopha-

gidae, arguing against the separate family-status hypothesized for

this lineage.

The dated phylogeny based on the MIT1+2 dataset (see

methods) is given in Figure 2, with 95% credibility interval (CI)

bars positioned over relevant nodes. The tree reflects the topology

produced using the entire (concatenated) dataset presented in

Figure 1 (based on the nuclear 18S rRNA+ mitochondrial 16S

rRNA+ cox1/nad1 partitions), although there is minor incongruence

within Myrmecolacidae, Xenidae, Halictophagidae, Elenchidae.

Differences between MIT1+2 and MIT123 (the mitochondrial

dataset including 3rd codon positions) on date estimation was

minor, with a marginal increase in 95% CIs using MIT1+2 (Table

S1). Imprecise CIs concentrate in regions less well informed by

available fossil prior information.

Molecular evolution
Firstly, we investigated the history of molecular rate across the

MIT1+2 and MIT123 phylogenies. We found molecular rate

estimates ranging from 1–1.5% pairwise sequence divergence per

million years (Table S1) for analyses including 3rd codon positions.

These are lower than the commonly cited value of 2.3% [35] and

more in-keeping with 1.5% [36] for insect mitochondrial DNA

and other rates reported for Strepsiptera [10]. However, within

this overall pattern, the dated trees and relative rate analyses

revealed significant variation in molecular rate, notably at the time

to most recent common ancestor (tMRCA) of Strepsiptera and

Stylopidia (Figure 2). Both nodes are associated with clades with

high relative rates of molecular evolution. The rates at descendent

strepsipteran nodes are lower, at around 1% pairwise sequence

divergence per million years. The pattern of molecular evolution

in the nuclear 18S rRNA gene is in good overall agreement with the

mitochondrial cox1+nad1 gene (MIT1+2, MIT123) datasets (Table

S2, Figure S2).

We then compared the evolution of molecular rate with an

investigation into the history of diversification rate. The relative

cladogenesis test (RCT) indicated a significant shift in Stylopidia

and Stylopiformia (Figure 2). But statistics from the topological

method in Symmetree were not significant, with upper and lower

bound confidence intervals (CI) (at .025 and .975 frequentiles) of

0.079–0.168 and 0.042–0.095 in the MR and MS tests respectively.

Inclusion of 560 missing taxa produced p-value CIs for whole-tree

test statistics (MR; IC; MP*; MP; MS*; MS; B1) between 0.001 -

0.000. This discrepancy could stem from over-representation of

Mengenillidae and Corioxenidae, and under-representation of

Stylopidae, Halictopaghidae and Myrmecolacidae in the taxon set.

In both analyses, individual nodes were not associated with rate

shifts, with p-values of 0.121 and 0.209 and 0.107 and 0.185 (with

missing taxa) for Stylopidia and Stylopiformia respectively.

Furthermore, the branching pattern from the maximum clade

credibility (MCC) tree did not depart significantly from a constant-

rate/null speciation model: 0.999 (b = 0.5, d = 0.5, m = 560); 0.998

(b = 0.5, d = 0.0, m = 560); 0.836 (b = 0.5, d = 0.5, m = 60); 0.701

(b = 0.5, d = 0.0, m = 60). These results indicate that a burst of

molecular rate evolution characterised the early evolution of

Strepsiptera, but this did not coincide with a significant shift in

lineage diversification.

Reconstruction of the strepsipteran phenotype
Having established a basic framework for genotypic evolution,

we directed attention towards understanding evolution of the

strepsipteran phenotype. The morphological character reconstruc-

tions used in BI approach are summarized over the MIT1+2

phylogeny in Figure 2, details of the character state reconstructions

that were recovered at each node can be found in Table S3. These

corroborate the reconstruction of morphological evolution from a

previous phylogeny using parsimony [34]. Both closely mirror the

pattern of molecular rate depicted in Figure 2.

The long-branch leading to Strepsiptera is linked with

phenotypic modifications relating to extreme sexual dimorphism,

obligate endoparasitism in the larval stages, and entomophagy

(consumption of insects as food). Stylopidia is associated with the

evolution of the endoparasitic female (and the continuation of

endoparasitism through pupation for males). In males, this node is

linked to the reduction or loss of spiracles in the adult and larvae

respectively, and the loss of pupal claws. Stylopiformia is

associated with modifications to the tarsi, reduction of tarsal

The Molecular Evolution of Strepsiptera
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number and loss of larval legs in males, and the evolution of the

cephalothorax in females.

The history of strepsipteran host-use is summarized in Figure 3.

Parasitization of aculeate hymenopterans is predicted to have

originated in Stylopiformia, or possibly earlier in the ancestor to

Stylopidia, where a secondary switch would be implicated in

Corioxenidae to Heteroptera (a ‘‘true bug’’ group, containing

amongst others the assassin bugs, bed bugs, seed bugs and shield

bugs). In both models, a subsequent switch to Auchenorrhyncha in

the ancestor of Elenchidae and Halictophagidae is strongly

supported. Outside of Myrmecolacidae, host switching between

infraordinal host groups occurs only in Halictophagidae. The

ancestral host of Strepsiptera remains unresolved given currently

available data.

Comparison of molecular and phenotypic rates of
evolution

We undertook a number of analyses to test the statistical validity

of the association between molecular and phenotypic rates of

evolution. A linear model indicated that molecular rate is

positively associated with morphological branch length variation

(T-statistic = 7.360, p-value = 2.29E-07). Molecular rate contrib-

uted the majority of variation in branch length (Adjusted R-

squared = 0.698). However, non-linearity of error and heteroge-

neity of variance undermined the assumptions of a parametric

statistical approach. The concentration of molecular and mor-

phological rate evolution in the node leading to Strepsiptera

represents a significant component of the skew in the distribution

(Figure 4). We therefore re-examined the correlation by using a

Figure 1. Molecular phylogeny of Strepsiptera. (A) Branch lengths from the BI 50% majority rule tree, with support values from BI and ML
analyses appearing next to nodes. Support values (%) = BI posterior support | 1000 ML parametric bootstraps with Lychnocolax | 500 ML parametric
bootstraps without Lychnocolax. Grey oval: support values = BI posterior support | 1000 ML parametric bootstraps including Lychnocolax. Green oval:
increased ML support following removal of Lychnocolax. Me = Mengenillidae; C = Corioxenidae; My = Myrmecolacidae; L = Lychnocolax; S+X = Stylo-
pidae+Xenidae; E = Elenchidae; H = Halictophagidae. (B) Male Caenocholax fenyesi sensu lato (C) Female Caenocholax fenyesi sensu lato [4].
doi:10.1371/journal.pone.0021206.g001
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spearman test (rho = 0.542, S = 1054.628, p-value = 0.003)

(Figure 4A).

We also took an alternative approach by making a whole-tree

comparison of morphological versus molecular branch lengths

(instead of molecular rate). We generated a null distribution of K-

scores (mean = 0.579, S.D = 0.000134, min = 0.5780,

max = 0.5794), and compared our K-test statistic of 0.553 against

this distribution (see methods). The hypothesis that the observed

K-score was due to random processes could be rejected (p-

value%0.001) (Figure 4B). Overall, these results indicate a

correlated pattern of molecular and morphological evolution in

Strepsiptera.

Discussion

In this study, we develop a framework for understanding

strepsipteran molecular evolutionary history, link it with existing

knowledge of strepsipteran morphological evolution, and establish

Figure 2. History of divergence and rate of molecular evolution in Strepsiptera. (A) BI phylogeny using the MIT1+2 dataset calibrated
against time. Node age 95% credibility intervals are indicated over nodes. {Increased relative rate of 18S rRNA. *Increased relative rate of MIT1+2.
mSignificant Relative Cladogenesis (RCT) statistics. Arrows indicate fossil calibrated nodes. Clade abbreviations follow Figure 1. (B) History of
molecular rate using MIT1+2 scaled to the tree in panel A with number of ancestral character reconstructions at corresponding nodes (dark red
bars = total non-homoplastic state changes in morphology under parsimony [34], red bars = total morphological reconstructions using Bayesian
ancestral reconstruction). Blue: Log number of lineages at corresponding distance from root. tMRCA = time to Most Recent Common Ancestor; K/
T = Cretaceous/Tertiary boundary.
doi:10.1371/journal.pone.0021206.g002
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a foundation for further research into the evolution and ecology of

this unusual host-parasite system. We retrieve high support for the

monophyly of Strepsiptera, Stylopidia and Stylopiformia, and for

interrelationships between the extant families. There remain areas

of uncertainty, in particular the equivocal position of Lychnocolax

and the polyphyly of Halictophagus, which require taxonomic

revision through re-analysis of morphology and inclusion of

additional taxa and alternative DNA markers.

Molecular rate, diversification rate, and phenotypic
evolution

We detected a significant shift in molecular rate in the early

history of Strepsiptera. Instead of remaining uniformly high, the

rate returned to a low and even rate across the phylogeny. Minor

peaks in molecular rate are also linked with the diversification of

lineages post K/T, in particular the tMRCAs of extant families

Xenidae, Halictophagidae, and Elenchidae between 50-30 MYA.

Interestingly, the K/T boundary was not closely linked with shifts

in either molecular rate or diversification rate. A similar pattern

has also been observed in other terrestrial animal groups,

including mammals [37], squamates and passerine birds [38].

This trend reflects contemporaneous changes in strepsipteran

morphology, which also changed significantly during the group’s

early history, followed by a period of stability in more recent

history (,70 MYA), notwithstanding minor modifications to

morphology linked with the tMRCAs of several extant families

(Figure 2). Relationships within Stylopiformia are inconsistent with

the only other (morphology-based) phylogenetic analysis of

Strepsiptera. This important result may be due to the low number

of non-homoplasious morphological state changes at intermediate

depths of the prior study (Figure 29 in [34]). In the current study,

inter-node distances are short compared with surrounding

branches in the equivalent region of the tree (Figure 1). This is

consistent with the individual node comparison of molecular rate

and morphological branch length, which show a positive

correlation.

The evolution of strepsipteran structural morphology involved a

range of adaptations associated with increasingly specialised

parasitism. Extant Mengenillidae represent a transitional condi-

tion, in that females reproduce and release progeny whilst outside

of the host, with the faculty to leave the free-living pupa to lead a

motile lifestyle [39]. We hypothesize that complete female

endoparasitism in Stylopidia led to strong sexual selection on

free-living adult males, which to copulate successfully must engage

with highly modified female structures (the cephalothorax)

protruding from living hosts. This may have led to the evolution

of hairy adhesive tarsal pads; needed to adhere to diverse host

substrates during insemination of the endoparasitic female [40].

The diversification rate in Strepsiptera increased after the initial

burst in molecular rate, but a significant individual node shift was

only detected in the RCT statistic, at the origin of Stylopidia/

Stylopiformia. Lack of evidence for an increase in diversification

across other methods suggests this result should be interpreted with

caution. We refrain from discussing in depth which phenotypic

traits (if any) might be causally linked to the main phase of

strepsipteran diversification due to difficulties associated with

identifying trait(s) that are responsible for speciation [41,42]. One

might hypothesize that after endoparasitism became an obligate

component of all aspects of female life-history (in the ancestor of

Stylopidia), the evolution of a more effective method of host

immune evasion may have enhanced the ability of Strepsiptera to

successfully infect novel hosts, thereby opening opportunities for

speciation. During infection, Strepsiptera are contained within a

host-derived epithelial membrane, which is thought to conceal the

endoparasite from the host’s immune system [5]. However, its

point of origin remains unknown.

Did parasitism cause the burst in molecular rate?
We discovered a correlated burst in the rate of molecular and

morphological evolution, which coincided with significant increas-

es in the relative rate of molecular evolution, and abrupt shifts in

the evolution of rRNA structures (Figure S1). We showed in an

overall comparison of branch length that the observed similarity

between molecular and morphological trees (K-score) was not due

to random processes. The traits that evolved during the early

history of Strepsiptera were broadly adaptations relating to the

evolution to endoparasitism. These results are consistent with the

hypothesis that parasitism may be an important cause of molecular

evolutionary rate variation [31–33]. A plausible scenario could

have involved deleterious mutations in free-living species becom-

ing neutral/nearly-neutral in progressively host-dependent endo-

parasites. An adaptive interpretation could be that parasitism

indirectly led to the selection of increased variation (through

recombination or mutation), due to increased red-queen pressures

between the host and parasite. But such a hypothesis does not

explain why a subsequent decrease in substitution rate is observed

in descendent nodes within Strepsiptera. Under the first (non

adaptive) model, once most sites had been exposed to novel

evolutionary forces, the substitution rate returned to a background

Figure 3. Bayesian reconstruction of male host-usage accord-
ing to infra-ordinal grouping. Known host records are given next to
clades. Unshaded lines = unknown records/equivocal reconstructions.
Black = Lepismatidae; Red = Heteroptera; Orange = Hymenoptera;
Green = Auchenorrhyncha; Purple = possible origin of heteronomy.
*Significant node reconstructions using BFs. Pie charts = posterior
probability | ML support. BFs and support charts not shown below
family. {Probable parthenogens. Clade abbreviations follow Figure 1B.
Images: Pheidole sp. (Hymenoptera) with male cephalotheca (top).
Sogatella furcifera (Homoptera) with Elenchus japonicas male puparium.
Photographs � J. Kathirithamby.
doi:10.1371/journal.pone.0021206.g003
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level. Our findings are more in-keeping with relaxation of selective

constraint as a dominating force in the early evolution of

Strepsiptera.

However, the precise relationship between molecular rate and

parasitism cannot be conclusively resolved in the current

framework. Confounding correlates of endoparasitism may prove

causally more relevant [2]. For example, in studies of mammalian

molecular evolution, the increase in availability of DNA sequence

data has questioned initial hypotheses positing a simple correlation

with body size. Later studies used more reliable rate estimates and

better methods to demonstrate that rate in the nuclear genome

covaried with generation time and fecundity (and body size) but

that variation in the rate of the mitochondrial genome was

explained by longevity [43] (although in our study, rates between

nuclear and mitochondrial genomes are similar). An alternative

explanation in Strepsiptera could be that endoparasitism enabled

females to increase individual fecundity by being able to

concentrate more resources on one aspect of life-history:

reproduction. Higher mutation rate could have subsequently

stemmed from the associated increase in germline replications per

generation. Endoparasitism may have also been correlated with

increased generation time and shorter lifespan, where pressures to

reproduce prior to host-death or clearance are considered to be

critical components of parasite evolution [44]. These factors could

be causally important in explaining the evolution of molecular rate

in Strepsiptera, but determining which requires a more detailed

understanding of life-history, ecology and the fine-scale interaction

between Strepsiptera and host. Uncovering the mechanism of

immune evasion could represent a particularly important target

for future research.

The Strepsiptera long-branch
This study indicates that elevated molecular evolutionary rate

was an important contributing cause of the strepsipteran long-

branch. However, missing data in the form of undiscovered extinct

(or extant) transitional lineages and imprecision over the nearest

extant sister-lineage are also relevant to improving understanding

of the causes of molecular rate variation in Strepsiptera. A number

of recent studies consolidate the view that Strepsiptera are closely

related to Coleoptera [27–30] but a precise hypothesis has still not

been reached. Increased knowledge of strepsipteran life-history

and ecology, in combination with a more detailed understanding

of strepsipteran sister-relationships, will lead to better estimations

of divergence, allowing for more informative date priors to be

incorporated into a relaxed phylogenetic approach [45,46].

Together, these will help to develop a more accurate picture of

the forces responsible for variation in the rate of genome evolution

in Strepsiptera. Revisiting hypotheses, like a possible association

with rhipiphorine beetles [47] may help to identify potential

candidate taxa that interrupt the branch. Alongside approaches

Figure 4. Graphical summary of molecular rate and morphological branch length variation. (A) Individual node comparison of molecular
rate (pairwise sequence divergence / million years) versus morphological branch length (steps required under parsimony). (B) K-tree null distribution,
with test-statistic indicated by arrow. (C) Distribution of molecular rate (left) and morphological branch length (right) variation. (D) Graphical
summary of linear model assumptions: non-linearity of error (left) and heterogeneity of variance (right).
doi:10.1371/journal.pone.0021206.g004
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that implement more sensitive phylogenetic methodology and

larger data sets [48], new data may offer greater understanding of

strepsipteran origins. However, this study suggests that the

strepsipteran long-branch may never be easy to ‘‘break up’’.

Conclusions
In this report, we present the first molecular phylogeny of

Strepsiptera. Estimates of morphological branch length, alongside

reconstruction of the strepsipteran phenotype reveal a correlation

between morphological traits linked to endoparasitism and rate of

molecular evolution. The main phase of diversification (Stylopidia,

Stylopiformia) is associated with a return to a low and even rate of

molecular evolution, and a period of relative morphological

stability. This pattern supports the hypothesis that the transition to

parasitism from a free-living insect ancestor can affect molecular

rate. Greater precision over the nearest extant strepsipteran sister

group will lead to better estimations of both divergence and

molecular rate. Improved understanding of strepsipteran biology

will in future permit the causes of molecular rate variation in

Strepsiptera to be examined in greater detail. Together, these

results establish an important foundation for further research into

the evolution and ecology of a highly unusual host-parasite system.

Materials and Methods

Taxon and DNA sampling
Individuals were included from 41 strepsipteran taxa, across 16

genera (50% coverage). Bohartillidae and Bahiaxenidae, which are

rare and represented by few specimens, were not included [49].

Three hemi- and six holometabolous outgroup species were

selected from nucleotide data in Genbank. Due to the nature of

mitochondrial gene evolution in Hymenoptera [50,51] and the

possibility of long-branch attraction between Strepsiptera and

Hymenoptera (Hayward et al. in preparation; Figure 4 in [27]),

the latter were not included. Specimens were preserved at 4uC in

95% ethanol, and protocols employed for sequence generation

follow [8]. The mitochondrial genes cytochrome c oxidase I (cox1),

NADH dehydrogenase I (nad1), and small subunit ribosomal RNA (16S

rRNA), and nuclear gene small subunit ribosomal RNA (18S rRNA)

were chosen to represent independent and variable evolutionary

rates (Genbank accession JN082786–JN082922). Chromatograms

were inspected manually using FinchTV (www.geospiza.com), and

cox1 and nad1 fragments were aligned by eye in BioEdit [52], using

translated nucleotides to guide the management of indels. 16S and

18S rRNA fragments were aligned manually using the comparative

structural method [6,53,54] and mfold [55], but these do not

correspond strictly to the category definitions sensu Gillespie [54].

A final alignment consisting of 3930 nucleotides was used in

subsequent analyses, consisting of 967 bp 803 bp, and 2160 bp for

the 18S rRNA, 16S rRNA, and cox1+nad1 partitions respectively,

each with 339, 433, and 433 parsimony-informative positions.

This approach was compared against an automated alignment

strategy using the default settings in MUSCLE [56] and Gblocks

[57], but retaining columns with a gap at greater than 50% of

taxa. The resultant alignment contained 21% fewer characters

(3048 nucleotides) of 642 bp, 774 bp and 1632 bp in the 18S

rRNA, 16S rRNA and cox1+nad1 partitions, each with 229, 546, and

341 parsimony informative positions respectively. All analyses in

this study are based on the structurally-informed ‘‘manual’’

alignment as trees based on the automated approach produced

trees with limited support and equivocal topologies (data not

shown). For the estimation of molecular rates, divergence estimates

and date-informed branch lengths, the mitochondrial cox1 and

nad1 genes were combined into a single data partition and

analysed separately with/without the 3rd codon position (datasets

MIT1+2 and MIT123 respectively). Specimen information

(including accession numbers, primer information and 18S/16S

rRNA template alignments) appears in Table S4.

Evolutionary model selection and phylogenetic analysis
For Bayesian analyses (BI), the most appropriate models of

evolution were selected by comparing harmonic means across

separate gene partitions in MrBayes v3.1.2 [58,59], and then

calculating Bayes Factor (BF) values. For maximum likelihood

(ML), the Akaike Information Criterion (AIC) approach in

MrModelTest v2 [60] and ProtTest v2.4 [61–63] was employed

to select the most suitable models for RAxML v7.0.3 [64]. For all

nucleotide partitions, the GTR+C+I model was preferred by BF

and AIC with the following harmonic means: 27209.42 (18S

rRNA); 29235.59 (16S rRNA); 214796.14 (MIT1+2); 230436.50

(MIT123) and log-likelihoods: 27160.8037; 29189.0898;

214758.0146; 231345.5293. For partition MIT123, the number

of transitions and transversions estimated under the F84 model

were plotted against genetic distance for each codon position using

DAMBE v5.0.8 [65] (Figure S3, Table S5). A test of substitution

saturation [66] and quartet likelihood mapping (TREE-PUZZLE

v5.2) [67,68] indicated high percentages of noise versus signal

(20.6% and 32.7% in cox1 and nad1 respectively) in synonymous

3rd codon position, and little correspondence between 3rd codon

position transition frequencies and genetic distance. Consequently,

the mixed amino acid model facilitated by MrBayes was selected

for use in all concatenated BI analyses. The amino acid

substitution model favoured by the posterior density was MtRev

[69] +C+I (+F). ProtTest found highest support for MtArt [70] and

LG [71], but these are unavailable to MrBayes v3.1.2 and

RAxML v7.0.3.

After models were selected, concatenated BI analyses consisted

of two independent (MC)3 algorithms running for 2 million

generations, each with four chains (3 hot, 1 cold), sampling one

tree in 200, burn-in cutoffs were inspected manually for each

parameter file in Tracer v1.4 [72]: the first 40000 steps were

discarded. Inspection of the standard deviation of split frequencies

confirmed that runs had converged (0.0059). All parameters

except topology were unlinked between partitions. Data were

summarized over a majority rule consensus tree (50% cutoff).

1000 ML nonparametric bootstrap pseudoreplicates were estimat-

ed in RAxML v7.0.3 [73]. 500 ML bootstrap pseudoreplicates

without Lychnocolax were also estimated. Trees were imported into

FigTree v1.2.3 for editing [74].

Divergence time estimation
MIT1+2 was employed in a Bayesian relaxed clock framework

in BEAST v1.4.8 [75] using the GTR+C+I model. Lychnocolax taxa

were removed prior to analyses and Holometabola was con-

strained as monophyletic. Likelihood ratio tests using least and

most complex evolutionary models in PAML v4 [76], with/

without the 3rd codon position were overdispersed with respect to

a molecular clock (2DlnL = 1398.37, 1539.43, 836.45, 948.41;

df = 7, P,0.001). Significant rate-heterogeneity was accommodat-

ed by employing the relaxed-clock MCMC with an uncorrelated

lognormal model (UCLN) [77], calibrated using three strepsip-

teran fossils. The implementation of fossil priors is described in

Text S1.

MCMC analyses ran for 10 million iterations, sampling every

1000th step. The effect of A+T-rich 3rd codon positions was

investigated using the MIT123 dataset, in which the two partitions

(1+2)(3) were unlinked. Analyses were repeated using the 18S rRNA

dataset. The effect of model choice was assessed by comparing
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GTR+C+I with the SRD framework [78]. Molecular rate

estimates were calculated as % pairwise sequence divergences

per million years: equal to twice the per lineage rate. Dates were

specified as millions of years before present, the Yule process was

employed as the tree prior. Parameter files were inspected

manually to ensure chain stability across parameters, and to select

an appropriate burn-in. Tree files were summarized on a

maximum clade credibility (MCC) tree.

Molecular rate, diversification rate, and tree shape
Relative rates of molecular evolution were examined via cross

comparison of families and outgroups in RRTree v1.1.11 [79].

Whole-tree and single node methods were employed to test for

departures in diversification rate [39]. The temporal rate

cladogenesis test (RCT) statistic was calculated [80,81]: nodes

showing a ‘‘trickle-down’’ effect [39] were excluded. Whole tree

simulations of rate-constant/rate-variable variants of the birth-

death model in the Laser R-package [82] were conducted. The

simulation ran for 1000 trees, comparing the best constant

speciation model versus best variable speciation model (DAICrc)

using the MIT1+2 tree. Outgroup taxa were pruned, and the birth

rate (b), death rate (d) and unsampled taxa (m) were varied. m

represents unsampled Strepsiptera species diversity. SymmeTree

v1.1 [83] was used as an independent topological method. To

investigate the impact of missing taxa, 560 tips were assigned to

known groupings as soft polytomies. Whole-tree and single-node

statistics were calculated using 100000 Bayesian simulations.

Evolutionary trait reconstruction
For reconstructions of morphology, data were imported into

BayesTraits v1.0 [84]. Ancestral states were enforced using the

‘fossil’ prior. Harmonic means were compared for fossilized states,

and accepted or rejected using BF values. 2 million MCMC

iterations were conducted using the final consensus branching

pattern and repeated if harmonic means did not stabilize. A

reverse-jump hyperprior with exponential distribution 0–30 was

set. ‘ratedev’ was optimized so that proposals were accepted 20–

40% of the time. For host-use, major infraordinal divisions were

treated as states. Aculeata (ants) were placed as the primary

(ancestral) host for Myrmecolacidae: males of Myrmecolacidae

parasitize only ants [85] and evidence for a female myrmecolacid

in a fossilized ant host [86] indicated this was appropriate. A

maximum likelihood approach, using the symmetrical method

(Mesquite v2.71 [87]) was implemented to offer an independent

measure of support.

Comparison of molecular and phenotypic rates of
evolution

State changes corresponding to non-homoplasious steps from a

morphological phylogeny of Strepsiptera [34] were mapped to

shared nodes of the MIT1+2 MCC tree (excluding branches

leading to missing taxa, conflicting nodes, and clades represented

by one taxon – representing 6, 6 and 9 steps respectively). A

smaller list of discrete adult and secondary larval characters was

used in a Bayesian reconstruction approach to ensure this pattern

was repeatable across methods.

As a formal comparison of the relationship between molecular

and phenotypic evolution, morphological branch lengths were

estimated in Phylip [88], using the genus-level matrix of adult and

secondary larval characters from [34], updated to include the

current set of taxa. The topology was constrained to follow the

MIT1+2 dated MCC tree. For individual nodes, we tested the

correlation between % pairwise sequence divergence and

morphological branch length using standard statistics in R

v2.9.2. As an independent whole-tree method, the K-score was

calculated using Ktreedist v1.0 [89] and compared against a null

K-distribution (500 simulated trees; following [18]). In this

approach, molecular branch length (instead of pairwise sequence

divergence) was assessed against morphological branch length.

Supporting Information

Figure S1 rRNA variabe and core domain structural
attributes mapped onto the Strepsiptera phylogeny. (A)

18S variable (bar) and core (filled circle) A+T% content. (B) 16S

variable (bar) and core (filled circle) A+T% content. (C) Variable

domain size (nucleotide length) for the 18S (red) and 16S (black)

genes. Outgroups grey and highlighted. Clade abbreviations and

colour scheme follow Figure 1. Note the shifts in variable domain

bp length, in both the 18S (length increase) and 16S (length

decrease) genes at the node leading to Strepsiptera in (C).

(TIF)

Figure S2 Divergence time and molecular rate patterns
using the nuclear 18S rRNA dataset. Red: % molecular rate

mapped for each node at corresponding distances from root. Blue:

Ln number of cumulative lineages at corresponding distances from

root. This corroborates the analysis using the mitochondrial

partition (Figure 2), confirming that the observed pattern is

consistent across genomic compartments.

(TIF)

Figure S3 Exploration of data quality across the
mitochondrial genes. Transitions and transversions estimated

under the F84 model were plotted against genetic distance for each

codon position: Green = 1sts, Blue = 2nds, Orange = 3rds. Signal

versus noise was graphically visualized using quartet likelihood

mapping.

(TIF)

Table S1 Summary of Strepsiptera divergence times.
Summary of divergence time estimates for the major nodes in the

Strepsiptera phylogeny using the combined mitochondrial coding

gene (cox1+nad1) partition. *Pairwise sequence divergences per

million years. Clade abbreviations follow figure 1. {Node ages

defined by exponential priors.

(DOC)

Table S2 RRTest comparative analysis across strepsip-
teran clades. Bold = P-value with significant rate comparison

(bonferroni corrected). *Marginally non-significant after bonfer-

roni adjustment in the mitochondrial (A) and 18S rRNA partition

(B). Clade abbreviations follow figure 1.

(DOC)

Table S3 List of characters and corresponding states
recovered in the reconstruction of strepsipteran mor-
phological traits. The position in the phylogeny of significant

character reconstructions appears in brackets next to the

corresponding state, followed by the BF range supporting that

reconstruction. Some characters may be considered dependent, if

single genotypic events can be demonstrated to produce

pleiotropic effects. Possible examples include male/female larval

spiracles, and male/female larval legs. * equivocal BFs (0.2–3.8).

This might disguise a potentially apomorphic loss of tarsomeres in

the Elenchidae+Halictophagidae ancestor.

(DOC)

Table S4 Specimen, primer information and rRNA
template alignments. Genbank accession and specimen source

information; list of primers used in this study (*Primers designed
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for short-fragment PCR) and 18 rRNA and 16S rRNA template

secondary structural alignments.

(DOC)

Table S5 Test of saturation by mitochondrial gene and
codon position. *Statistics indicating little saturation. {Statistics

with substantial saturation (bold). {Statistics indicating useless/

very poor sequence for phylogenetics (bold). Ts = symmetrical T-

statistic. Tns = non-symmetrical T-statistic.

(DOC)

Text S1

(DOC)
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