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Abstract

Neocortical neurons show UP-DOWN state (UDS) oscillations under a variety of conditions. These UDS have been extensively
studied because of the insight they can yield into the functioning of cortical networks, and their proposed role in putative
memory formation. A key element in these studies is determining the precise duration and timing of the UDS. These states
are typically determined from the membrane potential of one or a small number of cells, which is often not sufficient to
reliably estimate the state of an ensemble of neocortical neurons. The local field potential (LFP) provides an attractive
method for determining the state of a patch of cortex with high spatio-temporal resolution; however current methods for
inferring UDS from LFP signals lack the robustness and flexibility to be applicable when UDS properties may vary
substantially within and across experiments. Here we present an explicit-duration hidden Markov model (EDHMM)
framework that is sufficiently general to allow statistically principled inference of UDS from different types of signals
(membrane potential, LFP, EEG), combinations of signals (e.g., multichannel LFP recordings) and signal features over long
recordings where substantial non-stationarities are present. Using cortical LFPs recorded from urethane-anesthetized mice,
we demonstrate that the proposed method allows robust inference of UDS. To illustrate the flexibility of the algorithm we
show that it performs well on EEG recordings as well. We then validate these results using simultaneous recordings of the
LFP and membrane potential (MP) of nearby cortical neurons, showing that our method offers significant improvements
over standard methods. These results could be useful for determining functional connectivity of different brain regions, as
well as understanding network dynamics.
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Introduction

During slow-wave sleep, large amplitude slow (,2 Hz)

oscillations are present in the EEG and cortical local field

potential (LFP) reflecting synchronous fluctuations in the mem-

brane potential (MP) and spiking activity of individual neurons. A

similar state is also observed under various anesthetics where

neural activity exhibits bistability and undergoes synchronous

transitions between a depolarized and active UP state, and a

quiescent, hyperpolarized DOWN state [1,2]. Both excitatory and

inhibitory neurons participate in these synchronous state transi-

tions, and thus the active state is characterized by a balance of

excitatory and inhibitory activity [3,4,5].

UP-DOWN states (UDS) present an excellent opportunity to

study both cellular and network properties, and because of their

global nature they can yield insight into network dynamics, both

within and across brain regions. There has also been much interest

in using the relatively simple discrete state dynamics of UDS to

study the state-dependence of neural responses to external stimuli

[6,7,8,9]. Further, a number of studies have demonstrated that

UDS occurring during natural sleep could serve an important role

in the process of memory consolidation [10,11]. This possibility is

supported by the observations that hippocampal activity can be

synchronized with cortical UDS [12,13,14], that the primary

electrophysiological structures present during sleep (including sleep

spindles and hippocampal sharp-wave ripples) are temporally

organized by the UDS [15,16,17,18], and that UP-transitions

generate precise spike patterns [19]. Thus, understanding UDS

will likely yield insights not only into the cellular and network

dynamics at play during slow-wave sleep, but also into the role of

slow-wave sleep in memory formation.

UDS have most often been defined in terms of the MP of

individual neurons, however given that robust spiking of both

excitatory and inhibitory neurons occurs nearly exclusively during

the UP state, classification of UDS based on extracellular unit

activity is also possible [20,21,22,23]. Due to their synchronous

nature, large amplitude fluctuations in the LFP can also be used to

classify UDS [12,14,24]. Classifying UDS from extracellular

signals (multi-unit, LFP, EEG) offers numerous advantages, such

as the data are easier to acquire, and such measurements can be

done chronically, during natural behavior, relatively less inva-

sively, and even in humans. Extracellular signals also present a
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natural means for estimating the ‘collective’ state of an ensemble of

neurons. Moreover, due to the increasing popularity of multi-

electrode recording methods, there is need for a general

framework for classifying UDS based on extracellular signals.

Several different approaches to classifying UDS from LFP signals

have been put forth uitilizing different features of the LFP signal.

Mukovski et al. [25] argued that the high-frequency (20–80 Hz)

power measured in a suitably localized window of time provides the

best signal feature for classifying UDS, while more recently Saleem

et al. [26] proposed using the low-frequency (,4 Hz) phase of the

LFP for classification. While these works also differed in their

method of inferring UDS from these signal features, both

approaches were based on determining a fixed threshold (or set of

thresholds) and comparing the signal feature(s) to these fixed

threshold(s). We broadly term such approaches ‘threshold-crossing’

algorithms, and argue that the framework of hidden Markov models

(HMMs) provides significant advantages over threshold-crossing

methods for classifying UDS. In particular, HMMs provide a

consistent, flexible, and statistically principled framework for

inferring UDS from different types of signals that handles variations

in experimental parameters such as type of anesthetic, type of

electrode, precise electrode location and depth of anesthesia without

the need for supervision, and can easily be adapted to accommodate

non-stationarities in the data [27,28]. The efficacy of HMMs for

inferring UDS from stationary point-processes (extracellular spike

times) has already been demonstrated [21,22]. Here we describe an

explicit-duration HMM (EDHMM) method for inferring UDS

from potentially non-stationary sets of continuous signals (including

MPs, LFPs, and EEGs), as well as a procedure for evaluating

different signal features for UDS classification. This procedure

shows that the low-frequency amplitude of the LFP provides the

most information about the cortical state in our data. We

demonstrate that the proposed method is very flexible and can

also be applied effectively to classify UDS from EEG signals. We

then show by comparing UDS inferred from simultaneously

recorded LFP and MP signals that our EDHMM procedure

produces significant improvements over standard methods.

Methods

Experimental Methods
Ethics statement. All surgical procedures and experiments

were conducted according to the animal welfare guidelines of the

Max Planck Society. The protocol was approved by the

responsible State Committee on the ethics of animal

experiments Karlsruhe (Permit Number 35-9185.81). All efforts

were made to minimize suffering.

Animals, surgery, and histology. Methods were similar to

those described previously [12,24]. Briefly, MP and LFP data were

obtained from 11 C57BL6 mice aged postnatal day p29 to p35,

weighing between 16 and 23 g. Mice were anesthetized with

urethane (1.7–2.0 g/kg i.p.). Body temperature was maintained at

37uC with the help of a heating blanket. The animal was head-fixed

in a stereotaxic apparatus and the skull exposed. A metal plate was

attached to the skull and a chamber was formed with dental acrylic

which was filled with warm artificial cerebrospinal fluid. A 1 to

1.5 mm diameter hole was drilled over the left hemisphere and the

underlying dura mater was removed. After electrophysiological

recordings, mice were transcardially perfused with 0.1 M PBS

followed by 4% paraformaldehyde, and 150 mm thick saggital brain

sections were processed with the avidin–biotin–peroxidase method.

Electrophysiology and data acquisition. LFPs were

recorded with a quartz/platinum-tungsten glass coated

microelectrode (Thomas Recording GmbH, Giessen, Germany).

In vivo intracellular membrane potential (MP) was recorded in

whole-cell configuration by using borosilicate glass patch pipettes

with DC resistances of 4–8 MV, filled with a solution containing

135 mM potassium gluconate, 4 mM KCl, 10 mM Hepes,

10 mM phosphocreatine, 4 mM MgATP, 0.3 mM Na3GTP

(adjusted to pH 7.2 with KOH), and 0.2% biocytin for

histological identification. Whole-cell recording configuration

was achieved as described previously [29]. Relative to bregma,

both the MP and the LFP recordings were made either around 1

to 1.5 mm anterior and 1 to 1.5 mm lateral (frontal) or around

3 mm anterior and 1 to 1.5 mm lateral (prefrontal). MP was

recorded from pyramidal neurons at various depths, and LFP was

recorded from upper layer 5. The recording site of the LFP was

less than 1 mm distance from the neuronal soma from which the

MP was obtained Both LFP and MP were recorded continuously

on an eight-channel Cheetah acquisition system (Neuralynx,

Tucson, AZ) for at least 600 s per experiment. That complete

recording was used for subsequent analysis as described below.

The MP was acquired by Axoclamp-2B (Axon Instruments, Union

City, CA) and fed into a Lynx-8 amplifier (Neuralynx). LFP was

sampled at 2 kHz, low-pass filtered below 475 Hz, and amplified

2,000 times. LFP signals were inverted so that UP states

corresponded to positive deflections. MP was low-pass filtered

below 9 kHz, sampled at 32 kHz, and amplified 80–100 times.

A total of 21 LFP recordings from 11 animals were analyzed.

Usually a pair of LFP recordings were performed in a single

animal, the recordings being separated by 50 to 210 minutes.

Statistics were computed across LFP recordings. In addition, 9 MP

recordings were performed simultaneously with 9 of the LFP

recordings, all from different animals.

We recorded EEGs from 3 additional mice anesthetized with

urethane (1.7–2.0 g/kg i.p.) and head-fixed in a stereotaxic

apparatus. Two small incisions in the skin were made for

subsequent insertion of recording electrodes. EEG signals were

recorded with 150 mm diameter insulated silver wires, with

exposed and chlorided tips inserted under the skin above the

skull overlying left parietal cortex. The reference for this signal was

taken from an identical wire inserted under the skin in the neck

region above the left occipitum. This EEG was recorded with a

Cheetah acquisition system as described above, sampled at 2 kHz,

low-pass filtered below 400 Hz, and amplified 10,000 times.

Statistical Methods
Hidden Markov model for UP and DOWN states. The

problem of inferring the UP and DOWN state sequence given

some measure of neural activity is well suited for the framework of

HMMs [21,22]. In a HMM, a sequence of data is modeled as

being generated probabilistically from an underlying discrete-

valued stochastic process [30,31]. The observed data can be either

discrete- or continuous-valued, while the unobservable ‘hidden’

state is a discrete random variable that can take K possible values

(in our case two, representing the UP and DOWN states). Here we

focus on inferring UDS from continuous signals such as the LFP or

MP which are discretely sampled in time. Thus, we consider a

time series of continuous-valued signal features Y~ y1, . . . ,yTð Þ
(e.g. the amplitude of a filtered LFP) extracted from the original

signal, such that Y carries information about the underlying UP

and DOWN states. Henceforth we will refer to Y as the

‘observation sequence’. Let Z~ z1, . . . ,zTð Þ represent the

sequence of hidden state variables, whose value at discrete time

step t is given by zt. The HMM makes the simplifying assumption

that Z is a first-order Markov chain [30,31], which is characterized

by zt being independent of the preceding sequence of hidden

variables, given the value of zt21. We can thus write

Hidden Markov Model Detection of UP-DOWN States
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p(ztjz1,z2,::,zt{1)~p(ztjzt{1)~Azt{1zt , ð1Þ

where A is a matrix of state transition probabilities. The

observation yt at time t is assumed to be conditionally

independent of previous values of Y given zt, and is determined

by a state-conditional observation distribution:

p(ytjwzt
), ð2Þ

where wzt
is a vector of model parameters for state zt.

In the general case we can define a vector-valued time series of

observations yt. We use Gaussian observation distribution models

of the form p(yjwk)~N(y; mk,Sk), where wk~ mk,Skf g are the

mean and covariance matrices associated with each hidden state k.

Other observation distribution models could also be considered (in

particular, mixtures of Gaussians have been used extensively for

other applications) if the state-conditional observation distributions

are determined to be highly non-Gaussian. Because some of the

signal features characterizing the UP and DOWN states often

change substantially over the course of the recording [27,28], we

allow the mean vectors to be (slowly varying) functions of time.

While we do not consider such cases here, Sk and A could also be

allowed to vary slowly in time using a similar approach. Therefore,

the Gaussian-observation HMM is fully specified by the parameter

vector W~ A,p,mk(t),Skf g, where p is a distribution over the

initial hidden state variable z1. Signal features which are assumed

constant in time are easily handled in this framework by simply

restricting the mk(t) to be constants.

Maximum likelihood estimates of the model parameters W given

a sequence of observations can be determined using the

expectation maximization (EM) algorithm [31,32] which proceeds

using a two-step iteration. First, initial values for the parameters

Wold are selected, and the posterior distribution of the latent state

sequence Z given the observation sequence Y and the parameter

vector is computed. The posterior distribution of the latent state

sequence is then used to compute the expected complete-data log

likelihood [33]:

Q(W,Wold )~
X

Z

p(ZjY,Wold ) log p(Y,ZjW): ð3Þ

Maximization of Q with respect to W gives the new estimate of the

parameter vector Wnew. The process is repeated iteratively until

convergence. For a given parameter vector, calculation of the

posterior distributions of the latent variables is achieved using a set

of recursions known as the forward-backward algorithm [31].

Explicit-duration HMM. An important weakness of the

standard HMM is that it implicitly assumes a geometric

distribution of state durations [31]. Numerous extensions of the

standard HMM have been developed to address this issue, but the

most frequently used is the explicit-duration HMM (EDHMM)

[34,35], which is a type of hidden semi-Markov model (for review

see [36]). In the discrete-time EDHMM, the state duration is

assumed to be a random variable which is restricted to take integer

values in the range [1, dmax], where dmax is the maximum allowable

state duration. Upon transitioning to a state k, a sequence of

observations of length d will be emitted from the observation

model wk, with the observations assumed conditionally i.i.d. Each

state can thus be specified by the pair (k,d), and state transitions are

then determined by two such pairs k0,d 0ð Þ? k,dð Þ. In the

EDHMM, the simplifying assumption is made that pt(k,djk0,d 0)~
p(kjk0)pk(d)~Akk0pk(d) [36]. Thus, the probability of observing

state k at time t depends only on the previous state k9, and the

probability of state k having duration d depends only on the

duration distribution pk(d) for state k. Since self-transitions are

prohibited in the EDHMM, the transition matrix A is uniquely

determined in the two state case:

A~
0 1

1 0

� �
: ð4Þ

EDHMM parameter inference. Inference of model

parameters in the EDHMM can be accomplished using a

forward-backward algorithm similar to the standard HMM [34].

Yu and Kobayashi [37] demonstrated an efficient forward-

backward algorithm for the EDHMM, and showed how to

redefine the forward and backward variables in terms of posterior

probabilities to avoid numerical underflow [38]. Defining

ct(k)~P(zt~kjY,W) to be the marginal probability of state k at

time t given the observation sequence Y and the model parameters

W, the observation model parameters are updated in the M step of

the EM algorithm, in direct analogy with the estimation formulas

in the standard HMM, according to:

mk(t)~

P
t0

w(t0{t)ct0 (k)yt0P
t0

w(t0{t)ct0 (k)
, ð5Þ

Sk~

PT
t~1

ct(k) yt{mk(t)ð ÞT yt{mk(t)ð Þ

PT
t~1

ct(k)

, ð6Þ

where w(t92t) is a symmetric, time-localized window function with

a time-scale chosen to reflect the time-course of fluctuations in the

state-conditional means.

State duration distributions. Defining Dt(k,d)~P(zt{d ,
zt{dz1, . . . ,zt~kjY) to be the conditional probability of state k

starting at time t-d and ending at time t (lasting for duration d),

Ferguson [34] showed that maximum likelihood estimates for the

non-parametric distribution for state k are given by:

pk(d)~

PT
t0~2

Dt0 (k,d)

Pdmax

d0~1

PT
t0~2

Dt0 (k,d 0)

: ð7Þ

Following Levinson’s [35] use of a (continuous) parametric state

duration model, Mitchell and Jamieson demonstrated how to find

maximum likelihood solutions for the parameters of any

exponential family distribution [39]. We follow this approach

and use the two-parameter gamma and inverse Gaussian

exponential family distributions to model the state durations.

The (censored) discrete gamma distribution is given by:

p(x; a,b)~

xa{1e{bxPxmax

x~xmin

xa{1e{bx
, xminv~xv~xmax

0, else

8>><
>>: : ð8Þ

Hidden Markov Model Detection of UP-DOWN States
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The censored discrete inverse Gaussian distribution is given by:

p(x; m,l)~

x{3=2exp
{l(x{m)2

2m2x

 !

Pxmax

x~xmin

x{3=2exp
{l(x{m)2

2m2x

 ! , xminv~xv~xmax

0, else

8>>>>>><
>>>>>>:

ð9Þ

Writing these two-parameter pmfs in the exponential family form

gives:

p(x; H)~
Ixmin,xmax

B(H)
exp {

X2

p~1

hpSp(x)

 !
, ð10Þ

where Ixmin,xmax is the indicator function which is 1 inside the

range [xmin,xmax] and 0 elsewhere, B(H) is a normalization

constant, H~ h1, . . . ,hPf g is the vector of P natural parameters,

and S~ S1, . . . ,SPf g is the vector of natural statistics. Mitchell

and Jamieson showed that maximum likelihood estimates for the

natural parameters hp are given by solving the equations [39]:

Eh Sp(x)
� �

{Enp Sp(x)
� �

~0, ð11Þ

where Eh Sp(x)
� �

is the expectation of the pth natural statistic with

respect to the exponential family distribution, and Enp Sp(x)
� �

is its

expectation with respect to the non-parametric distribution. We

use Matlab’s routine fsolve to solve for the maximum likelihood

estimates of the parameters HML
k for each state k.

Maximum likelihood state sequence. Estimation of the

maximum likelihood state sequence is typically achieved using the

Viterbi algorithm [31], and similar algorithms have been

demonstrated for the EDHMM [40]. We follow the method of

Datta et al. [41], and map the Viterbi decoding problem into that

of finding the longest path in a directed acyclic graph (DAG).

Discontinuous data segments. We can easily adapt the

EDHMM to handle discontinuous segments of data, which can be

useful if we wish to exclude certain portions of the data from

analysis (for instance during periods of ‘desynchronized activity’

[42,43,44]). Assuming that we have Ns discontinuous segments of

data for which we wash to classify UDS, we define our segmented

observation at time sample t within the nth segment to be yn
t . First,

we must replace p (the distribution on the initial latent state

variable) with a matrix containing a distribution over the initial

latent state variables for each data segment. Next we introduce a

set of time-varying state-conditional mean functions, one for each

data segment, which are updated according to:

mn
k(t)~

P
t0

w(t0{t)cn
t0 (k)yn

t0P
t0

w(t0{t)cn
t0 (k)

, ð12Þ

The same forward-backward procedure can then be used to

compute cn
t (k) and Dn

t (k,d) for each data segment independently.

The time-invariant model parameters can be updated by

computing expectations with sums over time samples and

segments. For example, the updated estimate for the conditional

covariance matrix of state k is given by:

Sk~

PNs

n~1

P
t

cn
t (k) yn

t {mn
k(t)

� �T
yn

t {mn
k(t)

� �
PNs

n~1

P
t

cn
t (k)

, ð13Þ

where Ns is the number of data segments. Computing the most likely

state sequence within each data segment can be accomplished using

the same Viterbi decoding algorithm to infer the maximum

likelihood state sequence of each data segment independently. It’s

important to note that this approach implicitly assumes that the first

and last state within each segment start and stop at the beginning

and end of those segments respectively. These assumptions can be

relaxed [36], however when the data segments are long relative to

the state durations, the boundary states can be excluded from

analysis without a significant loss of data.

Robustness to deviations from the observation

model. Large deviations of the data from the observation

model can lead to errors in inferring the state sequence, and thus

the results were monitored for such deviations. While the model is

not expected to be a perfect description of the data, large sudden

changes in the signal properties, such as could be generated by

movement artifacts [27], can create situations where the

observation likelihood is very small under both state-conditional

observation models. In such situations, where the observed data is

very far from both state-conditional means, the posterior

distribution on the hidden state will tend to be dominated by

the state with highest variance. In order to avoid large negative

deflections being attributed to the UP state or large positive

deflections being attributed to the DOWN state, such instances

were identified, and a more robust observation model was

employed. Specifically, in such rare instances we use state-

conditional Gaussian observation models where the state-

conditional variances were constrained to be equal. This

produces a more robust model which will always favor the

hidden state whose mean is closer to the observed data at times

when the data is very far from either state’s mean.

Alignment of the decoded state transition times. In some

cases, such as when the signal features are down-sampled or

filtered, it is desirable to consider alignment of the initially decoded

state transition times to a separate observation sequence, such as

the less filtered or decimated data. This procedure allows for initial

classification of the state sequence using an observation sequence

with a lower sampling frequency fs, while subsequent alignment of

the state transition times to a signal with higher fs prevents loss of

temporal precision. This can be particularly important for the

EDHMM where the complexity of the inference procedure and

the Viterbi decoding algorithm both scale with fs
2 [37,41] for a

fixed maximum state duration. Alignment of state transition times

to a new observation sequence can also be useful for removing the

‘blurring’ effects of filtering on the detected state transition times.

We perform this alignment using a dynamic programming

algorithm to find the maximum likelihood set of state transition

times given the new observation sequence and the model

parameters. Let Y0~fy01, . . . ,y0Tg denote the ‘new’ observation

sequence to which we want to align the state transition times. We

first estimate the parameters of the state-conditional Gaussian

observation distributions for Y9 using the posterior probabilities

ct(k)~P(zt~kjY,W) computed from the EDHMM fit to the

initial observation sequence Y. Next, let ti be the time of the

transition into the ith state whose latent state variable is given by

ki~ztiz1, and let di be a perturbation on the time of the transition

Hidden Markov Model Detection of UP-DOWN States
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into the ith state taking values in the range (dmin,dmax) (figure 1). If

we define Ci(di) to be the maximized log likelihood of

perturbations d1, . . . ,di up to the ith transition (ignoring terms

independent of the ds ) then we have the recursion relation:

Ci(di)~ max
di{1

Ci{1(di{1)zlog pki{1
tizdi{ti{1{di{1ð Þ

� 	
z

�

Xtizdi

t0~tizdmin

log p y0
t0 jzt0~ki{1

� �� �
z

Xtizdmax

t0~tizdiz1

log p y0
t0 jzt0~ki

� �� �1A
ð14Þ

By keeping track of the values of di{1 which maximize Ci for each

di we can then backtrack the entire maximum likelihood sequence

of transition perturbations, as with the Viterbi algorithm. We only

need to include the initialization condition:

C1(d1)~log pk0
t1zd1ð Þ

� 	
z

Xt1zd1

t0~t1zdmin

log p y0
t0 jzt0~k0

� �� �
z

Xt1zdmax

t0~t1zd1z1

log p y0
t0 jzt0~k1

� �� �
,

ð15Þ

where k0 = z1. Seamari et al. achieved a similar realignment of

state transition times by finding local maxima of the rate of change

of the signal features in time [27]. Such a procedure will generally

produce similar results to the maximum likelihood realignment

procedure presented here, however additional ‘thresholding’

parameters may be required [27], and depending on the signal

feature being used it may be more susceptible to noise.

EDHMM parameter initialization. It is well known that

proper initialization of the model parameters is important to insure

that the parameter estimates of the EM algorithm represent a

global maximum of the likelihood function [31]. Several steps were

thus taken to initialize the model parameters near their maximum

likelihood values. First, the time-varying state means were

initialized using a sliding-window density estimator. Specifically,

Gaussian kernel density estimates were computed in overlapping,

sliding windows of length L. The bandwidth of the density

estimator was selected using Terrel’s oversmoothing bandwidth

selector [45]. If the density estimate was bimodal, the two modes

were taken as the estimates of the UP and DOWN state means for

the given interval. In cases where the density estimate was

unimodal, the sign of the skewness of the density was used to

determine whether the single mode was representing the UP state

or the DOWN state (positive skewness indicating the mode

representing the DOWN state and vice versa). In such cases, the

mean of the other state was taken to be:

mk(t)~mk0 (t){

P
t0[T

mk0 (t
0){mk(t0)ð Þ

Tj j , ð16Þ

where mk0 (t) is the mean estimate for the state k9 representing the

mode of the density estimate at time t, and the set T includes all

Figure 1. Schematic depiction of the maximum likelihood alignment procedure. An imaginary ‘two-state’ signal is shown in red. The low-
pass filtered observation sequence (black trace) is used to produce the initially decoded Viterbi state sequence (green trace) with state transition
times t1, t2, and t3 indicated by the vertical black dashed lines. These transition times are aligned to the broadband observation sequence (red trace)
by maximizing the likelihood of a set of perturbations di on the initial state transition times given the broadband observation sequence. Maximum
likelihood values of the aligned transition times are then given by the set of times {ti+di*}, indicated by the red vertical dashed lines. For the signal
features used in the majority of the analysis, perturbations of up to 6150 ms were determined to be sufficient; however when exploring a large
range of filtering parameters we allowed perturbations of up to 6300 ms on the state transitions.
doi:10.1371/journal.pone.0021606.g001
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times for which the density estimate was bimodal. Recordings in

which the density estimate was never, or very rarely, bimodal (and

which still met power spectral criteria for the presence of UP-

DOWN states) were not considered here, however other

initialization procedures could be introduced in such cases. The

state covariance matrices Sk were then initialized by fitting

Gaussian mixture models to the variables yt{mk(t) for each state

k. Similar results were obtained by fitting sliding-window Gaussian

mixture models to the observation sequence, however this was

more computationally expensive.

After initializing the observation model parameters as described

above, the initial transition matrix A was set to:

A~
1{1=fs 1=fs

1=fs 1{1=fs

� �
: ð17Þ

This initializes the expected state durations for both the UP and

DOWN states to be 1 s under a geometric state duration

distribution. A standard HMM was then fit to the observation

sequence using this set of initial parameters. Next, the maximum

likelihood state sequence was estimated using the standard Viterbi

decoding algorithm, and the set of state durations dif gk for each

state was computed from the Viterbi state sequence.

Initial values for the parameters of the state duration

distributions were then computed from the Viterbi state durations

dif gk of the HMM. For the gamma distribution, maximum

likelihood estimates of the state-dependent shape parameters ak

were determined numerically using the Newton-Raphson method

[46]. The rate parameters bk are then given analytically by:

bML
k ~

aML
k

�ddk

, ð18Þ

where �ddk is of the sample mean duration of state k. For the inverse

Gaussian distribution, ML estimates of the model parameters are

given by:

mk
ML~�ddk, ð19Þ

lML
k ~

1

Nk

XNk

i~1

1

di
k

{
1

mML
k


 � !{1

, ð20Þ

where Nk is the number of occurrences of state k. The ML

estimates of the observation distribution parameters and the state

duration distribution parameters determined from the HMM were

used to initialize the parameters of the EDHMM.

EDHMM method summary. In summary, the entire

EDHMM UDS inference algorithm proceeds as follows

(figure 2). First, the segments of data meeting the criteria for the

presence of UDS were extracted. Then, signal features (the

observation sequence) were calculated and down-sampled to a

sampling frequency of 50 Hz within each segment. Initial

estimates of the time-varying state means were computed using

the sliding window kernel density estimator. Gaussian mixture

models fit to the difference of the observed data and the time-

varying mean estimates were then used to initialize the state-

conditional covariance matrices. Next, maximum likelihood

estimates of the parameters of a standard HMM were

determined, and were used to compute the Viterbi state

sequence of the HMM. The state durations of the Viterbi state

sequence were used to estimate the maximum likelihood

parameters of the state duration distribution models. These,

along with the ML estimates of the observation model parameters

and the matrix of initial state probability distributions for all data

segments from the HMM, were used to initialize the parameter

vector for the EDHMM. Using a maximum state duration of 30 s,

only a few iterations of the EM algorithm were typically sufficient

to achieve convergence of the log likelihood with a tolerance of 1e-

5 for the EDHMM. The most likely state sequence under the

EDHMM was then determined, and subsequent alignment of the

state transition times to the broadband signal sampled at 252 Hz

was performed by maximizing the likelihood of a sequence of

perturbations on the transition times. Code was written in Matlab

(The MathWorks, Natick, MA). Algorithms for training HMMs

were modified from the HMMBOX Matlab toolbox (available at

http://www.robots.ox.ac.uk/,irezek/software.html). Algorithms

for training EDHMMs were modified from source code

provided by Shun-Zheng Yu [38] (available at http://sist.sysu.

edu.cn/,syu/SourceCode.html). The full algorithm was found to

take on average 7 s per minute of raw data for UDS inference

from scalar signal features (run using Windows 7 64-bit with an

Intel Core i7 2.67 GHz processor and 6GB of RAM). When using

the simpler HMM, without explicit state-duration modeling, the

algorithm took about 1 s per minute of raw data on average. A

Matlab implementation of the algorithms described is available

upon request.

Signal separability. The Bhattacharyya distance measures

the similarity of two probability distributions p and q, and is given

by [47]:

DB(p,q)~{ln

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(x)q(x)

p
dx


 �
: ð21Þ

DB is frequently used as a criterion for feature selection in the

context of classification problems [48], as it measures the

separability of the component distributions. In the case where

the distributions p and q are multivariate normal distributions, the

Bhattacharyya distance is given by [48]:

DB(N1,N2)~
1

8
m1{m2ð ÞT S{1 m1{m2ð Þz 1

2
ln

Sj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1j j S2j j

p
 !

,ð22Þ

where mk and Sk are the mean and covariance matrix of the kth

Gaussian component, and S~
S1zS2

2
. For comparing Gaussian

distributions with time-varying means we use the time-averaged

Mahalonobis distance, giving:

DB(N1,N2)~
1

8

PNs

n~1

P
t

mn
1(t){mn

2(t)
� �T

S{1 mn
1(t){mn

2(t)
� �

PNs

n~1

P
t

1

z

1

2
ln

Sj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1j j S2j j

p
 !

:

ð23Þ

MP-LFP UDS correspondence. In order to compare UDS

classified from simultaneously recorded LFP and MP signals in the

same brain region (e.g. the frontal cortex), we assigned a best

correspondence between individual LFP and MP UP and DOWN

states. This allowed us to determine the probability of detecting

spurious UP or DOWN states in the LFP not present in the MP, as

well as the probability of missing UP or DOWN states in the LFP
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that were present in the MP. To assign such a correspondence,

LFP and MP UP transitions were first linked using a greedy search

algorithm. In each iteration of the algorithm the LFP-MP UP

transition pair that was least separated in time was linked. This

procedure was terminated once either all of the LFP or all of the

MP UP transitions had been linked. Next, any crossed links were

eliminated by removing the link between the UP transition pair

that was more separated in time. This served to preserve the same

Figure 2. Flow diagram of the EDHMM inference algorithm. The full procedure for UDS inference from continuous signal features is depicted
schematically. The initial input to the algorithm is the raw signal xt, while the final output of the algorithm is the Viterbi state sequence of the EDHMM
Z9, aligned to the broadband signal.
doi:10.1371/journal.pone.0021606.g002
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temporal ordering of the LFP UP transitions and their linked MP

counterparts. After assigning corresponding UP transitions, a

similar greedy search algorithm was used to link LFP and MP

DOWN transitions. As with UP transition assignments, crossed

linkage of DOWN transition pairs was not allowed. After this

procedure, pairs of LFP state transitions which were not matched

to any MP state transitions were labeled as ‘extra’ LFP states, while

MP state transitions which were not matched to any LFP state

transitions were taken as ‘missed’ states.

Results

Non-stationarities in the UDS
It has been well documented that the UDS seen under

anesthesia are sometimes interrupted by so-called desynchronized

epochs [42,43,44], which are periods lacking clear UDS. Thus, for

all our analysis we first located the epochs of data containing clear

UDS based on the spectral properties of the signal (figures 3A,B).

The spectrogram of the z-scored signal was computed in 15 s

overlapping windows using multi-taper methods (Chronux Matlab

toolbox [49]; http://chronux.org) with a time-bandwidth product

of 4, and 7 tapers [50]. The maximum power in the range 0.05–

2 Hz (‘UDS power’) was then computed for each signal, along

with the integral of the log power between 4 and 40 Hz (‘reference

power’). These statistics were used to test for the presence of clear

UDS in each segment. A single threshold value was set for the

‘UDS’ and ‘reference’ power based on visual inspection across

recording sessions (figures 3A,B). Any data segments which had

UDS power below this threshold and reference power above the

threshold were excluded from analysis as desynchronized epochs.

The reference power criterion insured that any segments of data

which had low power in the UDS band because of very long

DOWN states were not excluded from UDS analysis, since these

segments would show a corresponding reduction in high-

frequency power. All subsequent analysis was performed only for

those segments of data containing clear UDS (see Methods). In all

cases we inverted the LFP signal so that the UP states

corresponded to positive deflections in order to facilitate

comparison with membrane potential UDS.

Initially, we applied a Gaussian-observation HMM with two

hidden states to classify UDS using the amplitude of the low-

frequency (0.05–2 Hz) LFP [12,24]. Thus, the distribution of this

signal feature (‘observation’) within each hidden state (the UP and

DOWN states) was modeled as Gaussian (see Methods). When

classifying UDS over long duration recordings (,20 minutes) we

found that the amplitudes of the UP and DOWN states could vary

substantially over the course of the recording [27,28] (figure 3C).

This could arise from actual changes in the amplitudes of the

UDS, as well as filtering artifacts of the AC-coupled amplifiers. To

account for variations in the UP and DOWN state amplitudes, we

introduced time-varying state-conditional means into the model by

using a sliding-window estimate of the state-conditional mean

amplitudes (see Methods). Since each UDS cycle was about 2 s

long, a window length of 50 s was found to provide a good tradeoff

between temporal resolution and robustness. Thus, the state-

conditional mean amplitudes at a given time were computed using

the 50 s of data surrounding the time point.

Choosing a state duration distribution model
The distributions of UP and DOWN state durations obtained

from the HMM were very far from the geometric distribution

implicitly assumed by the HMM (figure 4). Thus, in order to

determine an appropriate choice of duration distribution model,

we computed the maximized log-likelihood per sample Ln for

Figure 3. Procedure for selecting data epochs with clear UDS.
A) The multi-taper spectrogram of a cortical LFP. White vertical lines
indicate a period of desynchronized activity with decreased power in
the low-frequency (UDS) range. B) The maximum power in the UDS
range (0.05–2 Hz; blue trace) and the high-frequency power (4–40 Hz;
red trace) are extracted from the spectrogram. Threshold values
(dashed lines) for each of these statistics are used to locate data
segments that have insufficient UDS power while having substantial
high-frequency power. These desynchronized epochs (highlighted by
the vertical lines) are excluded from all analysis. C) The sliding-window
density estimate of the low-frequency (0.05–2 Hz) LFP amplitude from
the same recording is plotted along with the time-varying UP (violet)
and DOWN (green) state-conditional means estimated from the HMM.
The period of desynchronized activity (vertical white lines) shows a loss
of bimodality. D) An example LFP trace (blue) taken from the region of
the recording indicated by the black lines. The violet and green traces
again represent the time-varying UP and DOWN state-conditional
means. The red trace shows the inferred UDS state sequence.
doi:10.1371/journal.pone.0021606.g003
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several exponential family distributions including the gamma

distribution and inverse Gaussian distribution, as well as the

geometric distribution [21]. Both the inverse Gaussian (DOWN:

p = 6.0e-5; UP: p = 6.0e-5; two-sided Wilcoxon signed rank test,

n = 21 LFPs; figure 4D) and gamma (DOWN: p = 6.0e-5; UP:

p = 6.0e-5; figure 4E) distributions produced far better fits than the

geometric distribution for both the DOWN and UP state duration

distributions. Furthermore, the inverse Gaussian distribution

produced significantly better fits than the gamma distribution for

both the DOWN (p = 6.0e-5) and the UP (p = 0.027) state

durations (figure 4F). Similar results were obtained when using

model selection criteria with a penalty for model complexity such

as the Akieke information criterion (AIC) or the Bayesian

information criterion (BIC). Thus, to improve upon the implicit

Figure 4. Explicit models for UP and DOWN state duration distributions. A) The distribution of DOWN state durations inferred by the HMM
algorithm for an example LFP recording. The green trace shows the maximum-likelihood geometric distribution fit. The red and orange traces are the
maximum likelihood fits for the gamma and inverse Gaussian distributions respectively, showing much better fits to the empirical distribution than
the geometric distribution. B) Same as A for the UP state durations. C) DOWN (blue) and UP (red) state duration distributions averaged across all
(n = 21) LFP recordings. Error bars indicate mean 6 standard error of the mean. D) The maximized log-likelihood per sample Ln for the geometric
distribution is plotted against Ln for the inverse Gaussian distribution across all LFP recordings for the DOWN (blue dots) and UP (red dots) state
duration distributions. The inverse Gaussian distribution was a much better model for the data than the geometric distribution for both the DOWN
(inverse Gaussian: median: 24.97, inter-quartile range: 25.14–4.82; geometric: 25.22, 25.39–5.16; p = 6.0e-5, two-sided Wilcoxon signed rank test),
and UP (inverse Gaussian: 24.33, 24.47–4.27; geometric: 25.01, 25.11–4.95; p = 6.0e-5) states. E) Same as D for the gamma distribution. The gamma
distribution also produced higher normalized log-likelihoods than the geometric distribution for both DOWN (25.10, 25.21–4.87; p = 6.0e-5) and UP
(24.51, 24.37–4.25; p = 6.0e-5) state duration distributions. F) The inverse Gaussian distribution produced significantly better fits than the gamma
distribution for the DOWN (p = 6.0e-5), as well as the UP (p = 0.027) states.
doi:10.1371/journal.pone.0021606.g004
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use of the geometric state duration model, we use an EDHMM

with an inverse Gaussian distribution model for both the UP and

DOWN state durations.

LFP feature selection
Thus far we have only considered inferring UDS from the

amplitude of the low-frequency component of the LFP, but

previous work [25] has shown that the signal power in the 20–

80 Hz range can be more effective for inferring LFP UDS. Thus,

we sought to compare results obtained using the low-frequency

amplitude (LF-amplitude) and high-frequency power (HF-power).

Furthermore, classification results depend on the preprocessing

steps used to compute the LF-amplitude and HF-power of the

LFP. Thus, if we believe (whether because of evidence accumu-

lated from intracellular recordings, or because we have some

knowledge about the underlying mechanisms governing state

transitions) that rapid (e.g. ,200 ms) fluctuations in the signal

features are unlikely to represent transitions between states, we can

apply this prior information by appropriately bandlimiting the

signal features.

To obtain the ‘instantaneous’ high-frequency power we

convolved the squared amplitude of the filtered signal with a

Gaussian smoothing kernel. This smoothed power was then log-

transformed in order to normalize the state-conditional distribu-

tions. We varied the high-cutoff frequency (HCF) and Gaussian

smoothing sigma of the LF-amplitude and HF-power respectively

to control the bandwidth of the signal features. Since such low-pass

filtering of the signal features will also have a ‘blurring’ effect on

the precise state transition times, we aligned the initially detected

state transition times to a broadband signal by optimizing a

sequence of perturbations on the state transition times (figure 1),

analogous to the procedure used by Seamari et al [27]. This also

allowed for more direct comparisons of the distributions of

detected state durations when using various filtering/smoothing

parameters.

First, we compare the state duration distributions obtained from

an HMM fit to these different signal features. Figures 5A,C show

that as the HCF of the LF-amplitude was increased from 0.5 to

10 Hz, the state duration distributions started to develop a

secondary peak at short (,200 ms) durations. These short-

duration states represent a deviation from the unimodal state

duration distributions that cannot be well modeled by simple two-

parameter distributions, and likely correspond to the spurious

detection of state transitions. Furthermore, classification based on

the HF-power produced far more short-lived states than when

using the LF-amplitude, even when the smoothing sigma was as

large as 100 ms (figures 5B,D). These results suggest that the

frequency content of the signal features used for classification

should be restricted to prevent excessive detection of short-lived

states; however, when the signal features were excessively

bandlimited the range of detectable state durations became overly

restricted (figures 5E,F).

We thus chose HCF = 2 Hz and sigma = 150 ms to provide a

good compromise between minimizing the presence of spuriously

detected states while maximizing the range of ‘allowed’ state

durations. Other authors [20,21,23,25,26,27] have used threshold

minimum state durations, typically in the range 100–200 ms, to

avoid detecting such spurious state transitions; however such

thresholds can produce ambiguous state sequences (if multiple

states with subthreshold duration occur in sequence). When

applied in the EDHMM framework, such thresholding can

produce a large number of states whose duration is exactly equal

to the minimum allowed duration. Our preprocessing of the signal

features imparts a ‘prior’ bias against overly short state durations

without imposing a hard threshold, thus avoiding these problems.

It is worth noting at this point that the assumption of conditional

independence of the observation sequence used in the HMM (and

EDHMM) is clearly not strictly valid, particularly for the

bandlimited signal features. The auto-regressive HMM

(ARHMM) relaxes this assumption by modeling the signal features

with state-dependent autoregressive models [51]. We found that

despite this assumption, the HMM produced better results than an

ARHMM for UDS classification (results not shown), likely because

the UP and DOWN states are better distinguished by their state-

conditional distributions than by their state-conditional autocor-

relation functions.

Next, we computed the separability of the LFP LF-amplitude

and HF-power, where separability was measured by the

Bhattacharyya distance between the state-conditional Gaussian

observation distributions computed for the EDHMM (see

Methods). This measure is frequently used for feature selection

and quantifies how separable the component distributions are for a

given signal feature. We used the time-varying state-conditional

means when estimating the separability so that variations in the

state means did not decrease the apparent separability.

We found that the LF-amplitude provided significantly more

separability than the HF-power (LF: median: 1.95, inter-quartile

range: 1.83–2.07; HF: 1.30, 1.10–1.58; p = 6.0e-5), suggesting that

for our data the LFP LF-amplitude was a more effective signal

feature than the HF-power for inferring UDS. Furthermore, the

HF-power provided significantly more variable separability across

LFP recordings than the LF-amplitude (variances: LF: 0.016, HF:

0.11; p = 5.1e-5, two-tailed F-test for equal variances). We also

computed the separability of the combined LF-amplitude and HF-

power signals (LF+HF: 1.79, 1.72–1.90), and found that it was

significantly less than in the LF-amplitude alone (p = 6.4e-3). Thus,

using both LF-amplitude and HF-power simultaneously did not

increase the separability of the state-conditional distributions.

Certainly, more ‘elaborate’ signal features, such as time-

frequency representations (e.g. coefficients of the continuous

wavelet transform) could also be used, but such approaches are

not expected to provide substantial advantages since differences in

the state-conditional power spectra are largely redundant across

frequencies [25]. However, the EDHMM framework can be

applied to any signal features which can be well modeled with

state-conditional Gaussian (or mixture of Gaussians) distributions.

Thus, for a given data set, various signal features should be

evaluated to determine whether there is an appropriate two-state

mixture distribution, and whether there is sufficient separability

between the state-conditional distributions to perform robust

inference of UDS.

Comparison to threshold-crossing approaches
The results of the EDHMM UDS classification method are

compared with those of a ‘fixed threshold-crossing’ (TC) approach,

using the LF-amplitude (0.05–2 Hz). The fixed threshold was

selected for each LFP recording using either a ‘static mixture

model’ (SMM) method, or a ‘nonparametric’ (Np) method. For the

SMM, we selected a threshold by fitting a two-component

Gaussian mixture model to the signal feature. The threshold was

then chosen to be the value of the signal in the range m1,m2ð Þ
where the two mixture components had equal probability. For the

‘nonparametric’ approach, the threshold was chosen as the

location of the local minimum of a Gaussian kernel density

estimate of the signal in the range m1,m2ð Þ with the lowest value,

similar to the method used by Mukovski et al [25]. In this case, the

state means were again taken from the two-component mixture

Hidden Markov Model Detection of UP-DOWN States

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e21606



model fit. Given the threshold value, the threshold-crossing times

were then used to identify UP and DOWN states.

While for the most part UDS can be inferred accurately using

the TC methods, non-stationarities in the data, and ambiguous,

intermediate amplitude signal features can pose substantial

problems. Figure 6 illustrates some potential problems with the

TC approach for an example LFP signal. In figure 6C, the

threshold value selected by the Np method appears to be too high

such that fluctuations within the UP state repeatedly trigger

DOWN state transitions. The threshold value selected using the

SMM method was substantially lower and could largely avoid

these errors; however, the SMM threshold was found to be too low

at other times within the same recording. As shown in figure 6D,

at around 800 s there was a period with increased probability of

Figure 5. Dependence of UDS classification on signal preprocessing. A) The average UP state duration distribution for HMM classification
based on the filtered LFP amplitude is plotted for several different values of the high-cutoff frequency (HCF). As the HCF increases from 0.5 Hz to
10 Hz, the UP state duration distribution starts to develop a secondary peak at short durations (,200 ms). B) Same as A for inference based on high-
frequency LFP power using several different values of the Gaussian smoothing sigma. In this case the short duration peak is more pronounced than
for classification of the low-frequency LFP amplitude, and it appears for smoothing windows as large as sigma = 100 ms. C–D) Same as A–B for the
DOWN state duration distributions, showing similar effects of filtering and smoothing on the detected state durations. E) The minimum DOWN (blue)
and UP (red) state durations, averaged across recordings (n = 21), is plotted as a function of the HCF. For HCFs as low as about 2 Hz, state durations as
short as 200 ms are still detected. F) Same as E for the high-frequency power based classification. As the smoothing sigma is increased above about
sigma = 150 ms the minimum state duration exceeds 200 ms.
doi:10.1371/journal.pone.0021606.g005
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the DOWN state which was also accompanied by an increased

mean amplitude of the DOWN state, resulting from high-pass

filtering of the long DOWN states by the AC-coupled amplifiers.

The threshold value selected by the SMM method was found to be

substantially too low during this period (figure 6D), such that a

series of erroneous UP states were detected while the signal was

apparently remaining in the DOWN state. Thus, the problem with

the TC methods is often not one of selecting the ‘appropriate’

fixed threshold value, but rather that no single threshold value

exists which can provide robust separation of the UP and DOWN

states across the entire recording. The lack of an explicit or implicit

state duration model also results in the increased detection of

spurious short-lived UP and DOWN states when using TC

methods. States lasting for less than 200 ms were much more

prevalent when using TC methods (SMM: 1.9%, 1.6–2.8%;

p = 6.0e-5; Np: 2.0%, 1.3–2.8%; p = 6.9e-5) compared to the

EDHMM method (0.7%, 0.2–1.0%). Such short lived states were

also more prevalent when using the simpler HMM method (0.9%,

0.4–1.4%; p = 5.4e-4), illustrating the importance of incorporating

explicit state duration models.

In order to demonstrate the flexibility of the proposed

algorithm, we also applied the EDHMM method to classify

UDS from scalp EEG recordings. As with the LFP recordings, we

found that the EDHMM method produced reliable classification

of EEG UDS, even when the state-conditional distributions were

non-stationary and/or not well separated. Figure 7 shows a

comparison of UDS classified using the EDHMM method with

classification using TC methods for an example EEG recording.

Even though the EEG UDS properties changed substantially over

the course of the recording (figure 7A), and the overall LF-

amplitude distribution was not clearly bimodal (figure 7B), the

EDHMM method produces a robust and consistent classification

of UDS which was at times much better than the TC method

using either threshold selection method (figures 7C–D). Hence,

while a TC approach gave results which were mostly in agreement

with those of the EDHMM method, the advantages of using the

Figure 6. Comparison of EDHMM classification and threshold-crossing classification. A) The sliding-window density estimate of the LF-
amplitude is shown for an example LFP recording. Log probability density is depicted as the color map, with the violet and green traces showing the
time-varying state-conditional means. The regions indicated by the vertical black lines show the locations within the data where the example traces
in panels C and D were taken. B) The overall amplitude distribution, along with the UP and DOWN state component distributions fit using a (static)
Gaussian mixture model. The two values of the fixed threshold used for the ‘‘threshold-crossing’’ algorithm, chosen using the non-parametric (Np)
and static mixture model (SMM) approaches, are shown by the finely and coarsely dashed black horizontal lines respectively. C) An example LFP trace
(blue) from the region indicated by the black lines. The Viterbi state sequence from the EDHMM is shown in brown. For comparison, the state
sequence classified using the nonparametric (Np) threshold-crossing method is shown in light blue. In this example, the threshold value appears to
be too high, and many of the UP states are erroneously split by falsely detected DOWN states. D) Another example LFP trace from later in the
recording. In this case, the state sequence classified using the SMM threshold-crossing method is shown in light blue for comparison. The SMM
threshold appears to be too low in this example, producing a number of falsely detected UP states while the LFP clearly remains in the DOWN state.
doi:10.1371/journal.pone.0021606.g006
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EDHMM inference procedure were particularly important when

substantial non-stationarities were present, or when the UP and

DOWN state-conditional distributions were not well separated.

Evaluating classification accuracy
In order to quantitatively compare the results produced using

the various methods and signal features described above, we

compared the similarity between state sequences classified from

the LFP and those classified from the simultaneously recorded MP

of nearby cortical neurons, using two different similarity metrics

(figure 8). The state of single cortical neurons is classified relatively

unambiguously from the signal amplitude [25,26], and is a reliable

indicator of the cortical state since cortical neurons make nearly

synchronous state transitions [52]. MP state sequences were

computed from the LF-amplitude (0.05–2 Hz) after removing

spikes from the MP signal. When considering different algorithms

(e.g. threshold-crossing vs. EDHMM), identical methods were

used to infer UDS in the MP and LFP to insure fair comparisons

between methods. We first computed the instantaneous probabil-

ity of error in the LFP state sequence relative to the MP state

sequence, determining both the probability of detecting false UP

and false DOWN states in the LFP. We take the sum of the false

UP and false DOWN probabilities as a measure of the

instantaneous error probability eI. As ei is sensitive to the precise

relative timing of UDS, but is not necessarily sensitive to additions

or deletions of states, we also compute a measure of the ‘state

error’ probability es. es is defined as the sum of the probabilities of

state additions and state deletions in the LFP UDS relative to the

MP UDS, and is computed after determining the best correspon-

dence between MP and LFP state sequences (see Methods).

While the two TC methods sometimes had lower probability of

finding either false UP or false DOWN states compared to the

EDHMM method, they did not provide adequate protection

against both types of errors (figure 8B). Furthermore, the TC

methods were much more likely to detect additional LFP states

than the EDHMM method, and were also more likely to miss MP

Figure 7. EDHMM UDS classification from a scalp EEG recording. A) The sliding-window density estimate of the LF-amplitude is shown for an
example EEG recording. Log probability density is depicted as the color map, with the violet and green traces showing the time-varying state-
conditional means. The regions indicated by the vertical black lines show the locations within the data where the example traces in panels C and D
were taken, and the white vertical lines indicate desynchronized epochs. B) The overall amplitude distribution, along with the UP and DOWN state
component distributions, fit using a (static) Gaussian mixture model. The two values of the fixed threshold used for the ‘‘threshold-crossing’’
algorithm, chosen using the Np and SMM approaches, are shown by the finely and coarsely dashed black horizontal lines respectively. C) An example
EEG trace (blue) from the region indicated by the black lines. The Viterbi state sequence from the EDHMM is shown in brown. For comparison, the
state sequence classified using the Np threshold-crossing method is shown in light blue. D) Another example EEG trace comparing the EDHMM UDS
classification with the SMM threshold-crossing method.
doi:10.1371/journal.pone.0021606.g007
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states (figure 8C). To quantitatively compare the performance of

different algorithms we computed the percent change in ei and es

relative to the EDHMM method (figures 8D,E). Both the SMM-

TC and Np-TC methods had significantly larger ei relative to the

EDHMM method (SMM-TC: +19%, +5.7–37%; p = 0.020, two-

sided Wilcoxon signed rank test, n = 9; Np-TC: +18%, 9.8–39%;

p = 0.012; figure 8D). The increases in es for the TC algorithms

relative to the EDHMM were even larger (SMM-TC: +75%, +51–

85%; p = 3.9e-3; Np-TC: 72%, 30–96%; p = 0.011; figure 8E).

Thus, the EDHMM algorithm produced significantly improved

agreement between state sequences classified in the MP and LFP,

both in terms of the instantaneous error ei and the state error es.

We also sought to evaluate the contribution of two key

components of our method to the decoding accuracy: the explicit

state duration models, and the variable state-conditional means.

Thus, we compared the values of ei and es obtained using an HMM

(no explicit state duration models), and a ‘fixed-mean EDHMM’’

(where the state-conditional means were constrained to be

constant), with those obtained using the full EDHMM. While

using the simpler HMM did not result in substantially higher ei

(+0.37%, 20.63–0.62%; p = 0.91), it did significant increase es

(+14%, 9.2–18%; p = 7.8e-3). Somewhat surprisingly, we found

that constraining the state means to be constant did not produced

a significant increase in either ei (+0.70%, 24.3–3.5%; p = 0.82) or

es (+4.4%, 22.9–21%; p = 0.20) compared to the full EDHMM.

Consistent with the signal feature separability analysis, classifying

LFP UDS from the HF-power rather than LF-amplitude produced

significant increases in both ei (+55%, 38–174%; p = 3.9e-3) and es

(+114%, 49–197%; p = 3.9e-3).

Discussion

We conclude by summarizing several of the key improvements

provided by our UDS inference procedure. Firstly, the framework

presented here can be used to infer UDS from different types of

continuous signals (such as MPs, LFPs, and EEGs), so that one

does not need to resort to different procedures when using

different types of signals. Our method also allows for UDS

inference from combinations of simultaneously recorded signals, so

that multi-electrode recordings could be used to analyze global as

well as region-specific UDS. Different signal features, or

combinations of features (e.g. HF-power and LF-amplitude) can

be used as desired in each case. Importantly, regardless of the

exact experimental conditions or type of signal(s) used, the signal

feature separability provides a natural criterion for selecting a set

of signals and/or signal features, without the need to perform

calibration experiments of any kind [26]. When combining

information from multiple signals and/or signal features, an

important strength of a probabilistic generative model such as the

EDHMM is that it will automatically account for correlations

between the signal components, as well as differences in the

information each component provides, when inferring the state

sequence. Indeed, we found that the separability of the LF-

amplitude, and particularly the HF-power, was highly variable

across recordings, suggesting a strong advantage for adaptive

methods when considering multiple signal features.

The flexibility of the HMM framework presented here avoids

the need for subjectively chosen rules or model parameters which

are unlikely to be optimal for a broad range of experimental

conditions. Our algorithm also effectively handles the non-

stationarities present in large datasets by allowing the state-

conditional means of the signal features to vary in time, as well as

by allowing inference of model parameters across discontinuous

segments of data interrupted by periods of desynchronized activity.

Another important feature of the algorithm is that it naturally

provides a direct measure of uncertainty for the inference results in

terms of the posterior distribution of the latent state variables. This

could allow for identification of state ‘transition regions’, as well as

the selection of particular segments of data for analysis where the

estimated uncertainty about the hidden state sequence is

sufficiently low (e.g. clear individual UP and DOWN states, or

data epochs with particularly well-defined UP and DOWN states).

We use simultaneous LFP and MP recordings to confirm these

benefits, showing that our method produces significant improve-

ments in two different measures of the agreement between LFP

and MP UDS. These results suggest that the EDHMM method

outperforms threshold-crossing type methods regardless of the

procedure used to select the fixed threshold. It is worth noting that

the strength of this ‘‘MP-LFP comparison’’ metric in quantifying

the accuracy of a particular algorithm for inferring LFP UDS is

limited by several factors, including the instantaneous variability of

UDS across neurons, as well as any ambiguity in inferring UDS

from the MP. In particular, previous work [25] has shown that the

agreement of simultaneously recorded MP and LFP UDS can be

greater than the agreement of the UDS of two simultaneously

recorded MP signals. Such limitations could explain the variable

nature of the improvements in MP-LFP agreement seen with the

EDHMM method, and its apparent lack of improvement over the

‘fixed-mean’ EDHMM. Thus, in addition to this quantitative

measure of the accuracy of LFP UDS inference, we also emphasize

other qualitative strengths of the methods presented here. Finally,

we note that our EDHMM method could also be extended to

include both continuous and point-process observations to allow

UDS inference based on extracellular spikes as well as LFP signals,

as done in [26] using a threshold-crossing type algorithm, and as

suggested by [21] within the EDHMM framework.
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