
High DNA Methylation Pattern Intratumoral Diversity
Implies Weak Selection in Many Human Colorectal
Cancers
Kimberly D. Siegmund1, Paul Marjoram1, Simon Tavaré2,3, Darryl Shibata4*
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Abstract

Background: It is possible to infer the past of populations by comparing genomes between individuals. In general, older
populations have more genomic diversity than younger populations. The force of selection can also be inferred from
population diversity. If selection is strong and frequently eliminates less fit variants, diversity will be limited because new,
initially homogeneous populations constantly emerge.

Methodology and Results: Here we translate a population genetics approach to human somatic cancer cell populations by
measuring genomic diversity within and between small colorectal cancer (CRC) glands. Control tissue culture and xenograft
experiments demonstrate that the population diversity of certain passenger DNA methylation patterns is reduced after
cloning but subsequently increases with time. When measured in CRC gland populations, passenger methylation diversity
from different parts of nine CRCs was relatively high and uniform, consistent with older, stable lineages rather than mixtures
of younger homogeneous populations arising from frequent cycles of selection. The diversity of six metastases was also
high, suggesting dissemination early after transformation. Diversity was lower in DNA mismatch repair deficient CRC glands,
possibly suggesting more selection and the elimination of less fit variants when mutation rates are elevated.

Conclusion/Significance: The many hitchhiking passenger variants observed in primary and metastatic CRC cell populations
are consistent with relatively old populations, suggesting that clonal evolution leading to selective sweeps may be rare after
transformation. Selection in human cancers appears to be a weaker than presumed force after transformation, consistent
with the observed rarity of driver mutations in cancer genomes. Phenotypic plasticity rather than the stepwise acquisition of
new driver mutations may better account for the many different phenotypes within human tumors.
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Introduction

A barrier to a better understanding of human cancer is the

inability to directly observe how cancers evolve. Progression is

clinically important, with localized cancers more easily treated

than deeply invasive or metastatic cancers. A logical presumption

is that progression occurs stepwise after transformation (Fig 1) with

the sequential selection of new driver mutations and more

malignant phenotypes by clonal evolution [1] as tumor cells

encounter and then colonize new microenvironments. However, a

recent cancer genome sequencing study [2] illustrated that

metastases have relatively few additional mutations compared to

their primary colorectal cancers (CRCs). Approximately 97% of

the mutations present in the metastases were also detected in their

primary tumors, and the few additional mutations did not have

obvious metastatic roles.

Alternatively, the ability to invade or metastasize may already be

present at the time of transformation [3], allowing for progression

without further clonal evolution (Fig 1). Phenotypic differences

between tumor cells would arise secondary to phenotypic plasticity

[4,5] rather than the acquisition of new driver mutations. A key

difference between these models is the efficiency of selection to act

upon variant cells that inevitably accumulate with time. Selection

depends on variation, but selection may not easily discriminate

between cancer cells because most mutations appear to be neutral

passenger mutations [6,7]. Although positive or negative selection is

difficult to quantify, there is a long history of using the variation at

neutral or hitchhiking passenger loci within a population to measure

the force of selection, which opposes drift by eliminating less fit

variants [8]. Because neutral passenger changes are more common

than driver changes [6,7], many passenger changes may accumulate

within tumor populations between selective sweeps.

Tumor heterogeneity measurements are complicated because

many mechanisms can contribute to diversity [4]. Measuring the

diversity in a large tumor population is problematic because if

selection is strong, many different variants may be selected, each
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optimal for survival within the many different microenvironments

of a tumor. To minimize environmental heterogeneity and

because the most immediate battle for survival occurs between

adjacent cells, a sensitive test for selection is the amount of

variation among small groups of neighboring cells within a single

microenvironment, especially since fixation is faster in smaller

populations [9]. Although progeny of a single selected cell may

not sweep widely, at a minimum selection should be able to

homogenize its immediate neighborhood and microenvironment.

Extensive heterogeneity between adjacent cancer cells would

suggest selection does not frequently optimize fitness even within

small populations.

Colorectal adenocarcinomas have neoplastic glands that

partition tumor cells into distinct small neighborhoods. The extent

of hitchhiking diversity within and between glands depends on the

timing of the last clonal expansion or selective sweep (Fig 2). A

selected variant cell and its progeny would initially dominate its

gland and could subsequently form additional neighboring glands,

creating a focal population with relatively uniform diversity. At

its extreme, an entire tumor may be created by a single clonal

expansion. Here we measure cancer genome passenger DNA

methylation pattern variation within small (2,000 to 10,000 cell)

gland fragments from different parts of the same human CRCs

and infer clonal evolutionary bottlenecks occur infrequently after

transformation.

Results

Detecting Selection and Clonal Evolution in an
Experimental System

Because somatic mutations are relatively rare in human CRCs

(,1 per 100,000 bases [6,10]), we have employed the 59 to 39

order of passenger DNA methylation at short CpG rich regions as

epigenetic somatic cell molecular clocks [11]. The 59 to 39 order of

Figure 1. Two progression models. Stepwise selection and clonal
evolution creates populations of different diversities and phenotypes
because they are created at different times from different progenitors
after transformation. By contrast, the diversity of a single clonal expansion
is relatively uniform.
doi:10.1371/journal.pone.0021657.g001

Figure 2. Hitchhiking neutral or passenger methylation. A male cancer cell contains a single methylation pattern on a CpG rich region of the
X-chromosome. The passenger methylation pattern will drift and hitchhike with the fate of its cell. After clonal expansion, the cancer cell population
will be initially homogeneous but variant cells (different colors) and passenger methylation patterns will arise from drift (replication errors). A diverse
population has three fates. If no selection occurs, a population will continue to drift and become more diverse. Strong positive selection of a variant
(blue) cell results in a sweep or clonal evolution, with homogenization of the population and hitchhiking passenger methylation. Weak negative or
background selection leads to loss of a variant cell (blue) and a reduction in the diversity of the hitchhiking methylation patterns. Therefore, the
strength of selection can be inferred by measuring the PWDs of hitchhiking passenger methylation patterns within a population.
doi:10.1371/journal.pone.0021657.g002
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methylation is used (like the 59 to 39 order of base sequences) to

measure genomic variation, which should hitchhike with the fates

of their cells (Fig 2). Passenger methylation patterns should be

initially homogeneous and subsequently become increasingly

polymorphic after a clonal evolution bottleneck. In the first

experiments, we verify that these passenger methylation patterns

or tags can record a simple clonal evolution cycle: polyclonal

population R monoclonal population R polyclonal population.

This bottleneck (Fig 2) can be simulated by cloning and then

expanding single cells in tissue culture and subsequently as

subcutaneous xenografts in nude mice (Fig 3A). X-chromosome

tags (BGN and LOC, tag sequences and sample data are provided

in Fig S1) and a male diploid CRC cell line (Lovo) were examined

(a single epiallele per cell). The LOC tag appears to have a higher

replication error rate than the BGN tag [12], and therefore should

become polymorphic faster. Epialleles were sampled by bisulfite

sequencing cloned PCR products of DNA extracted from the cul-

tures or small xenograft fragments (5 to 6 fragments per xenograft,

Figure 3. Experimental clonal evolution. A. Schematic of the Lovo single cell cloning, first in culture and then as xenografts, simulating a clonal
evolution bottleneck. B. Hitchhiking diversity decreases and then increases in culture and the xenografts after single cell cloning. (X’s represent
independent single cell clones in culture, and O’s represent PWD averages among tags isolated from 5 to 6 small xenograft fragments) The LOC tag
has a higher error rate compared to the BGN tag [12], and more quickly restores the diversity seen in polyclonal populations. C. Comparisons
between fragments demonstrate intergland PWDs are smaller between clonally related tumors and larger between unrelated tumors, indicating the
ability of the LOC or BGN tags to identify and distinguish between new and older clonal expansions (circles are averages of the fragment comparisons
between the different xenografts, and bars are overall averages) D. Xenograft intragland PWDs are typically nearly as large as their intergland PWDs,
indicating that the small tumor fragments are almost as diverse as their tumors.
doi:10.1371/journal.pone.0021657.g003
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,2,000 to 10,000 cells per fragment). Diversity is measured by a

pairwise distance (PWD).

The polyclonal culture and small fragments of its xenografts

were diverse populations, with many different tag patterns and

relatively high PWDs (Fig 3). After single cell cloning, tag diversity

decreased but subsequently increased. This reduction and

subsequent increase in tag diversity after single cell cloning was

not strictly clock-like because some younger clones were more

diverse than some older clones (Fig 3B). However, tag pattern

changes generally recorded the experimental clonal evolution

scenario of a single cell bottleneck followed by clonal expansion

and an increase in PWDs.

Detecting Stepwise Progression In An Experimental
System

The above studies measured diversity within single tumor gland

fragments. Another method to measure diversity is to compare

epialleles from different parts of the same tumor. Here PWDs

between cells are compared with physical distances between cells

to ask whether adjacent cells are more related than distant cells.

With a single rapid clonal expansion (a star phylogeny), distant

cells are almost related as adjacent cells because its different parts

are essentially created at the same time. Therefore, PWDs will be

independent of physical distance or location. By contrast, if tumors

are created by stepwise selection and clonal evolution, PWDs

depend on the physical location of the cells. Older regions should

be more diverse than younger regions, and PWDs should increase

when comparisons are made between younger and older tumor

regions (Fig 1).

The xenografts simulate these different progression scenarios. A

single recent clonal expansion is represented by xenografts

initiated from the same single cell progenitor. Stepwise clonal

evolution is represented by comparisons between the polyclonal

and clonal xenografts. Intergland PWDs were lower in the clonal

xenografts, greater in the polyclonal xenografts, and greater

between the clonal xenografts and their parental polyclonal

xenografts or the other independent clonal xenograft (Fig 3C).

These experiments demonstrate that passenger methylation tags

can distinguish a single clonal expansion from tumors composed of

different aged populations.

Lack of Bottlenecks During Xenograft Formation
The cloning experiments are potentially complicated by unseen

bottlenecks caused by natural selection (Fig 2). The ‘‘polyclonal’’

nature of the Lovo cell line in tissue culture before single cell

cloning may not be unexpected because this is a long established

cell line [13], and presumably progeny are similarly fit. However,

bottlenecks may occur during xenograft formation because only

some cells within a tissue culture adapted cell line may thrive in a

nude mouse microenvironment. Indeed, xenograft growth may

not be visible when less than a million cells are inoculated, a

phenomenon often employed to measure frequencies of ‘‘cancer

initiating cells’’, which may represent cancer stem cells (CSCs)

[14]. Bottlenecks may also occur if different microenvironments

encountered during growth efficiently select only the fittest

variants, to yield localized clonal evolution.

If significant bottlenecks occur during tumorigenesis, xenograft

diversities will be similarly limited whether the initial inoculate was

clonal or polyclonal. BGN tag diversity was significant less when

xenografts were initiated with the single cell clones compared with

a polyclonal inoculate (average intragland PWDs of 1.2 versus 2.1,

p = 0.007), indicating that selective bottlenecks do not occur with

the Lovo cell line during xenograft tumorigenesis (Fig 3B). LOC

tag diversity was similar between clonal and polyclonal xenograft

fragments (average intragland PWDs of 2.5 versus 2.4, p = 0.86),

but the LOC tag appears to have a higher replication error rate

than BGN [12]. Therefore the similarities in LOC tag diversity

appear to result from the more rapid LOC tag diversification with

the single cell clones rather than tumorigenesis bottlenecks.

Another way to detect localized selection is to compare the

diversity within glands with the diversity between glands. In the

absence of selection, older more diverse tumors should have older

more diverse glands. If selection occurs within glands, diversity is

reduced as variant cells are eliminated (Fig 2), and intragland

PWDs should be much smaller than intergland PWDs. Consistent

with a lack of selection, intragland PWDs were nearly as large as

intergland PWDs for the clonal and polyclonal xenografts (Fig 3D).

Deeper Sampling Confirms High Passenger Tag Diversity
In the above studies, only eight tags were sampled per specimen.

To confirm the diversity in the small fragments, 24 tags were

sampled (Fig 4A). Additional new tag patterns were detected with

further sampling, although PWDs were relatively stable after

sampling only eight tags. Average diversity was higher in the

polyclonal versus the clonal xenografts, with averages of 10.8 BGN

and 17.2 LOC unique patterns per 24 sampled tags in the

polyclonal xenografts. Substantial tag variation is present in small

2,000 to 10,000 cell tumor fragments, further suggesting that

selection leading to clonal evolution rarely occurs during xenograft

formation with the Lovo cell line in a nude mouse environment.

High Diversity in Single Human Colorectal Cancer Glands
A prior study inferred that small human CRC glands are diverse

populations [12], but sampled only eight tags per gland. To

confirm that human CRC gland diversity may be high and allow

comparisons with the xenografts, 24 tags were sampled from 2,000

to 10,000 cell gland fragments from five CRCs. The glands were

sampled from opposite sides (‘‘left’’ and ‘‘right’’) of the same

tumor, to allow comparisons of cells located within glands and

between glands from opposite tumor sides.

Human CRC gland diversities were high (between 3 to 23

unique patterns per 24 sampled epialleles) indicating that

neighboring cells are not closely related (Fig 4B). For three less

diverse (‘‘younger’’) cancers (Cancers A,B,C), gland PWDs and

numbers of unique tags per 24 sampled tags were similar to values

in the clonal xenografts. For two more diverse (‘‘older’’) cancers

(Cancers D,E), gland PWDs and numbers of unique tags were

similar to the values in the polyclonal xenograft. Consistent with a

single clonal expansion, diversities were similar between left and

right tumor sides, indicating that both tumor sides are likely to

have similar mitotic ages or numbers of divisions since

transformation [12].

Lower Gland Diversity With Higher Mutation Rates
Low cancer gland diversity does not directly reflect selection

because even without selection a new clonal expansion would

initially be homogeneous. To correct for tumor age, as a rough

approximation, the age of a tumor is the time or numbers of

divisions between cells from opposite tumor sides, because these

cells last shared a common ancestor around the time of trans-

formation [12,15]. Therefore, one can compare gland age with

tumor age by comparing intragland PWDs with PWDs between

glands from opposite cancer sides (Fig 5A). In general, older

tumors had older glands, with intragland PWDs correlated with

intergland PWDs.

If selection depends on mutations, a simple prediction is that

selection should occur more often when mutation rates are

elevated. Two of the five CRCs (Cancers B,C) were deficient in
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Figure 4. Deeper sampling. A. More unique epiallele patterns are observed within polyclonal cultures and the small xenograft fragments when
sampling is increased to 24 tags. PWD values are relatively stable after 8 sampled tags (for reference, the dotted red lines are the polyclonal cell line
values). B. Deeper sampling of glands from five human CRCs. The three cancers on the left are relatively younger cancers with diversity similar to the
clonal xenografts. The two cancers on the right are relatively older cancers with diversity similar to the polyclonal cell line or xenografts. Consistent
with a single clonal expansion, diversity is similar between right and left parts of the same CRC.
doi:10.1371/journal.pone.0021657.g004
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DNA mismatch repair (MMR), which is associated with 100- to

1000-fold higher mutation rates [16]. Gland PWDs in the MMR

deficient CRCs were lower (intragland to intergland PWDs less

than 50%) relative to the MMR proficient CRCs (Fig 5B). The

lower intragland to intergland PWD ratios in MMR deficient

CRCs suggests selection may more efficiently eliminate less fit

variants when mutation rates are higher. The intragland to

intergland PWD ratios for the three MMR proficient CRCs and

the Lovo xenografts were similar (greater than 50%) suggesting

selection occurs less often in these tumors.

Cancer Stem Cells Appear To Be Frequent in Human
CRCs

A quantitative way to describe selection is to estimate the

numbers of long-lived lineages per cancer gland, which are

effectively CSCs [12]. If selection or extinction occurs frequently,

then long-lived CSC lineages will be few. The number of CSCs

per cancer gland can be estimated from its diversity---genomes

within a gland will be more similar with smaller numbers of CSCs

because somatic alterations cannot accumulate in shorter lived

non-CSCs that rapidly become extinct.

A previous analysis of data with eight tags per gland estimated

relatively high CSC frequencies [12]. With 24 tags per gland,

better estimates of CSC frequencies are possible (Table 1). Cancer

gland diversity was too high for a single CSC per gland and too

low for a scenario in which no extinction occurs. Instead, cancer

gland variation was more consistent with limited cancer cell

extinction, which can be modeled as a stem cell hierarchy with

multiple CSCs per gland producing a limited number of non-CSC

progeny. Probabilistic CSC survival instead of deterministic

asymmetric CSC division was more consistent with the data.

Estimated numbers of probabilistic CSCs per 8,000 cell gland

were between 128 and 2,048. The lowest estimated CSC

frequencies per gland (128 and 256 per gland) were with the

two MMR deficient Cancers B and C, a trend previously noted

when comparing between MMR proficient and deficient CRCs

[12]. In summary, cancer cell extinction appears to have occurred

in all the CRCs, but more extensively in MMR deficient CRC

glands.

Clonal Evolution In Human Tumor Populations
The EDTA gland isolation method may bias sampling to

superficial tumor regions, which may be the oldest part of a tumor

that progresses via clonal evolution (Fig 1). Laser capture

microscopy (LCM) can sample multiple superficial, invasive and

metastatic portions of the same CRC (Fig 6A). Only the BGN tag

was used for analysis because its lower apparent error rate

facilitates detection of recent clonal evolution. The degraded DNA

in the fixed specimens and small numbers of genomes sampled by

LCM hinders characterization of intragland PWD, but it is

possible to compare intergland PWDs to search for focal regions of

homogeneity created by recent clonal evolution. Consistent with

the ability to measure tumor diversity with LCM, intergland

PWDs were similar for Cancers A–E whether calculated from

LCM or EDTA gland data (Fig S2).

With sequential stepwise progression, there should be a diversity

gradient (superficial . invasive . metastases), whereas all regions

should be similarly diverse if a tumor is essentially a single clonal

expansion. Nine CRCs were examined (Fig 6B). Diversity was

generally high, and none appeared to be recent clonal expansion

because they all had average intergland PWDs greater than the

clonal xenografts.

Intergland PWDs were similar between superficial and invasive

portions of three Stage II cancers (B,C,E). For two of the six

metastatic cancers (D and F), superficial, invasive, and metastatic

Figure 5. Intragland versus intergland PWDs. A. Intra- and
intergland PWDs generally correlate. The trend line is based on three
human CRCs, with the two MMR deficient cancers with much lower
intragland PWDs. (circles are human CRCs, triangles are the clonal and
polyclonal xenografts). B. Ratios of intra- to intergland PWDs were
greater than 0.5 except for the MMR deficient CRCs, indicating much
greater extinction within glands of the MMR deficient CRCs.
doi:10.1371/journal.pone.0021657.g005

Table 1. Estimated numbers of CSCs per 8,000 cell cancer gland.

Cancer
MMR
deficient

estimated CSC
per gland experimental values within 95% simulation intervals

1 CSC per gland* all CSCs* multiple, immortal* multiple, random*

A No 512 1/34 16/34 25/34 (8) 32/34 (512)

B Yes 128 5/28 3/28 14/28 (4) 22/28 (128)

C Yes 256 0/30 3/30 17/30 (4) 26/30 (256)

D No 512 0/32 15/32 19/32 (16) 26/32 (512)

E No 2048 0/34 22/34 21/34 (32) 26/34 (2048)

*Numbers of experimental values (PWDs within glands or unique tags per 24 sampled tags) within 95% simulation intervals for the four scenarios. Simulated CSC
numbers (multiples of 2) best fitting the multiple immortal or random CSC per gland scenarios are in parentheses.

doi:10.1371/journal.pone.0021657.t001
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regions were similarly diverse, including three different lymph

node metastases of Cancer F. Significant diversity differences were

present between four primary cancers and their metastases. Both

the invasive and metastatic regions of Cancers H and I were

significantly less diverse than their superficial cancer regions. For

Cancer G, only the metastatic lesion was significantly less diverse.

The metastasis of Cancer A was significantly more diverse than its

primary.

To search for regional clonal evolution, intergland PWDs were

compared with physical distances (Fig 6C). The superficial,

invasive and metastatic regions of seven cancers appeared to be

single clonal expansions because there were no significant changes

in PWDs with physical distances. The superficial regions of

Cancers B and D showed a significant increase in PWDs with

physical distances, suggesting adjacent tumor areas were more

related than distant areas. In summary, the diversity of different

parts of the same cancer cannot be predicted, with examples of

metastatic regions with intergland PWDs that were the same,

greater, or smaller than their superficial regions. However,

evidence of recent stepwise progression was lacking because all

Figure 6. Diversity in human invasive and metastatic CRCs. A. Diagram of the LCM sampling of Cancers A and D. Dots are locations of the
superficial (blue), invasive (black), and metastatic (red) regions. (bar is 1 cm wide). B. Comparison of intergland PWDs in the superficial (blue), invasive
(black) and metastatic (red) regions of the nine CRCs. PWDs between individual LCM samples (‘‘X’’) are scattered, with averages represented by the
bars. The scatter of the PWDs between individual glands is expected because of the stochastic nature of replication errors, and regions within the
same tumor that were significantly different (arrows) from their superficial regions were identified from simulations (see Methods). For reference, the
intergland PWDs of the clonal (dotted green line) and polyclonal xenografts (solid green line) are illustrated. C. Comparisons of intergland PWDs with
physical distances indicate that distant and adjacent glands are similarly related in the superficial (blue), invasive (black) and metastatic (red) regions.
A significant increase in PWDs with physical distance (p,0.05) was observed only for the superficial regions of Cancer B and D.
doi:10.1371/journal.pone.0021657.g006
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regions were relatively diverse (average PWDs greater than the

clonal xenografts) and focal regional homogeneity was usually not

detectable.

Discussion

Tumor cells encounter and colonize many different microen-

vironments during tumorigenesis, and conceptually selection

efficiently maximizes fitness to drive this progression. Clonal

evolution depends on new driver mutations, which should be

readily generated by the genomic ‘‘instability’’ thought to be

present in many cancers [17]. However, recent CRC genome data

demonstrate relatively low mutation frequencies (,1 per 100,000

bases), consistent with normal mutation and division rates [10].

Neutral passenger mutations predominate [6,7], and therefore

bona fide driver mutations may only rarely emerge in the relatively

short intervals between transformation and tumor removal. If

driver changes are rare, clonal evolution would be rare.

Without a measure of selection it is difficult to judge the roles of

the numerous mutations and epigenetic changes found in cancer

genomes. Selection efficiently optimizes fitness whenever and

wherever opportunities arise, but a practical question is how much

cells differ before selection intervenes. Although selection is difficult

to measure, a selective sweep produces a bottleneck and loss of

cellular diversity. Therefore, the diversity of hitchhiking passenger

changes within a population (Fig 2) is a measure of selection [8]. A

sensitive test for selection is the amount of hitchhiking variation

within small cancer glands because fixation is faster in smaller

populations [9]. The high passenger methylation pattern diversity

measured in this study within and between small CRC gland

fragments suggests selection is a weak force that typically lacks the

minimum ability to sweep even nearby cells. This inferred lack of

selective sweeps after transformation is consistent with the inability

to readily identify additional metastatic driver mutations despite

deep sequencing [2,18]. A recent analysis of cancer genome data

using a very different approach inferred that even driver mutations

may confer relatively small selective advantages [19], which would

also be consistent with the high passenger methylation diversity

observed in cancer cell populations.

If selection is weak and a stepwise acquisition of new capabilities

occurs infrequently, the first transformed cell may already produce

well-adapted and versatile progeny with abilities to invade or

metastasize [3]. Phenotypic progression after transformation

would depend on phenotypic plasticity [4,5], with invasion and

metastasis from aberrant differentiation rather than the selection

of new driver mutations. A single expansion is consistent with the

similar diversities between glands regardless of physical distance in

superficial, invasive, and metastatic lesions. The relatively high

diversities of the CRC metastases imply relatively old populations,

consistent with the early dissemination of tumor cells observed in

experimental systems [20]. Significant diversity differences were

sometimes observed between superficial, invasive, and metastatic

regions of the same tumor. Such differences could represent

stepwise selection, but could also arise without clonal evolution

from different arrival times, with deeply invasive and metastatic

regions colonized later in progression. Regional differences in

mitotic rates could also produce differences, including situations

where metastases are more diverse than their primary tumors. The

high passenger methylation diversities in most CRCs and their

metastases indicate relatively old and stable populations, with

many divisions between transformation and surgery.

Without clonal evolution, present day tumor cells would form a

single population with uncomplicated star-shaped ancestries and

frequent long-lived lineages. The relative diversities within glands

versus between glands (intragland to intergland PWD ratios)

indicate how much remodeling or extinction occurs within glands.

Simulations of cancer gland diversity suggested limited cancer cell

extinction and were consistent with stem cell hierarchies with

multiple long-lived CSC lineages per gland rather than extremely

rare CSCs. CRCs are often resistant to chemotherapy [21], and

greater numbers of long-lived lineages would more efficiently

accumulate pre-existing therapy resistant variants.

Tumor evolution is commonly thought to increase fitness, but if

the first transformed cell is already optimally ‘‘fit’’, its progeny may

suffer from progressive declines in fitness, an asexual reproduction

phenomenon called Muller’s Ratchet [22]. The limited but relatively

ubiquitous extinction inferred in the CRCs may more represent loss

of less fit variant cells (or background selection [8]) rather than

dominance by more fit variants (Fig 2). Interestingly, passenger

methylation pattern diversity and estimated numbers of CSCs were

less in MMR deficient CRCs, where opportunities for selection

would theoretically be greater because mutation rates are about 100

to 1,000-fold higher [16]. Potentially this lower diversity could reflect

lower proliferation rates, although the intergland tag comparisons

should help normalize mitotic ages between the MMR deficient and

proficient CRCs. However, because mutations are more likely to be

deleterious rather than advantageous, the lower passenger methyl-

ation pattern diversity in MMR deficient CRC glands may also

represent negative selection with increased lineage extinction (fewer

long-lived lineages) rather than positive selection and localized clonal

evolution. This decreased fitness with higher mutation rates may

help account for the better clinical outcomes for patients with MMR

deficient CRCs [23]. A ratchet-like decline in fitness with time may

also help explain why tumor growth progressively slows (Gompert-

zian growth [24]) rather than accelerates after transformation. The

greater extinction with elevated mutation rates likely depends on the

microenvironment because the Lovo cell line is MMR deficient [25]

yet background selection was not as evident during xenograft

formation in immunodeficient nude mice. These observations are

consistent with a hypothesis that MMR deficient CRCs may have

better outcomes because of an immune response to new antigens

created by higher mutation rates [26].

Exactly how individual human tumors progress is uncertain

because serial observations are impractical and unethical. Trans-

lation of traditional molecular phylogeny approaches to somatic cell

populations can potentially reconstruct the pasts of individual

human tumors [27], but many unknowns (including cell prolifer-

ation and death rates, and differences in rates and types of

mutations) can confound analysis. Detailed ancestries are not

possible with the current data, and many mechanisms may

contribute to the high passenger methylation variations observed

in cancer glands. Positive or negative background selection is likely

to occur, but the high passenger methylation pattern diversities

within and between cancer glands appear inconsistent with frequent

or widespread clonal evolution sweeps that are commonly presumed

to occur after transformation. Recent comparisons of copy number

variations between single breast cancer cells from the same tumor

also infer tumor populations emerge suddenly rather than gradually

[28]. Recent cancer genome sequencing studies comparing somatic

mutations from different parts of the same tumor infer evolution

over many years, with many differences between metastases and

primary pancreatic adenocarcinomas [29,30]. The current ap-

proach is potentially complementary to sequence comparisons,

being more suited to reconstruct more recent evolution over months

instead of years due to higher inferred epigenetic replication error

rates. Advances in sequencing technologies combined with defined

topographical sampling of tumor populations should help recon-

struct how individual human cancers evolve.
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Materials and Methods

Ethics Statement
CRC samples were obtained in the course of routine clinical care

from the Norris Comprehensive Cancer Center, with approval from

our institutional review board (University of Southern California

Health Sciences Campus Institutional Review Board, Proposal

#HS-043078). The mouse xenograft studies were approved by our

institutional review board (University of Southern California

Institutional Animal Care and Use Committee, Protocol # 9606).

Lovo studies
Limiting dilution was used for single cell cloning of the Lovo

CRC cell line [13] into 96 well plates, verified by microscopy.

Xenografts were initiated with subcutaneous injection of one

million cells into nude (nu/nu) mice. On sacrifice, the xenografts

were minced and small 2,000 to 10,000 fragments were isolated

after stirring in an EDTA solution, as previously described for

intestinal tissues [12]. DNA was extracted, bisulfite treated, and

then amplified for the BGN and LOC tags. The PCR products

were cloned into bacteria (TA-cloning kit, Invitrogen) and

individual clones were sequenced.

CRC studies
CRC samples were obtained in the course of routine clinical

care from the Norris Comprehensive Cancer Center, with

approval from our institutional review board. The 24 tags per

gland sampling was performed on previously analyzed tumors

(Cancers A–E are respectively Cancers 10, 3, 4, 12, and 5 in Ref

12). LCM was performed as previously described [12] on

formalin-fixed microscope slides. The entire microdissected areas

(about 1,000 to 2,000 cells) were subjected to bisulfite sequencing.

Simulations of human CRC ancestries with different numbers of

deterministic or probabilistic CSCs [12] were used to estimate

CSC frequencies, and determine whether different parts of the

same tumor (superficial, invasive, metastatic) were different

(significance was when average regional PWDs were outside of

95% simulation intervals).

Supporting Information

Figure S1 Methylation tags. A. Sequences of the LOC and

BGN X-chromosomal tags. Primers are underlined and CpG sites

are highlighted in red. B. Sample data, with 8 epialleles sampled

from each specimen. The polyclonal specimens are more diverse

(higher average PWDs) compared to the clonal culture or

xenograft. Filled circles represent methylated CpG sites.

(PDF)

Figure S2 Intergland PWDs were similar with EDTA- (black) or

LCM-sampling (red) for Cancers A–E, indicating the sampling

approaches are equivalent. Only for Cancer B were the values

significantly different (p,0.05, t-test).

(PDF)
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clonal expansion and cancer stem cell dynamics from DNA methylation patterns
in colorectal cancers. Proc Natl Acad Sci USA 106: 4828–4833.

13. Drewinko B, Romshdahl MM, Vang LY, Ahearn MJ, Trujillo JM (1976)

Establishment of a human carcinoembryonic antigen-producing colon adeno-
carcinoma cell line. Cancer Res 36: 467–475.

14. Hill RP, Perris R (2007) ‘‘Destemming’’ cancer stem cells. J Natl Cancer Inst 99:
1435–1440.

15. Hong YJ, Marjoram P, Shibata D, Siegmund KD (2010) Using DNA
methylation patterns to infer tumor ancestry. PLoS One 5: e12002.

16. Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M (1994) Mutator

phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci USA
91: 6319–6323.

17. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:

1475–1485.

18. Ding L, Ellis MJ, Li S, Larson DE, Chen K, et al. (2010) Genome remodelling in

a basal-like breast cancer metastasis and xenograft. Nature 464: 999–1005.

19. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, et al. (2010) Accumulation of

driver and passenger mutations during tumor progression. Proc Natl Acad Sci

USA 107: 18545–18550.
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