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Abstract
Computer disease simulation models are increasingly being used to evaluate and inform healthcare
decisions across medical disciplines. The aim of researchers who develop these models is to
integrate and synthesize short-term outcomes and results from multiple sources to predict the long-
term clinical outcomes and costs of different healthcare strategies. Policy makers, in turn, can use
the predictions generated by disease models together with other evidence to make decisions
related to healthcare practices and resource utilization. Models are particularly useful when the
existing evidence does not yield obvious answers or does not provide answers to the questions of
greatest interest, such as questions about the relative cost effectiveness of different practices. In
this review we focus on models used to inform decisions about imaging technology, discussing the
role of disease models for health policy development and providing a foundation for
understanding the basic principles of disease modeling. We draw from the collective computed
tomographic colonography (CTC) modeling experience, reviewing 10 published investigations of
the clinical effectiveness and cost-effectiveness of CTC relative to colonoscopy. We discuss the
implications of different modeling assumptions and difficulties that may be encountered when
evaluating the quality of models. Finally, we underscore the importance of forging stronger
collaborations between researchers who develop disease models and radiologists, in order to
ensure that policy-level models accurately represent the experience of everyday clinical practices.
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1.0 Introduction
Computer disease simulation models are increasingly being used to integrate and synthesize
short-term evidence about diagnostic tests and procedures to project the long-term clinical
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and cost outcomes that are typically of interest to policy makers. A recent example of the
use of modeling to inform policy decisions is the high-profile evaluation of mammography
screening intervals for the 2009 US Preventive Services Task Force breast cancer screening
recommendations (1–5). Models incorporate evidence on a variety of elements that impact
the effectiveness of a particular technology or procedure, including disease incidence and
mortality, operating characteristics of screening and diagnostic tests, patient acceptance of
the tests, and treatment effectiveness

For example, the Centers for Medicare and Medicaid Services recently considered
predictions from colorectal cancer models together with an independent review of the
evidence on colorectal cancer screening that was commissioned by the Agency for
Healthcare Research and Quality (6) when deciding if computed tomographic colonography
(CTC) should be a reimbursable method of colorectal cancer screening among Medicare
enrollees. The modeling study, conducted by an international team of public health
researchers, cancer experts, and biostatisticians, used three independently developed models
to predict health outcomes and lifetime cancer-related costs associated with a program of
CTC screening compared to colonoscopy screening, sigmoidoscopy screening, fecal occult
blood testing, and no colorectal cancer screening (7). Each of the three models demonstrated
that the predicted life-years gained (vs. no colorectal cancer screening) from CTC screening
among Medicare enrollees were only slightly less than the life-years gained from
colonoscopy screening. They found that CTC screening could be a cost-effective option for
colorectal cancer screening of the Medicare population if the cost of a CTC was
substantially lower than a colonoscopy or if the availability of CTC screening would attract
people who would otherwise not undergo colorectal cancer screening. This analysis of CTC
motivates our discussion about the uses of disease models, the types of disease models, and
how they are developed and applied in comparative-effectiveness and cost-effectiveness
research.

2.0 Role of Disease Simulation Models in Health Policy for Radiologic
Imaging

Researchers seeking information about the impact of imaging technologies on clinical
outcomes encounter a variety of types of clinical evidence. However, each has its
limitations. These limitations can often be overcome by integrating data with a computer
disease simulation model. These models are particularly useful when some short-term
outcomes are available about a technology, but evidence of the impact on long-term health
outcomes is lacking.

Most studies of imaging tests focus on test accuracy, that is, how well a test can identify
disease. While accuracy studies are key to understanding one-time test performance, they
provide no information about clinical outcomes (8). Randomized trials are the gold standard
study design for assessing outcomes. However, they are usually not a feasible method for
addressing health policy questions because of their costs and long time horizon for
completion, and because of the rapidly evolving nature of healthcare technologies. This is
especially true for imaging technologies. In addition, randomized trials may be ethically
difficult, or even impossible, to carry out once an imaging test is widely accepted as the
standard of care, as is the case with mammography, or when the benefits are widely perceive
to outweigh the risks, as in the case of coronary CT angiography (9). Finally, long-term
randomized trials are often not possible because of funding limitations. As a result,
randomized trials generally provide information about shorter-term outcomes such as the
severity of disease detected (e.g., early or late stage cancer) or 1- to 5-year survival
outcomes. Trials that focus on long-term disease outcomes following imaging are rare. One
example is the Prostate, Lung, Colorectal, and Ovarian (PLCO) Screening Trial, which
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randomized 38,349 men and 39,115 women to receive either routine medical care or active
screening. In addition to colorectal and prostate cancer screening, the active screening arm
included lung cancer screening with a baseline chest x-ray followed by annual chest x-rays
for three years and, among women, ovarian cancer screening with transvaginal ultrasound
and CA125 (10,11). In spite of the high value of randomized trials like PLCO, the results are
not available for guiding policy now: the trial began in 1993 and mortality results are
anticipated in 2015.

Observational studies are a common first approach for estimating the effect of imaging tests
on disease outcomes because they use existing data and can be carried out at relatively low
cost. Observational studies often include a broader patient population than randomized trials,
providing important additional information, even when results from randomized trials are
available (12). Observational studies can also provide information about longer-term
outcomes following imaging and information about practices that are “off protocol”.
However, observational studies are prone to multiple biases (13–15). Although analyses can
adjust for these biases, they can only account for known potential biases that were measured
in the study. Accordingly, the results from observational studies alone may not provide
sufficient evidence to inform health policy decision makers of the effectiveness of a
technology.

Computer disease models provide a method for combining results from all available studies
to fill gaps in existing knowledge. Disease models can be used to extrapolate results from
accuracy studies to predict longer-term clinical outcomes. For example, the Digital
Mammography Imaging Screening Trial (DMIST), a large study assessing the accuracy of
film and digital mammography for breast cancer screening, found that the overall diagnostic
accuracy of the two modalities was similar, but that digital mammography was superior in
certain patient subgroups (16). Using a model of the natural history of breast cancer that
incorporated the DMIST data on test performance, Tosteson et al. (3) projected the long-
term health outcomes and incremental cost-effectiveness of alternative breast cancer
screening strategies, including all-film and all-digital strategies and strategies that targeted
use of digital mammography based on age and breast density. They found that all-digital
mammography screening was no more effective, and in some cases it was less effective,
than targeted use of digital mammography in terms of quality-adjusted life years. The
authors note that their modeling analysis shows “how a shift to all-digital mammography
screening may result in health gains for younger women (especially those with dense
breasts), possibly at the expense of older women (especially those with nondense breasts).”

Disease models can also be used to simulate comparisons that were not evaluated in a trial.
For example, McMahon and colleagues (17) estimated the effectiveness of helical CT for
lung cancer screening among current and former smokers in the single-arm Mayo CT
screening study. Using de-identified data from the study participants, they simulated the
study outcomes, as well as predicted outcomes for a hypothetical control group that did not
undergo helical CT screening. They concluded that while helical CT screening could reduce
lung cancer-specific mortality, it would have little impact on overall mortality because of
competing causes of death in current and former smokers.

For newly developed or rapidly evolving imaging technologies, studies of long-term
outcomes are not possible because of insufficient observation time. In this context, disease
models provide a tool for real-time evaluation of a new or evolving technology by
combining information about the natural history of disease with the most recent results
describing the sensitivity and specificity of the technology for disease detection.
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Models can also be used to explore and identify aspects of a diagnostic test or intervention
that have the largest impact on effectiveness and cost-effectiveness. For example, because
CTC is less invasive than colonoscopy, it has the potential to draw more people into
colorectal cancer screening. Models can be used to evaluate the impact of potential
increased adherence attributable to this feature of CTC on the effectiveness and cost-
effectiveness of CTC screening. Models can also assess the value of obtaining more
information on uncertain aspects of the clinical decision, thereby helping to prioritize future
research efforts (18). For example, using a model of colorectal cancer, Hassan and
colleagues (19) determined that having additional information on screening uptake rates
with less-invasive screening tests such as CTC compared with colonoscopy would be of
greatest value in identifying an optimal colorectal cancer screening strategy.

Models are typically used to predict effectiveness measures such as life-years gained per
treated individual, or life-years gained per imaging exam (20). Model predictions often, but
not always, incorporate costs. These include the costs of the imaging test, as well as those of
subsequent interventions or treatments and associated adverse events (e.g., mammogram
costs plus the costs of treating breast cancer that would not have been diagnosed without the
imaging test). The net cost or savings associated with an imaging strategy are calculated by
comparison to the costs of a no-intervention scenario. Cost-effectiveness analysis combines
life-years gained with cost predictions, providing policy makers with a framework for
identifying the interventions that yield the greatest health benefit given resource constraints
(21).

3.0 Basics of Disease Models
Disease models provide a framework for integrating and synthesizing information from
multiple sources, including accuracy studies, randomized trials, and observational studies,
that describe various aspects of the disease of interest and relevant technologies. Models are
structured with a pre-specified set of health states (e.g. living without the disease of interest,
living with preclinical disease, living with diagnosed disease while undergoing treatment,
etc.) that describe the relevant aspects of the disease process. Modelers integrate information
from different studies by using data to choose probabilities of transitioning through these
disease states. The transitions can be specified as fixed probabilities or they may be based on
mathematical formulae that allow the probability of transition to depend on characteristics of
simulated individuals (e.g., age, sex, disease risk factors). The goal of this process of “model
calibration” is to build a model that precisely reproduces the existing data, so later model
predictions are as accurate as possible. In selecting the data for model calibration, modelers
can choose to disregard unreliable or poorly designed studies and give greater weight to
more rigorous and larger studies.

Computer disease models generally combine a natural history model that describes the
disease process in the absence of screening with an intervention model to estimate the
effectiveness of a diagnostic procedure or other medical intervention. Compared to natural
history models, intervention models are relatively simple because they are based on
observable outcomes (test sensitivity and specificity) and known or recommended
intervention schedules. Intervention models often assume ideal or overly simplified
circumstances. For example, models may assume no variability in test performance across
individuals, even though such variability undoubtedly occurs because of both patient- and
practitioner-specific factors (22,23). In addition, models may incorporate assumptions of
perfect adherence with protocols (e.g., screening at pre-specified intervals), or equal
adherence with all strategies under consideration (e.g., colonoscopy and CTC). These
simplifying assumptions may be necessary because of a lack of data on adherence with
repeated tests, or may be made to allow strategies to be compared in a head-to-head manner.
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Disease models are categorized into three broad classes with increasing degrees of
complexity: decision tree models, cohort models, and microsimulation models. All models
make assumptions. In general, simpler disease models make different, but not fewer,
assumptions about the disease processes than more complex models.

Decision tree models are relatively simple and are used to track outcomes associated with
different courses of action (24,25). Outcomes can include disease status, 5-year survival,
number of procedures, and costs. At each branching point, the tree specifies the chance of
each subsequent outcome occurring, for example whether a positive result is a true or false
positive finding. Alternative courses of action are compared by calculating the expected
value of the outcome from each (i.e., multiplying the value assigned to each potential
outcome by the probability that each occurs). A key limitation of decision trees is that they
do not explicitly incorporate time and therefore are not suited to evaluation of repeated
events, such as imaging implemented within a screening program.

Cohort models allow greater complexity than decision trees by describing the movement of
groups of individuals through disease states over time. Cohort models allow movement
between health states (e.g., “well”, “sick”, “dead”) at fixed time intervals (e.g., one year)
and are typically specified as Markov models: the probability of the next transition depends
only on the current state and is independent of the prior history (i.e., how one got to the
state) (26). Markov health states are, as a result, commonly described as “memory-less.”
This means that if, for example, only one health state of metastatic disease is designated in a
cancer model, then once patients develop metastatic disease, patients who originally had
low-grade primary cancers become indistinguishable from those who had high-grade
primary cancers. Cohort models can be programmed in a spreadsheet or in a standard
decision analysis software program (e.g., TreeAge Pro). However, these models may be
impractical if “memory” of past events is important, or if the number of unique health states
simulated becomes intractable (27).

Microsimulation models are more flexible than cohort models because they simulate the
movement of individuals through disease states (28). Microsimulation models do not require
the memory-less property of Markov models and allow events in continuous time rather than
requiring transitions based on specified cycle lengths. Microsimulation models also allow
specification of complex disease states that vary by individual and tumor characteristics, and
these can be described by continuous variables (e.g., body mass index, or tumor size in mm),
rather than categorically, as is often the case in cohort models. The price of greater
flexibility is increased complexity and simulation times. Additionally, the complexity of
microsimulation models typically requires customized programming using a flexible
programming language such as C++, R, or Delphi.

There is a natural tension between model simplicity and model complexity, as we
demonstrate in the following section comparing models used to evaluate CTC. The
appropriate degree of model complexity depends on a variety of factors, including modeling
goals and available information. Complex disease models are generally developed as part of
a larger research agenda focusing on specific disease screening or treatment. These models
are developed specifically for repeated use including assessment of interventions that may
become available after initial model development. In contrast, simpler models may be
developed to address a single question.

4.0 Example: Models Used to Evaluate CTC vs. Colonoscopy
As an example of the diversity of disease models, the multiple factors they may consider,
and the ways in which they can be applied, we compared models used to evaluate both CTC
and colonoscopy for colorectal cancer screening. We searched the published literature and
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identified 10 unique models that have evaluated these technologies. Key model
characteristics, discussed below, are summarized in Table 1. When models have been used
in multiple publications examining CTC, we describe the publication with the most detailed
model description.

Three of the models (29–31) evaluated colorectal cancer screening with CTC or with
colonoscopy only, while the other seven models evaluated CTC, colonoscopy, and other
screening modalities (e.g., fecal occult blood testing, flexible sigmoidoscopy, and strategies
that combined the two tests) (7,32–35). One model was a decision tree (29), six were cohort
models (30–35), and three were microsimulation models (MISCAN, CRC-SPIN, and
SimCRC, used in a joint publication) (7). The models varied both in terms of the general
level of complexity and the specific assumptions made. Most models specified a similar
overall disease process, with eight (7,29,30,32,34,35) of the 10 models assuming that all
cancers arose through the adenoma-carcinoma sequence (36,37). Two models also allowed
for de novo cancers (31,33). Three of the models (29,31,32) allowed hyperplastic polyps,
though it was unclear if they allowed co-occurrence of adenomas and hyperplastic polyps.
All treated the hyperplastic polyps as “nuisance” polyps that induced unnecessary
procedures; none allowed progression to cancer through this pathway (38).

The simulation of adenoma onset by age is an essential part of a colorectal cancer natural
history model. While the malignant potential of adenomas of various sizes is not fully
known, an incident adenoma represents a potential starting point for disease. The modelers
uniformly based adenoma incidence on adenoma prevalence data, either from autopsy
studies (7,31,34,39)(MISCAN, SimCRC), screening studies (29), or a combination of
screening and autopsy data (7) (CRC-SPIN). However, even when modelers used the same
type of studies for adenoma prevalence (e.g., autopsy studies alone), they did not necessarily
use the same specific studies. Most modelers who used adenoma prevalence data from
autopsy studies selected only one or two autopsy studies from at least 14 possible data
sources (40). Thus the different CTC models integrated different evidence, which may
contribute to the differences in their predictions.

While all of the models incorporated evidence on adenoma prevalence, the level of detail
used to describe the occurrence of adenomas within individuals differed greatly.
Conceptually, all models included an adenoma state, which included all individuals with at
least one adenoma. The three microsimulation models (7) described this state in the most
detail, simulating the size and location of multiple adenomas that may simultaneously occur.
Most cohort models simulated at most one adenoma or polyp per individual (the most
advanced) at any point in time and did not simulate the location of the adenoma or polyp in
the colorectal tract. Models that do not allow synchronous adenomas, with some missed and
some identified, need to adjust imaging characteristics that are reported at the lesion-level to
sensitivities and specificities at the person-level to avoid underestimating the likelihood of
detecting a person with at least one adenoma.

The models also differed with respect to whether and how they accounted for adenoma
location. Only the three microsimulation models (7) and one cohort model (34) accounted
for adenoma location. The microsimulation models simulated six locations (i.e., cecum;
ascending, transverse, descending, or sigmoid colon; or rectum) and the cohort model
simulated two (i.e., proximal colon vs. distal colon and rectum). Although not the focus of
this review, the implications of not explicitly simulating adenoma location are important to
consider when evaluating models that assess sigmoidoscopy screening strategies because
sigmoidoscopy only detects lesions in the rectum or sigmoid colon.
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The models varied in their description of adenoma malignancy potential. As shown in Table
1, several models based malignancy potential on transitions between clinically-relevant size
categories: less than 10 mm vs. 10 mm or larger (31); 1–5 mm, 6–9 mm, and 10 mm or
larger (7,33,34). One model specified a functional form for adenoma growth, resulting in
continuous adenoma size (7) (CRC-SPIN). One model did not describe adenoma size (39).
Two models described high- and low-risk adenomas, with high-risk adenomas defined as 10
mm or larger or less than 10 mm with villous features or high-grade dysplasia, and low-risk
adenomas defined as all others. Adenoma size is important because accuracy is linked to
lesion size for both CTC and colonoscopy. One of the models describing high- and low-risk
adenomas based test sensitivity on size (32), but the other used adenoma risk category as a
proxy for size (35) when specifying the accuracy of CTC and colonoscopy. Models that
describe a single lesion describe the largest lesion and require person-level test accuracy,
whereas models that allow multiple lesions of varying size may use lesion-level test
accuracy. Two models ignored small (<6 mm) adenomas (29,34), assuming that these would
not progress to cancer within the timeframe of the study (29) or would not be detected or
removed at screening (34); the latter contradicts typical colonoscopy screening practices.

While there was much variability in the approach to modeling adenomas, the models were
quite similar in the data used to simulate cancer incidence rates. All but one model used
colorectal cancer incidence rates from cancer registries (7,30–35); the decision-tree model
considered a 3-year time horizon and its developers used data from observational studies to
inform 3-year cancer risk. Cancer incidence data for model calibration should be selected to
reflect the natural history of the disease; for colorectal cancer, that means incidence prior to
the dissemination of screening. Rates during post-screening periods may be elevated due to
detection of indolent cancer that would not otherwise have been clinically detected.
However, colorectal cancer incidence rates have fallen over time, partially due to detection
and removal of adenomas through screening (41). Most models that used registry data did
not specify the specific time periods of the obtained data (30,31,33–35), although the three
microsimulation models (7) and one cohort model (32) specified the use of registry data
collected before the use of colorectal cancer screening tests became more common (i.e., late
1970s to mid-1980s).

While the models used to compare CTC and colonoscopy were broadly similar, each used a
somewhat different structure: using different data to describe adenoma prevalence, different
categories for adenoma malignancy potential, and potentially different data sources for all
elements. In the following section, we compare the findings from these diverse studies.

4.1 Predicted Effectiveness of CTC Relative to Colonoscopy
All of the models we examined used expected number of years of life as the primary
measure of the effectiveness of screening for colorectal cancer using either colonoscopy or
CTC. Consistent with recommendations on the conduct of cost-effectiveness analyses
(21,42), future years of life were discounted to their present value in all models, although
different discount rates were used. As shown in Table 1, the models evaluated the screening
strategies in somewhat different populations. Most models focused on individuals from age
50 to death, though the three microsimulation models focused on the Medicare population of
individuals 65 and older. The decision-tree analysis (29) estimated outcomes over a 3-year
period following the initial screening exam, corresponding with the shortest interval for a
follow-up exam. Many modelers reported results from sensitivity analyses, which explored
the impact of their assumptions on results. Unless otherwise noted, we refer to the findings
from each study’s from primary, or “base case”, assumptions. Vijan and colleagues(32)
evaluated both 3D and 2D CTC. We focus exclusively on their results for 3D CTC because
they found that a screening program based on 3D CTC was both less costly and more
effective than screening based on 2D CTC (that is 3D CTC dominated 2D CTC).
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All of the cohort and microsimulation models we reviewed found that colonoscopy
screening every 10 years was more effective in terms of discounted years of life than CTC
screening every 5 (7,35) or 10 years (30–34). The analysis by Vijan and colleagues (32)
found that colonoscopy was more effective than CTC every 10 years, but less effective than
CTC every 5 years. In addition, Teleford and colleagues (35) only reported discounted
quality-adjusted years of life, which accounts for the fact that a year of life in perfect health
is valued more than a year of life in poor health (20). The decision-tree model also found
that colonoscopy was more effective over the 3-year period that it considered. As shown in
Table 2, the assumed sensitivities and specificities of CTC and colonoscopy varied across
studies, reflecting differences in the accuracy studies used to inform the models. Most
models incorporated data suggesting that colonoscopy was more sensitive than CTC for
detection of all lesions. Lee and colleagues (34) assumed that CTC was more sensitive than
colonoscopy for detection of cancers and large (>10 mm) adenomas, but still found
colonoscopy to be a more effective screening strategy than CTC.

4.2 Predicted Costs and Cost-Effectiveness of CTC Relative to Colonoscopy
There was some diversity in findings related to the costs and cost-effectiveness of
colonoscopy and CTC screening (Table 2). Six models found that colonoscopy screening
was less costly than CTC screening (7,30,31,33,34) so that colonoscopy was dominant,
being both more effective and less costly than CTC. The analysis by Vijan and
colleagues(32) found that colonoscopy every 10 years dominated 3D CTC every 10 years
while 3D CTC every 5 years was more effective but also more costly than colonoscopy
every 10 years. Three cohort models found that colonoscopy screening was more costly than
CTC (30,33,34). Compared to the other models, the relative unit cost of colonoscopy versus
CTC in these three models was much higher. They were 1.5 times higher for colonoscopy
without polypectomy versus CTC, compared to at most 1.2 times higher for models finding
colonoscopy to be less expensive. Only two of these studies (33,34) found CTC to have a
more favorable incremental cost-effectiveness ratio than colonoscopy. Compared to other
models, these two studies assumed a lower accuracy for CTC detection of small adenomas
that are unlikely to lead to colorectal but increase costs because of referral to colonoscopy
(shown in Table 2). In addition, Lee and colleagues (34) assumed that CTC was more
accurate than colonoscopy for detection of cancers and adenomas 10 mm or larger. Other
modelers explored the impact of CTC sensitivity on their findings with inconsistent results.
Sonnenberg and colleagues(30) found that the cost-effectiveness of CTC increased with
increasing sensitivity, but their model did not explicitly describe adenoma size. Ladabaum
and colleagues(31) found that decreasing CTC sensitivity made it a less effective and more
costly test. Telford and colleauges(35) found that increased sensitivity for advanced
adenomas increased effectiveness and reduced costs for CTC. These reports suggest that
when determining cost-effectiveness, assumptions about CTC accuracy to detect adenomas
with high malignant potential are more important than assumptions about the overall
accuracy or CTC, pointing to the importance of the underlying natural history model for
colorectal cancer, and, in particular, assumptions about the rate at which adenomas transition
to cancer.

Although 8 out of 10 models found CTC to be either dominated by colonoscopy or have a
less-attractive incremental cost-effectiveness ratio than colonoscopy, several noted that CTC
could be cost-effective at a lower per-exam cost (7,30–32). For example, the
microsimulation models found that CTC could be cost-effective compared to colonoscopy
and other screening strategies if exams cost 22% to 41% of the cost of a colonoscopy
(without polypectomy).

One limitation of these studies is that while many models (30,32–35) considered less than
perfect adherence to screening recommendations, all assumed the same degree of adherence
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to colonoscopy and CTC screening. Few explored the impact of differential adherence to
colonoscopy and the less invasive CTC exam. Sonnenberg and colleagues(30) provide
graphs of the effect of adherence on cost per life-years gained, but did not provide
information on the impact of adherence on life-years gained alone. In sensitivity analyses,
Hassan and colleagues (33) found that CTC was equally effective and less costly than
colonoscopy if the colonoscopy adherence rate was 60% vs. 65% for CTC, which is a less
than 10% improvement in relative adherence. Microsimulation model results (7) also
suggested that CTC could be cost-effective compared to colonoscopy and other screening
modalities if its availability would result in otherwise unscreened individuals being
screened; however, relative adherence with CTC vs. other modalities would need to be at
least 25% higher for this to be the case.

5.0 Model Evaluation
Evaluating computer disease simulation models is difficult because of their complexity, as
illustrated by the models comparing CTC and colonoscopy. Therefore, it is incumbent upon
modelers to enable assessment of their models by providing a clear description of the
assumptions and data sources used to develop their models. That is, modelers must strive to
make their models “transparent”.

Model transparency often focuses on clearly describing the model structure and inputs. The
structure of the natural history model is a basic assumption, often based on a combination of
published findings and expert opinion. The assumed model structure is critical, because it
provides a framework for combining information used to calibrate the model. However, the
implications of using a particular model structure may not always be apparent. The interplay
between model structure and calibration data can further confuse model evaluation. For
example, because individuals with more than one adenoma have more opportunity to be
detected, assumptions about the number of adenomas within individuals affect implied
person-level detection rates.

Communicating all the assumptions and implications of a model is challenging. However,
the models evaluating CTC vs. colonoscopy provide examples of how these features might
be presented. Model predictions are both the results from a model and an important, but
underused, avenue for model evaluation (43). For example, when models are calibrated,
selecting probabilities and parameters to reproduce known or expected results, the selected
parameters may be published but calibration results are rarely included. Thus, readers are
given little or no information about how well a model was able to fit different calibration
points. Lee and colleagues (34) described their model’s fit to data on adenoma prevalence
and provided an online appendix with information about the model’s fit to data on colorectal
cancer incidence, mortality, and stage at diagnosis. Such goodness-of-fit results have the
potential to provide an intuitive sense of the model to end users. Another example of the use
of model predictions to aid in model evaluation pertains to adenoma “dwell time”, the time
from the onset of an adenoma of detectable size to clinically detected colorectal cancer.
Dwell time is an important component of all colorectal cancer models as it represents the
period of potential disease prevention through polypectomy or mortality reduction through
earlier cancer diagnosis and treatment initiation. However dwell time is typically an output
rather than an input of a disease simulation model, thus it is not easy to compare models on
this aspect. Providing model predictions of the mean dwell time may provide a more
intuitive indication of a model’s structure and assumptions. Assumptions about dwell time
are particularly important when comparing tests with different screening intervals. For
example, Vijan and colleagues(32) found that shorter dwell times improved the cost-
effectiveness of CTC carried out every 5 years relative to colonoscopy every 10 years.
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Between-model comparisons provide another method for assessing structural assumptions
on model predictions. The Cancer Incidence and Surveillance Modeling Network
(CISNET), a National Cancer Institute-funded program that began in 2000 that has
supported the development of multiple disease models for five cancer sites, has performed
several comparative modeling analyses (1,4,7,44–47). These CISNET analyses, which
compare independently developed models with different structures and assumptions, shed
light on the impact and importance of the different assumptions. However, CISNET is an
exception. Direct comparison of models is uncommon for modelers funded through different
mechanisms.

Finally, model validation provides an important, but often unavailable, method for
estimating the accuracy of model predictions. Models are validated by testing their ability to
predict outcomes that were not used for model calibration. Since the data needed for model
development are often sparse, setting aside data for later model validation is often not
feasible. For this reason, validation often requires new data that arise from studies published
after model development is complete. For example, one of the microsimulation models used
to evaluate CTC (CRC-SPIN) was later validated using a case-control study examining the
effect of colonoscopy on colorectal cancer mortality (43). While validation often requires
several assumptions related to both the population and the intervention model, it remains the
best “test” of a model’s predictive ability.

6.0 Discussion
Policy makers need to gather, synthesize, and interpret information to make decisions. If
presented with multiple sources of information (e.g., results from primary studies), then each
decision-maker carries out his or her own internal synthesis. Disease models offer a way to
integrate and synthesize information using the structure of the natural history and
intervention models. Disease models range in complexity from relatively simple decision
trees, to more detailed cohort models and complex microsimulation models. Simpler models
are relatively easy to construct and quickly implement, and may be a natural first step
towards developing more complex models. Cohort models can be readily developed within a
four- or even two-year funding cycle, offering a natural adjunct to projects focusing on
accuracy of imaging tests or short-term outcomes from testing. Microsimulation models
require longer-term support for their development. This investment is returned in a detailed
model that can be applied to a wide range of problems.

A common criticism regarding the use of disease models to aid decision-making is that
because models are prediction tools, their results are, by nature, more uncertain than those
directly derived from patient data. However, while they are indeed predictive, disease
models are developed by integrating directly observed data and they synthesize information
from a broad range of studies. Improving the transparency and interdisciplinary involvement
in model development will ensure that model assumptions and structure are more broadly
understood. In addition, working toward methods that produce standardized and clinically
relevant, relatable model predictions will allow more direct model comparisons, easing
communication of model assumptions and their implications.

Models are especially useful when no long-term data are available to inform decision
making. In these cases, models can provide robust predictions that cannot be reasonably
achieved through other means. However, model predictions should always be considered in
the context of all other available evidence. For example, the Medicare Evidence
Development and Coverage Advisory Committee (MedCAC) considers a range of evidence
and explicitly considers the quality of evidence before it gives its coverage recommendation
to the Centers for Medicare and Medicaid Services (48). When considering coverage for
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CTC screening, MedCAC considered evidence on the operating characteristics and risks of
different screening tests for colorectal cancer based on a systematic review (6) and
testimony from several experts in the fields of cancer screening, gastroenterology, and
radiology, in addition to microsimulation model predictions (49)

The use of computer disease models to guide decision-making is a natural result of the
increasing amount and diversity of information available and these models are an important
tool for estimating the comparative effectiveness of different imaging studies. Models are
only as good as the current state of knowledge, and like other technologies they can and
should be continually improved. One avenue for improvement is increased collaboration
between radiologists and modelers. Radiologist can provide critical expertise during model
development, guiding selection of key studies and information for calibration. In turn,
modelers could advise radiologists on how to design efficient studies that will also yield data
to fill knowledge gaps in faced when modeling disease processes. At study completion,
these collaborations will result in the best possible predictions of long-term outcomes from
short-term trial data.
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