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Abstract

Intense experimental and theoretical efforts have been made to globally map genetic interactions, 

yet we still do not understand how gene-gene interactions arise from the operation of biomolecular 

networks. To bridge the gap between empirical and computational studies, we: i) quantitatively 

measure genetic interactions between ~185,000 metabolic gene pairs in Saccharomyces cerevisiae, 
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ii) superpose the data on a detailed systems biology model of metabolism, and iii) introduce a 

machine-learning method to reconcile empirical interaction data with model predictions. We 

systematically investigate the relative impacts of functional modularity and metabolic flux 

coupling on the distribution of negative and positive genetic interactions. We also provide a 

mechanistic explanation for the link between the degree of genetic interaction, pleiotropy, and 

gene dispensability. Last, we demonstrate the feasibility of automated metabolic model refinement 

by correcting misannotations in NAD biosynthesis and confirming them by in vivo experiments.

Recent large-scale genetic analyses of yeast have enabled the systematic screening of 

pairwise genetic interactions and provided valuable insights into the functional organisation 

of a eukaryotic cell1 as well as genetic networks underlying specific biological processes2,3. 

Despite the rapid growth in quantitative data on genetic interactions, we still have only a 

limited understanding of the molecular mechanisms through which one mutation modifies 

the phenotypic effect of another. Furthermore, while the general properties of genetic 

interaction networks have been explored phenomenologically1,4, we often lack a 

mechanistic understanding of these patterns. For example, a recent large-scale study 

reported that single mutants with severe fitness defects tend to exhibit numerous genetic 

interactions1, a phenomenon that still awaits explanation. Finally, the systematic generation 

of novel biological hypotheses from the welter of phenotypic data produced by interaction 

screens remains a major challenge. By examining how cellular phenotypes arise from the 

operation of molecular networks, systems biology offers great promise for meeting these 

challenges.

Metabolism is one of the best-characterized cellular subsystems and is especially suited for 

system-level studies of the genotype–phenotype relationship, and hence genetic interactions. 

First, high-quality metabolic network reconstructions are available that specify the chemical 

reactions catalysed by hundreds of enzymes and cover the molecular function for a 

significant fraction of the genome (e.g. 15% in yeast)5. Second, these reconstructions can be 

converted into computational models to calculate the phenotype of both wild-type and 

mutant cells using constraint-based analysis tools6, such as flux balance analysis (FBA). 

This imposes mass balance and capacity constraints to define the space of feasible steady-

state flux distributions of the network and then identifies optimal network states that 

maximise biomass yield, a proxy for growth. Despite its simplicity and low data 

requirements, this modelling framework has shown great predictive power and has been 

successfully applied to various research problems7, including predicting the viability of 

single-gene deletants8 and model-driven analysis of high-throughput data8-10. Although 

some properties of genetic interaction networks have also been addressed using FBA, these 

earlier studies were exclusively11,12 or mainly13,14 theoretical due to the lack of large-scale 

genetic interaction data for metabolic genes.

To bridge the gap between theory and experiment, we have systematically measured genetic 

interactions between pairs of metabolic genes in yeast and combined these data with a 

detailed metabolic network reconstruction. Quantitative measurement of the fitness of single 

and double mutants has enabled us to detect both negative (aggravating) and positive 

(alleviating) interactions (i.e. the double mutant has a lower or higher fitness, respectively, 
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than would be expected from the product of the single-mutant fitnesses). Our integrated 

approach has three major goals. First, we investigate the distribution of genetic interactions 

within and across functional modules as defined by classical annotation groups and network-

based mathematical methods. Second, we perform constraint-based analysis of the network 

to simulate mutational effects and predict interactions in silico. We then employ our in vivo 

interaction data to test the model's ability to capture the general properties of genetic 

interaction networks and to assess the validity of its specific predictions. Third, we automate 

the reconciliation of empirical interaction data with model predictions and use discrepancies 

to update the metabolic network and direct biological discovery.

Results

Constructing a genetic interaction map of yeast metabolism

We selected genes for our genetic interaction map based on an updated reconstruction of the 

S. cerevisiae metabolic network, which consists of 1412 reactions and accounts for 904 

genes10. Genetic interaction data has been generated by large-scale synthetic genetic array 

(SGA) technology15. First, we performed new screens to construct a map that covers all 

major metabolic subsystems, except for tRNA aminoacylation. The screens involved 

constructing of high-density arrays of double mutants by crossing 613 query mutants, 

including 78 hypomorphic alleles of essential genes, against an array of 470 null mutants, 

producing double mutants for 184,624 unique gene pairs. The fitness of single and double 

mutants was assessed quantitatively by measuring colony size16. Interaction scores (ε) were 

calculated based on the deviation of the double-mutant fitness (f12) from the product of the 

corresponding single-mutant fitnesses (ε = f12 – f1·f2)17. Second, we supplemented our 

measurements with data from our recent large-scale genetic interaction screen1, which 

employed the same experimental procedure as the present study, but represented genes in all 

functional categories, including metabolism.

Overall, our combined dataset covers more than 80% of metabolic network genes, including 

82 essential genes, and provides interaction scores for 215,907 pairs, 57% of which have 

been independently screened more than once. Applying a previously defined confidence 

threshold that proved informative in functional analyses1, we detected 3,572 negative and 

1,901 positive interactions (Online Methods). We have focussed on interactions between 

null mutations of non-essential genes (176,821 pairs) due to their better coverage and easier 

interpretation; data on essential genes has only been employed for specific analyses. 

Additionally, we also defined a high-confidence interaction set based on the reproducibility 

of replicate experiments and employed it when very low false-positive rates were required.

Genetic interactions are widespread between different functional modules

We took advantage of our quantitative genetic interaction map to empirically test earlier 

predictions about the distribution of interactions within and between metabolic functional 

modules. Specifically, a computational study based on FBA suggested that: i) genetic 

interactions are enriched within metabolic annotation groups, and ii) interactions between 

different functional groups tend to be either exclusively negative or exclusively positive, a 

property termed ‘monochromaticity’11.
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First, we report a modest, but significant, enrichment of both negative (1.6-fold) and positive 

(2.5-fold) interactions within classically defined functional modules. For example, lipid 

metabolism is especially enriched in genetic interactions, with sterol metabolism and fatty 

acid biosynthesis being primarily enriched in positive interactions, while both forms of 

interactions are overrepresented in sphingolipid metabolism (Fig. 1). Importantly, the 

enrichments remain after controlling for potential confounding variables, such as paralogy18, 

physical interaction3, or single-mutant fitness1 (Online Methods) and become more 

pronounced when using the high-confidence interaction set (3.8-fold and 8.7-fold 

enrichment of negative and positive interactions, respectively). However, as Figure 1 

demonstrates, the majority of genetic interactions occur between genes assigned to different 

metabolic functions (93% of negative and 90% of positive, or 86% and 73%, respectively, 

when using high-confidence interactions). The fact that even strongly enriched functional 

groups, such as fatty acid biosynthesis, exhibit numerous interactions with other groups 

indicates widespread pleiotropy across metabolic subsystems.

Next, we asked whether interactions between different functional groups tend to be either 

exclusively negative or positive. In agreement with theoretical predictions, we found a 

statistically significant excess of monochromaticity among pairs of functional groups in the 

real data compared to randomized interaction maps (P<10-4). For example, while sterol 

metabolism displays almost purely negative interactions with tyrosine, tryptophan, and 

phenylalanine metabolism, it predominantly interacts positively with fatty acid biosynthesis 

(Fig. 1). Nevertheless, monochromaticity in our genetic interaction map is modest, only 

~24−34% more monochromatic pairs were found than expected by chance, a conclusion that 

remained qualitatively the same when using high-confidence interactions (Supplementary 

Table 1).

As an alternative to functional groups defined based on classical biochemical pathways, 

unbiased mathematical methods have been developed to measure functional relatedness 

based on coherent usage of reactions in the metabolic network6,19. In particular, flux 

coupling20 provides a biochemically sound definition of functional relatedness and has 

strong physiological and evolutionary significance21-23. To further investigate the 

distribution of genetic interactions within and between functional modules, we identified 

flux-coupled gene pairs computationally (i.e. pairs of reactions where the activity of one 

reaction implies the activity of the other, either reciprocally or in one direction; Online 

Methods). In agreement with results obtained using annotation groups, while we find that 

both negative (2-fold) and positive (2.7-fold) interactions are enriched in flux-coupled pairs 

(P<10-6 and P<10-8, respectively), the overwhelming majority (>97%) of both forms of 

interactions occur between uncoupled genes, even when only high-confidence interactions 

are investigated (>93%).

In conclusion, both definitions of functional relatedness reveal that most genetic interactions 

connect across distinct functional modules, extending an earlier estimate that synthetic lethal 

interactions are 3.5 times more likely to span pairs of protein-protein interaction pathways 

than to occur within such pathways24. Furthermore, our finding that both negative and 

positive interactions tend to occur between metabolic modules is consistent with recent 
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observations that both forms of interactions primarily connect genes belonging to different 

protein complexes1,16.

A metabolic model elucidates the degree distribution of genetic interaction networks

To further explore the organizational principles of the genetic interaction network, we next 

investigated its degree distribution using a computational model of metabolism. A 

prominent attribute of genetic interaction networks, also shared by other biological 

networks25, is that the majority of genes display few interactions, while a minority of “hub” 

genes are highly connected1,4. Furthermore, a recent study uncovered a strong correlation 

between the number of genetic interactions a gene exhibits and the fitness defect associated 

with its deletion (dispensability)1, a pattern also confirmed by our empirical metabolic 

interaction map (Supplementary Fig. 1). Nevertheless, the tendency of ‘sick’ single mutants 

to engage in an especially high number of both negative and positive interactions remains 

unexplained. Intuitively, one expects that a strongly deleterious single mutation can mask a 

large number of mildly deleterious mutations in other genes, and hence display numerous 

positive interactions. However, a similar logic would imply a paucity of negative 

interactions for sick mutants (i.e. a sick deletant is less likely to be made worse by other 

mutations), an expectation that is inconsistent with observations1.

To probe whether a simple structural model of metabolism is able to capture the above 

properties of genetic interaction networks, we computed in silico interaction degrees and 

single-mutant fitness employing FBA. Similar to the empirical data, in silico genetic 

interaction degree is also unevenly distributed, with only ~12% of genes accounting for the 

majority (~85%) of interactions. Most remarkably, the model predicted a strong negative 

correlation between single-mutant fitness and genetic interaction degree for both positive 

and negative interactions, confirming the trend observed in the experimentally-derived 

genetic interaction network (Spearman's ρ= -0.89 and ρ= -0.66, respectively). Importantly, 

these trends remained when genes without any in silico fitness contribution were excluded 

from the analysis (ρ= -0.59, P<10-3 for positive; ρ= -0.47, P=0.005 for negative interactions, 

Fig. 2a), demonstrating that the associations are not simply due to the presence of silent 

reactions in the metabolic model.

Having established its ability to capture the high genetic interaction connectivity of sick 

mutants, we asked the metabolic model to provide mechanistic explanations. One reason 

why a gene might exhibit numerous genetic interactions is that it contributes to multiple 

biological processes (i.e. it is highly pleiotropic), hence the phenotypic effect of its deletion 

may be modulated by a large number of other genes, each of them negatively or positively 

affecting a different aspect of its functionality. Indeed, it has been reported that genetic 

interaction hubs often display multifunctionality1. If highly pleiotropic genes also have (on 

average) a large fitness contribution, then we would expect a negative correlation between 

single-mutant fitness and interaction degree. Although pleiotropy is difficult to define 

empirically, the FBA framework offers a rigorous approach to compute pleiotropy and test 

this idea. To do this, we determined the number of key metabolites (so-called biomass 

components, including amino acids, nucleotides, etc.) whose maximal production is affected 

by the absence of each gene (see Online Methods and ref. 26). In accordance with our 
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hypothesis, we found a strong association between the number of biosynthetic processes to 

which a gene contributes and the predicted fitness of its deletant (ρ=-0.83, P<10-9 on raw 

data for genes with a non-zero deletion effect, see also Fig. 2b). Moreover, pleiotropy 

correlates with both in silico and in vivo genetic interaction degrees (negative degree: 

ρ=0.55 and ρ=0.24; positive degree: ρ=0.62 and ρ=0.25, respectively; P<10-8 in all cases). 

Given the close association between computationally derived single-mutant fitness and 

pleiotropy, we next performed partial correlation analyses to disentangle the effects of these 

factors on in silico interaction degrees. Our multivariate analyses revealed that, while 

positive interaction degree is determined by single-mutant fitness (a finding consistent with 

the idea that severe mutations can mask numerous milder mutations), negative interaction 

degree is driven by pleiotropy (Supplementary Table 2).

Taken together, these computational results suggest that the structure of the metabolic 

network dictates both the fitness contribution (and hence positive interaction degree) and the 

functional pleiotropy (and hence negative interaction degree) of genes. Future empirical 

studies of pleiotropy will help to clarify whether these mechanisms also adequately explain 

in vivo genetic interaction degrees.

No empirical evidence for prevalent positive interactions in essential genes

A recent FBA study suggested that non-lethal mutations in essential metabolic genes exhibit 

strikingly different interaction patterns compared to null mutations of non-essential genes14. 

Specifically, it was predicted that essential metabolic genes frequently display positive 

interactions with other metabolic genes, regardless of their function or the latter's 

essentiality, strongly skewing the ratio of positive to negative interactions. While a small-

scale empirical analysis was consistent with this prediction14, it remained to be seen whether 

it was supported by large-scale experiments. Accordingly, we mapped genetic interactions 

between hypomorphic alleles2 of a set of essential genes and null mutants of non-essential 

genes, screening 39,086 pairs. If positive interactions were indeed highly abundant between 

gene pairs involving an essential reaction, then we should observe a strong bias toward 

positive interactions for essential genes. Although we found that essential genes have an 

increased number of positive interactions, they also display more negative interactions, 

therefore their ratio of positive to negative interactions is virtually identical to those of non-

essential genes (Wilcoxon test: P=0.89, Fig. 2c). In sum, we failed to find empirical 

evidence for the predicted high prevalence of positive genetic interactions for essential 

metabolic genes. Given that the only experimental study reporting abundant positive 

interactions investigated only a handful of non-metabolic essential genes14, we speculate 

that the discrepancy between the small-scale study14 and our results could partly be due to 

sampling bias in the former.

Fine-scale evaluation of predicted genetic interactions

Our comprehensive genetic interaction map provides an unprecedented opportunity to assess 

the FBA framework's ability to predict individual interactions. To rigorously estimate the 

fraction of true predicted interactions (precision) and the fraction of experimentally observed 

interactions that are captured by the model (recall or true-positive rate), we selected a set of 

high-confidence empirical interactions between non-essential genes (Online Methods) and 
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excluded genes that are associated with poorly characterized network parts (i.e. blocked 

reactions20). This resulted in 325 negative and 116 positive interactions among 67,517 non-

essential gene pairs. We found that experimentally identified interactions are highly over-

represented among predicted strong interactions, with up to 100-fold and 60-fold enrichment 

for negative and positive interactions, respectively (i.e. precision values of 50% and 11%, 

respectively, see Fig. 3). Although this confirms that the highest predicted interaction scores 

have high physiological relevance13, we find that only a minority of empirical interactions 

are captured by the model at the same cut-off points (recall values are 2.8% and 12.9% for 

negative and positive interactions, respectively), a conclusion that remained unchanged 

when an alternative algorithm27, an alternative interaction score11, or a less 

compartmentalized metabolic model28 was employed to compute interactions 

(Supplementary Figures 2a-c). Importantly, only a minority of gene pairs that show negative 

(7.6%) or positive (3%) interactions in vivo display non-zero interaction scores of the 

opposite sign in silico, indicating that the low recall of the model stems from missed genetic 

interactions, not from misclassification of the two forms of interactions.

Why are so many genetic interactions missed by the model? First, as single-mutant fitness 

predictions are far from perfect8,10, one might expect that interaction between two non-

essential genes could be missed simply because one or the other gene is essential in the 

model. Indeed, ~24% of negative and ~22% of positive interactions are missed due to 

misprediction of single-mutant viability. Although the true-positive rate of genetic 

interaction predictions slightly improves when genes falsely predicted to be essential are 

excluded, the majority of empirical interactions are still not captured by the model. In 

particular, FBA predicts strong negative interaction scores for only 3.7% of in vivo negative 

interactions, indicating that it over-predicts double mutant fitness in the majority of these 

gene pairs. Second, weak in vivo genetic interactions might be inherently less reproducible 

by the metabolic model. While this idea is supported by an improved true-positive rate for 

strong in vivo interactions (~17% for ε ≤ -0.5 and 25% for ε ≥ 0.15), we conclude that even 

the strongest interactions are frequently missed by the model. Third, FBA predicts optimal 

metabolic behaviour without incorporating regulatory mechanisms. Consequently, reactions 

that are down-regulated in vivo could nevertheless compensate deletions in other parts of the 

network in silico, therefore the model likely underestimates mutational effects. To address 

this possibility, we used published quantitative transcriptome data29 to identify non-

expressed metabolic genes and constrained the corresponding reaction activities to zero in 

the simulations30. Imposing transcriptional constraints did not noticeably improve 

predictions (Supplementary Fig. 2d), suggesting that detailed information on other layers of 

regulation31 (e.g. metabolic regulation32), data on toxic intermediates and more 

sophisticated modelling frameworks (e.g. regulatory FBA33) are needed to probe the 

performance limits of genome-scale models. Finally, aside from the limitations of FBA, 

some false predictions likely indicate incomplete knowledge or annotation errors in the 

metabolic network.

Numerous statistical methods have been proposed to predict genetic interactions by 

combining heterogeneous sources of genomic and functional data (e.g. sequence homology, 

physical interaction, co-expression, etc.)34,35. These statistical approaches serve 
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complementary roles to FBA. While biochemical modelling has the advantage of easy 

interpretability and offers direct mechanistic insights, statistical models may illuminate the 

amount of information available in large-scale datasets to predict genetic interactions. Thus, 

we asked whether such methods may substantially improve our knowledge on genetic 

interactions in the metabolic network.

To assess the performance of statistical modelling, we first compiled a dataset of gene-pair 

characteristics (following earlier studies34,35 and based on metabolic network features, but 

omitting any information on genetic interactions; see Supplementary Note). and employed 

data-mining methods (random forest36 and logistic regression) to classify genetic 

interactions based on these features. Although an increased fraction of in vivo interactions 

can be retrieved, ~70% of negative and ~75% of positive interactions are still predicted with 

very low (<10%) precision (Supplementary Fig. 3). Thus, we conclude that the majority of 

genetic interactions are not well understood either in terms of biochemical processes or 

statistical associations. Importantly, incorporating FBA-derived fitness and genetic 

interaction scores into statistical models boosts the precision of negative interaction 

predictions (Supplementary Fig. 3), indicating that biochemical modelling provides unique 

information that is not captured by purely statistical data integration.

Automated model refinement using genetic interaction data

To reconcile discrepancies between empirical and computational genetic interaction maps, 

we developed a machine-learning method that automatically generates hypotheses to explain 

in vivo compensation (negative interaction) between genes. In contrast to a previously 

proposed approach37 that reconciled experimental and computational growth data mutant by 

mutant, we sought to minimize model mispredictions globally (i.e. using all available data) 

by employing a two-stage genetic algorithm (Fig. 4a and Supplementary Note). The 

following types of changes to the model were allowed37: i) modifying reaction reversibility, 

ii) removing reactions, and iii) altering the list of biomass compounds required for growth 

(Supplementary Note).

Our automated method suggested several modifications (Supplementary Table 3) that, 

together, considerably improved the fit of the model to our genetic interaction map (100 – 

267% increase in recall and 44 – 59% increase in precision, Fig. 4b). Importantly, cross-

validation confirmed that our method also significantly improves the model's ability to 

predict genetic interactions that were not used in model refinement (with recall increased by 

~87% on average, P<0.002; Supplementary Note).

As an example of a modification suggested by our method, it showed that omitting glycogen 

from the set of essential biomass components corrects two falsely-predicted genetic 

interactions. This is congruent with glycogen's role as a reserve carbohydrate, which 

becomes important in nutrient-depleted or stress conditions38. Remarkably, our algorithm 

also revealed that removal of only one or two reactions from the network corrects the 

prediction of 4 negative interactions between alternative NAD biosynthesis pathways. In 

particular, the published network reconstruction10 contains three biosynthetic routes for 

NAD, and removing the two-step path from aspartate to quinolinate uncovers pairwise 

compensation between the other two pathways (Fig. 5a). Importantly, while de novo NAD 
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synthesis from aspartate is present in E. coli39, it has no genes annotated in the yeast 

network and bioinformatics analyses failed to find yeast homologs of the E. coli enzymes 

(Supplementary Note). To further investigate whether quinolinate formation from aspartate 

might be wrongly included in the yeast reconstruction, we interrogated the metabolic model 

to deduce specific predictions for experimental testing. We found that only the refined 

model predicts the essentiality of genes in the kynurenine pathway (BNA1, BNA2, BNA4, 

and BNA5) when nicotinic acid is absent from the medium. Next, we tested these predictions 

experimentally and confirmed that deletants of all four genes were nicotinic acid auxotrophs 

(Fig. 5b). Together, these results strongly suggest that the aspartate to NAD pathway is not 

present in yeast40.

Our automated procedure identified additional erroneous predictions between NAD pathway 

genes and suggested further modifications (Supplementary Table 3), prompting us to 

thoroughly revise NAD biosynthesis in the published reconstruction. Based on inspection of 

interaction data, single-mutant phenotypes, and literature information, we propose a number 

of changes including modifications of gene-reaction associations and reaction reversibilities 

(Supplementary Fig. 4). The revised model is not only consistent with literature data, but 

also improves both interaction (12 corrections) and gene essentiality (1 correction) 

predictions.

Discussion

A system-level understanding of genetic interactions requires the integration of experimental 

and theoretical approaches. To progress towards this goal, we experimentally mapped 

interactions in yeast metabolism and systematically compared empirical data with 

predictions from a biochemical model. Our approach provides the first glimpse of genetic 

interactions in small-molecule metabolism and establishes the performance limits of a 

genome-scale metabolic model. We revealed that a simple structural model of metabolism 

captures several organizational properties of genetic interaction networks and suggests 

mechanistic hypotheses.

Importantly, the computational model sheds new light on the relationship between the 

severity of mutational effects and genetic interactions. The FBA model not only captures the 

hitherto unexplained relationship between fitness effect and genetic interaction degree, but 

also suggests a novel mechanistic link between negative interaction degree and functional 

pleiotropy: the effect of mutations in pleiotropic genes may be modulated by mutations in a 

large number of other genes, each of them compensating a different aspect of the first gene's 

functionality.

Although we reported a coarse-grained consistency between model predictions and 

experiments, evaluation of individual interaction predictions revealed abundant 

discrepancies. In particular, FBA fails to capture the majority of experimentally determined 

genetic interactions, an attribute shared with statistical models built via data integration. 

Furthermore, interaction patterns of hypomorphic alleles of essential genes are grossly 

mispredicted, resulting in a discrepancy between our empirical data and a previous 

theoretical expectation about the high prevalence of positive interactions14.
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We can draw several conclusions from these inconsistencies. First, the quality and 

completeness of the metabolic reconstruction should be improved. Second, while null 

mutations can easily be represented in the FBA framework, simulation of hypomorphic 

alleles is inherently problematic as it hinges on assumptions about the relationship of 

enzyme activity to flux41. Third, the fact that a large number of in vivo instances of genetic 

interactions are not explained by the structure of the metabolic network suggests that 

regulation at both the gene expression and metabolite-enzyme levels should be taken into 

account in future attempts to realistically model metabolic behavior in genetically perturbed 

cells42.

Most significantly, the comprehensive interaction map can be used to refine the metabolic 

model. Indeed, reconciling discrepancies between predicted and observed phenotypes is of 

central importance in developing systems biology models43,44. We demonstrated the 

feasibility of an automated method to refine the metabolic model. We anticipate that similar 

approaches, coupled with high-throughput experimentation, have the potential to close the 

iterative cycles of generating and testing novel hypotheses, leading to at least partial 

automation of biological discoveries45,46.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Online Methods

Experimental mapping of genetic interactions

We employed synthetic genetic array (SGA) methodology, an automated form of genetic 

analysis, to construct high-density arrays of double mutants (for details, see Refs.4,15). 

Quantitative assessment of genetic interactions requires measurements of single- and 

double-mutant fitness, and an estimate of the double-mutant fitness that would be expected 

based on the single-mutant phenotypes. Mutant fitnesses were derived from colony sizes 

after correcting systematic experimental biases (including positional effects, spatial effects, 

nutrient competition and screen batch effects)16. Single-mutant fitness was estimated using a 

set of control SGA screens, where the queries carried a mutation in a neutral genomic 

locus1. Double-mutant fitness was estimated by employing the regular SGA protocol. We 

used the obtained single- (fi and fj) and double-mutant fitnesses (fij) to derive genetic 

interaction measures as ε = fij – fi·fj. A statistical confidence measure (P-value) was assigned 

to each interaction based on a combination of the observed variation of each double mutant 
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across four experimental replicates and estimates of the background log-normal error 

distributions for the corresponding query and array mutants1,16.

To explore the general properties of the metabolic genetic interaction map, we applied a 

previously suggested1 confidence threshold of |ε|>0.08 and P<0.05 to define significantly 

interacting gene pairs. This threshold has been previously shown1 to yield a good balance 

between coverage and precision and defines genetic interactions that cover at least ~35% of 

negative and ~18% of positive interactions deposited in BioGrid49 with estimated precisions 

of ~63% and ~59%, respectively. In the case of replicate screens (e.g. both AB and BA pairs 

were screened), we applied the following procedure: if replicate screens show opposite 

interaction signs and at least one of them is significant, both pairs were removed; if they 

show the same interaction sign (both positive or both negative), the interaction with the 

lowest P-value was retained and both pairs are reported with that interaction. Comparison of 

interactions from screens performed in the present study with those from a full-genome 

study1 revealed a good correlation (r=0.76) between interaction scores that were identified 

as significant by both studies. The high cross-study correlation allowed us to merge 

interaction data from the present study with interaction data on metabolic gene pairs from 

the genome-scale screens1.

Additionally, we also defined a smaller high-confidence dataset in which all gene pairs were 

independently screened at least twice to minimize false interactions. Here, two genes are 

considered as interacting if at least one screen shows |ε|>0.08 and P<0.05, and another 

screen shows P<0.05 of the same interaction sign, whereas non-interacting pairs are defined 

as those not showing |ε|>0.08 and P<0.05 in any of the screens. Any other gene pairs were 

removed from the high-confidence set. This resulted in 529 negative and 194 positive 

interactions between 122,875 gene pairs.

Interaction data can be down loaded from http://www.utoronto.ca/boonelab/data/szappanos/.

Analysis of the effect of functional relatedness, paralogy and protein-

protein interactions on genetic interactions

We used logistic regression analysis to test the association between genetic interaction and 

various categorical and continuous features (e.g. paralogy, co-functionality, single mutant 

fitness etc.). Functional annotation groups were as defined in the published metabolic 

reconstruction10 and information on physical interactions between proteins was extracted 

from the BioGrid 2.0.58 database49. Paralog gene pairs were identified by performing all-

against-all BLASTP similarity searches50 of yeast ORFs. We defined two genes as paralogs 

if: i) the BLAST score had an expected value E<10-8, ii) alignment length exceeded 100 

residues, iii) sequence similarity was >30%, and iv) were not parts of transposons.

Monochromaticity analysis

To examine the monochromaticity of genetic interactions between pairs of functional 

annotation groups, we defined a monochromatic score (MC) as follows. Let prij denote the 

Szappanos et al. Page 11

Nat Genet. Author manuscript; available in PMC 2012 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.utoronto.ca/boonelab/data/szappanos/


ratio of positive to all genetic interactions between group i and j and bpr denote the 

background ratio of positive to all interactions:

A pair of groups showing purely positive (negative) genetic interactions between each other 

has an MC-score equal to +1 (-1), while those reflecting the background ratio (bpr) have 

MC-scores of 0. We computed MC-scores based on those genes that are assigned to one 

functional group only. A pair of functional groups was considered monochromatic if |MCij| 

> 0.5.

To assess the significance of monochromaticity, we compared the monochromatic score of 

the experimentally determined genetic interaction network to those of a 10,000 interaction 

maps that were constructed by randomizing the sign of each genetic interaction while 

keeping constant the total number of negative and positive interactions and conserving the 

annotation groups (see ref11). We restricted our analysis to those functional group pairs that 

show at least 2 or 3 interactions between each other (Supplementary Table 1).

Computing the impact of mutations and genetic interactions by flux 

balance analysis

The recently reconstructed metabolic network (iMM904)10 of Saccharomyces cerevisiae 

was employed to simulate gene deletions. The reconstruction includes 904 genes and 1412 

reactions and gives information on the stoichiometry and direction of biochemical reactions, 

their assignment to subcellular compartments and their associations to protein coding genes 

(including information on isoenzymes and enzyme complexes). Details of flux balance 

analysis (FBA) have been described elsewhere6. The simulated growth medium was set up 

to mimic the one used in the experiments, see Supplementary Note for more details. Genes 

CAN1, LYP1, URA3, LEU2 and MET17 were removed from the iMM904 reconstruction to 

mimic the strain background used in the experiments.

We employed linear programming to identify the maximum biomass yield of the wild-type 

network. The impact of gene deletions (null mutations) were calculated by constraining the 

corresponding reaction fluxes to zero and using either FBA or a linearized version of 

MOMA27 to compute biomass yields of the mutant networks. Mutant fitness was defined as 

the biomass yield relative to wild-type and interaction between two mutations was 

calculated as follows: ε = f12 – f1·f2 (where f1, f2 and f12 refer to the single and double 

mutant fitnesses, respectively). To compute the effect of a partial (non-null) mutation in a 

gene, we constrained the flux of its corresponding reaction to ≤50% of its wild-type level14.

All calculations were carried out in the custom software package Sybil (Gabriel Gelius-

Dietrich and Martin J. Lercher, unpublished), developed in the R statistical environment51 

and using solvers GLPK and CPLEX.
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Exploring the general properties of the FBA-derived genetic interaction 

map

To generate an in silico genetic interaction map based on FBA, we computed interaction 

scores between all non-essential metabolic gene pairs and considered two genes as 

interacting if predicted |ε|>10-4 (using a more stringent cut-off does not qualitatively affect 

our results). To investigate the relationship between in silico single deletion fitness and other 

computed network properties (i.e. in silico genetic interaction degree and pleiotropy), we 

focused only on those genes i) whose reactions are not blocked (i.e. can attain a flux in some 

steady states of the network) and ii) whose removal affect the reaction content of the 

network (i.e. do not have isoenzymes) thereby excluding genes that cannot have any single 

deletion effect in the model. Furthermore, some sets of genes would always produce 

identical phenotypes in the model simulations and cannot be treated as independent data 

points in statistical analyses (e.g. genes encoding flux coupled reactions or subunits of the 

same protein complex). To avoid such a bias in our analysis, we represented each correlated 

gene set with one randomly chosen gene. These filtering procedures resulted in 193 genes.

Computing system-level functional pleiotropy

We employed the metabolic model to derive a measure of functional pleiotropy for each 

metabolic gene. The model specifies a list of 54 metabolites that are essential for biomass 

formation and therefore in silico growth (e.g. amino acids, carbohydrates, fatty acids, etc.). 

We computed the maximum production yield of each biomass compound in the wild-type 

network by maximising the flux through a pseudo-reaction representing its secretion26. 

Next, we deleted each gene and examined whether the knockout showed a reduction in the 

maximum production of a given compound (i.e. a flux reduction of at least 10-4 was 

considered as significant). Finally, for each gene, we counted the number of biomass 

compounds whose maximal production is affected by its deletion. This number reflects the 

network-level multifunctionality, hence pleiotropy of a gene.

Identifying flux coupled genes in the network

Coupled genes were identified by applying the flux coupling finder algorithm20 on the 

metabolic network. We distinguished between coupled and uncoupled relationships between 

reaction pairs: i) coupled (fully and directionally coupled): activity of one reaction fixes the 

activity of the other and vice versa or activity of one reaction implies the activity of the 

other, but not the reverse, and ii) uncoupled: activity of one reaction does not imply the 

activity of the other and vice versa, indicating that the reactions are not required to operate 

together. Coupling relationships were calculated without assuming a fixed biomass 

composition to avoid coupling of a large set of fluxes to the biomass reaction20.
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Figure 1. 
Distribution and monochromaticity of genetic interactions between functional groups. The 

radii of the circles represent the fraction of screened gene pairs that show genetic interaction 

within and between functional annotation groups (e.g. sterol metabolism has the highest 

prevalence of interactions with a value of 0.225). Enrichment of genetic interactions within 

functional groups is visually apparent and corresponds to larger circles on the diagonal. The 

colors of the circles reflect the monochromatic score defined as the normalized ratio of 

positive to all interacting pairs (see Online Methods). Functional groups displaying only 

positive genetic interactions between each other have a monochromatic score of +1 (green), 

while those interacting purely negatively have a score of -1 (red). The background ratio of 

positive to all interactions (0.348) corresponds to a score of 0 (grey). Only the top 20 
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functional groups with the largest number of screened gene pairs and those genes assigned 

to only one functional group are included in the plot.
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Figure 2. 
Degree distribution of genetic interaction networks and gene dispensability. (a) Both 

negative and positive genetic interaction degrees predicted by FBA show negative 

correlations with predicted single-mutant fitness. Only genes exhibiting non-zero in silico 

fitness defects are shown and variables are rank transformed. See Online Methods for details 

on selecting independent data points (genes) for the statistical analysis. To improve the 

visual representation of coincident data points, we added a small amount of noise over the x-

axis for plotting. (b) The FBA-predicted single-gene deletion effect is strongly associated 

with predicted system-level pleiotropy degree (i.e. the number of biosynthetic processes to 

which a gene contributes). See Online Methods for details on the gene selection procedure. 

(c) Comparison of the empirically determined positive to negative genetic interaction ratio 

between null mutants of non-essential genes and hypomorphic alleles of essential genes 

reveals no significant difference. Horizontal lines of the boxplots correspond to the medians, 

the bottoms and tops of the boxes show the 25th and 75th percentiles, respectively. Whiskers 

show either the maximum (minimum) value or 1.5 times the interquartile range of the data, 

whichever is smaller (higher). Points more than 1.5 times the interquartile range above the 

third quartile or below the first quartile are plotted individually as outliers.
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Figure 3. 
Comparison of computationally predicted and empirically determined genetic interactions. 

Prediction accuracy evaluated by visualizing the trade-off between precision (fraction of 

predicted interactions that are supported by empirical data) and recall (fraction of empirical 

interactions that are successfully identified by the model), and true-positive and false-

positive rates (partial ROC curves, inset) at different in silico genetic interaction score cut-

offs. Dashed lines represent the levels of discrimination expected by chance. Note the 

different scale of the y-axes for negative and positive interactions.
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Figure 4. 
Automated model refinement procedure. (a) Workflow of the two-stage model refinement 

method. In the first stage, a coarse-grained search is executed where candidate models are 

evaluated only for those gene pairs that display interaction either in vivo or in silico, 

according to the original model. In the second stage, the best models are refined in a 

restricted search space that is based on the results of the first stage, but now using all 

available data to evaluate the models. This two-stage approach made it feasible to explore a 

large space of candidate hypotheses while also making use of all available phenotypic data. 

(b) Results of 8 independent runs of the model refinement algorithm. Fits of the modified 

(blue – green) and unmodified original (red) models to our empirical genetic interaction data 

are visualized by both precision-recall and partial ROC curves (inset). Dashed lines 

represent the levels of discrimination expected by chance. Note that the same empirical 

dataset was used for both model refinement and model evaluation, i.e. no unseen test data 

was used to generate these plots. For a cross-validation estimate of model improvement see 

main text and Supplementary Note.
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Figure 5. 
Automated model refinement suggests modifications in NAD biosynthesis. (a) Biosynthetic 

routes to nicotinate mononucleotide in the yeast metabolic network reconstruction. Genes 

involved in the de novo pathway from tryptophan show negative genetic interactions with 

the nicotinic acid transporter gene in vivo, but not in silico due to the presence of a two-step 

biosynthetic route from aspartate to quinolinate in the reconstruction (ASPOcm, aspartate 

oxidase; QULNS, quinolinate synthase). (b) Experimental verification of suggested model 

modifications. Deletion of genes for kynurenine pathway enzymes causes nicotinic acid 

auxotrophy. Strains deleted for the genes of the kynurenine pathway (bna1Δ bna2Δ bna4Δ, 

and bna5Δ) along with wild type (WT) were spotted in four serial dilutions on solid SC-

His/Arg/Lys medium and incubated at 30 °C for 48 hours in the presence and absence of 

nicotinic acid as indicated. To prevent diffusion of any substances that would complement 

nicotinic acid auxotrophy, the strains were grown separately from each other in a 24-well 

plate. Repeating the experiment using liquid media confirmed the nicotinic acid auxotrophy 
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of the mutants (data not shown). Yeast strains used in the auxotrophy study are derivatives 

of the BY4741 yeast deletion collection47,48.
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