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Abstract
Background—Given that genome wide association studies (GWAS) of psychiatric disorders
have identified only a small number of convincingly associated variants, there is interest in
seeking additional evidence for associated variants using tests of gene-gene interaction.
Comprehensive pair-wise SNP-SNP interaction analysis is computationally intensive and the
penalty for multiple testing is severe given the number of interactions possible. Aiming to
minimize these statistical and computational burdens, we have explored approaches to prioritise
SNPs for interaction analyses.

Methods—Primary interaction analyses were performed using the Wellcome Trust Case Control
Consortium Bipolar Disorder GWAS (1868 cases, 2938 controls). Replication analyses were
performed using the Genetic Association Information Network BD dataset (1001 cases, 1033
controls). SNPs were prioritized for interaction analysis that showed evidence for association that
surpassed a number of nominally significant thresholds, are within genome-wide significant genes,
or are within genes that are functionally related.

Results—For no set of prioritized SNPs did we obtain evidence to support the hypothesis that the
selection strategy identified pairs of variants that were enriched for true (statistical) interactions.

Conclusions—SNPs prioritized according to a number of criteria do not have a raised prior
probability for significant interaction that is detectable in samples of this size. As is now widely
accepted for single SNP analysis, we argue the use of significance levels reflecting only the
number of tests performed does not offer an appropriate degree of protection against the potential
for GWAS studies to generate an enormous number of false positive interactions.
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Introduction
Genome-wide association studies (GWAS) have identified hundreds of genetic loci at which
common variation confers disease susceptibility (1,2). These include Bipolar Disorder (BD);
when this study was performed, a meta-analysis of just over 10,000 individuals had shown
strong evidence for association between susceptibility to BD and variants within ANK3
(encoding the protein ankyrin G) and CACNA1C (encoding the alpha-1C subunit of the L-
type voltage-gated calcium channel) (3). While these findings are potentially informative for
our understanding of pathophysiology, they account for only a trivial amount of the
population variance in risk of the disorder.

Some of the missing variance in risk to BD is likely to be conferred by a large number of
common alleles of small effect (4), but the proportion that will ultimately be accounted for
by such alleles, in contrast to rare alleles, awaits empirical resolution. One potential source
of the gap between the observed genetic variance accounted for and that predicted is
epistasis or gene-gene interaction (5). However, a challenge to systematic genome-wide
interaction analysis is the computational time required to perform the requisite tests, the
number of which for even pair-wise analysis, corresponds to N(N-1)/2, where N is the
number of markers. In the case of a GWAS study of 300,000 markers (for example), this
requires 44,999,850,000 tests, this being only the tip of the iceberg if tests of higher-order
interactions (between three or more markers) are to be conducted. For higher order
interactions, the number of tests is 2N-N-1 for all 2-, 3- … N- markers interactions. In the
context of such multiple testing, stringent levels of significance are required to control the
type I error rate.

One potential way of overcoming the multiple testing burden is to restrict analysis to subsets
of SNPs with a higher prior probability for interaction. Intuitively reasonable strategies
include selecting variants within genes whose products are functionally related (6),
particularly variants that themselves display nominally significant main effects (7).
However, there is no straightforward equivalence between functional and statistical
interaction (8), and there is little evidence that variants selected along these lines have a
higher prior probability for interaction. Indeed there is evidence from lower organisms that
genetic interaction is prevalent among products whose functions seem entirely unrelated (9).

Aiming to identify scenarios where variants have a higher probability for statistical
interaction, we systematically explored the distributions of pair-wise interaction results
among sets of SNPs selected according to a range of criteria. We tested these for evidence
for interaction using the Wellcome Trust Case Control Consortium BD GWAS dataset (10),
and followed up the strongest findings in the Genetic Association Information Network
(GAIN) BD GWAS dataset of European ancestry (11).

Methods
Datasets

For the primary analysis, we used the WTCCC data (10) of 1868 BD cases and 2938
controls typed with the Affymetrix GeneChip® 500K Mapping Array Set. All individuals
self-identified as white Europeans living in the UK. The controls were from the 1958 British
Birth Cohort or were UK Blood Donors. Neither group was screened for BD, but the use of
unscreened controls does not significantly impact on power for a disorder with the frequency
of BD (12). The details of the samples and conduct of the GWAS are provided in the
primary manuscript. Interaction analysis is not robust for markers with small minor allele
frequencies (MAF) (13), so we excluded markers with MAF<0.1 in cases and controls
combined. As in our previous publications (14,15) we excluded SNPs with call rates<0.97,
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or with Hardy-Weinberg equilibrium (HWE) p<0.001 in controls or p< 0.00001 in cases,
retaining 297665 markers. We used the filtered GAIN dataset as supplied via dbGaP
(http://www.ncbi.nlm.nih.gov/gap) of 673715 markers (1001 Bipolar cases and 1033
controls) typed on the Affymetrix Genome-Wide Human SNP Array 6.0. We used the
dataset as supplied (MAF≥0.01 in the combined sample, HWE p<10-6 in controls).
Individuals were Americans of European ancestry. Thus the two datasets analysed here are
of the same broad ethnic background, although they will differ by sub-European ethnic
strata. Although the GAIN dataset has more markers than the WTCCC, our replication
design means we only examined markers that are present the WTCCC data set. The sample
size of the GAIN dataset is smaller than the WTCCC, and therefore is less powerful for
large scale analyses.

Single marker association P values were calculated using a 1df Armitage trend test. These
results have been the subject of a previous paper (10) and meta-analysis (3) and are not
discussed here. An overall inflation in the association signal is evident from the quantile-
quantile (Q-Q) plot which compares the observed values of chi-square statistics versus
expected (Figure S1 in the Supplement) and from a genomic control (16) inflation factor
(λGC) of 1.12. This inflation is not likely to be attributable to population structure (10), and
at least part of the signal is likely explained by a polygenic component to BD comprising
many weak genetic effects (4,17).

Interaction analysis
Interactions were assessed using PLINK-V1.06 (18) via significance of the multiplicative
term in the logistic regression model over and above that of the joint additive allelic effects
(on a logarithmic scale) (19) for discussion of models). Just prior to submission of this
manuscript, it became feasible to conduct a comprehensive analysis of all pairs of SNPs.
This was performed using EPIBLASTER (20). A fast scan is first performed for all possible
SNP pairs to identify those for which there are differences in the Pearson's correlation
between cases and controls. A standard likelihood ratio test of two regression models with
and without the interaction terms is then performed for those pairs identified in stage 1 as
showing differences (20). Interaction analyses of the GAIN dataset were performed using R-
Statistical software. Four covariates identified by Multidimensional Scaling (MDS) analysis
were taken into account as in the primary manuscript describing that GWAS dataset.

Power of test for interaction
Analysis of power for detecting interaction requires multiple parameters unique to each SNP
pairing, including allele frequencies, main effect sizes, the magnitude and type of
interaction, and the extent of linkage disequilibrium between markers, to be defined. The
impact of many of these has been explored (13,21). Since there are infinite combinations of
the above, we limited power calculations to the most significant interactions we aimed to
replicate, using the corresponding parameters from the WTCCC dataset and 10000
simulations using the sample sizes in the GAIN dataset. Under the assumption of modest
power to detect any single interaction, the effect sizes that attain significant P-values in the
discovery data set are likely to be higher than the true effect sizes, a phenomenon known as
the ‘winner's curse’. Therefore our estimates of power are likely to be inflated. Differences
in the second sample in terms of allele frequencies or unknown aspects of the phenotype that
index genetic and environmental heterogeneity, may also influence power, although how
that might influence any particular SNP pair cannot be known in advance.

SNP selection
1. We tested the hypothesis that interactions are enriched among nominally significant

variants. An evaluation of this using simulated datasets (21) reported the impact on
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power of marker allele frequencies, nominal significance thresholds, and sample
size. Using a sample slightly smaller than the WTCCC, maximal power was
achieved selecting variants with P ranging between 0.01-0.001, but for a sample
about twice the size, maximal power was obtained in the range P 0.02-0.001. We
selected SNPs comprising all variants surpassing nominally significant thresholds
(p≤0.05, 0.01, and 0.001). While these thresholds are arbitrary, they are consistent
with those described as approximately optimal under the conditions tested in the
earlier study and which we found (using powerGWASinteraction software those
authors made available) remain approximately optimal despite fewer SNPs (N=
297665) in the present study compared with 500,000 in their study (21). To achieve
partial independence, we identified SNPs in at least moderate LD (r2≥0.5) using
sliding windows of 50 variants spanning no more than 250kb. From such pairs, we
pruned the sets by discarding the least significant SNP using the --clump function
in PLINK (18). After pruning, 9614 SNPs surpassed p≤0.05, 2491 SNPs surpassed
p≤0.01, and 326 SNPs surpassed p≤0.001. All pairs of SNPs within each category
were then examined for evidence for interaction. Pairs identified from for which the
interaction evidence surpassed nominally significant thresholds were then
examined in the GAIN dataset for replication. As a null comparator, we tested
interaction among an LD pruned (r2≥0.5) set of SNPs which attained p≥0.95 in the
GWAS.

2. The above strategy requires evidence for main effects at both loci. Another
approach is to select variants in genes that are robustly supported for association,
regardless of whether the variants themselves have main effects, and then to test
those against other sets of variants selected without regard to any prior association
evidence. We identified SNPs in the two genes that at the time, had been strongly
implicated in BD (3); ANK3 (chr10:61,458,165-62,163,161 (NCBI Build 36.1/ hg
18) and CACNA1C (chr12:2,032,677-2,677,376). After exclusion of variants with
MAF≤0.1 (but not LD pruning), we tested the following sets of SNPs for
interaction.

a. interaction analysis between each variant in ANK3 and each variant in
CACNA1C.

b. every SNP in each of these genes and every variant in the GWAS dataset.

c. the most significantly associated variant in each gene and the remaining
variants in the genome.

3. Based upon the hypothesis that interactions are enriched among variants within
genes with related functions, we selected genes encoding dihydropyridine-sensitive
calcium channel subunits. This was selected because a) CACNA1C is a member of
this category and b) 4 of 6 genes for which we have data show gene-wide
significance in the dataset of Ferreria and colleagues (3) (unpublished data). Thus,
the group are functionally connected and have multiple members with evidence for
association. Other than CACNA1C, the members of this category are CACNA1D,
CACNA1S, CACNA2D1, CACNG1, CACNB1, CACNB3, and CACNA1F. We did
not include CACNB1 or CACNB3 as neither are covered by variants. We also
excluded CACNA1F which maps to the X-chromosome as this adds complexities to
the interaction analysis. We then tested all pair-wise interactions among all SNPs
(not LD pruned, N=204) without selecting on the basis of P values.

4. To evaluate whether among unselected sets of SNPs, there was any evidence for
epistasis, we performed a comprehensive pair-wise interaction analysis for all
possible pairs of SNPs in the WTCCC BD dataset and tested the 1000 most
significant interactions for replication in the GAIN dataset.
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Results
1. Interactions among nominally significant variants

For the null comparator group (SNPs p≥0.95, N = 10355) the QQ-plot did not deviate from
the null (Figure 1A) and there was no inflation in λGC (λGC =1.00). Similar Q-Q plots and
λGC values were obtained for marker pairs surpassing p≤0.05 (Figure 1B, λGC=1.00),
p≤0.01 (Figure 1C, λGC=1.00), and p≤0.001 (Figure 1D, λGC=1.00).

Although the test statistics for interaction do not deviate from the null for any of the above
SNP sets, we tested the hypothesis that true interactions are enriched among those with the
strongest evidence for interaction by attempting to replicate in the GAIN dataset interactions
among all pairs for which the evidence for interaction surpassed a range of statistical
thresholds. Of a total of 52975 interactions based upon SNPs with single locus p≤0.001
(Figure 1D), 9 interaction tests surpassed p≤10-4, 53 surpassed p≤10-3, and 506 surpassed
p≤10-2. These variants and P values are available in Table S1 in the Supplement. The
corresponding pairs of markers were respectively available for 8, 43, and 391 of these in the
GAIN dataset. Of the interactions surpassing the two most stringent thresholds, none
replicated at the 0.05 significance level. Of 391 interactions that in the WTCCC data
surpassed p≤10-2, only 17 of these replicated in GAIN. This is not significantly different
than chance (p=0.72). (P value calculated using the z-score obtained from a binomial test
(assuming that tests are independent). The expected number of tests replicated at 0.05
significance level was estimated as Np (=19.55) and the variance was estimated as N*p*(1-
p), where p=0.05 and N=391).

2. Variants in robustly associated genes
After filtering for MAF, there were 53 and 83 variants in ANK3 and CACNA1C respectively
(not LD pruned). When each variant in ANK3 was tested against each variant in CACNA1C
we found no evidence for either a highly significant interaction beyond that chance, or for
inflation of the observed distribution of P values (Figure 2A, λGC =1.00).

A similar pattern was obtained when all variants in CACNA1C (Figure 2B, λGC=1.00) were
tested against the rest of the genome.

However, when all variants in ANK3 were tested against the rest of the genome, while there
was no inflation in the interaction test statistics (λGC =1.00), there was an excess of
extremely small P values, the smallest being between rs10821729 (ANK3) and rs4741377
(∼30kb 5′ to nuclear factor I/B (NFIB) on chr 9). This survives Bonferroni correction for all
15,776,105 tests (p=2.5×10-9, corrected p=0.04) in this particular analysis, but not for all the
subsets of the analyses we have performed. Among these were multiple interactions from
correlated ANK3 SNPs (e.g. 4 highly correlated (r2>0.95) markers each had a P value for
interaction to rs4741377 less than 1.5×10-6). Nevertheless, after pruning ANK3 (Figure 2D,
λGC=1.00), the excess of small P values remained. This excess was enriched for non-ANK3
SNPs in LD with each other, for example the four most significant interactions in Figure 2D
include 4 markers at chr 9 (rs4741377, rs4741376, rs1008943 rs2039052) which have pair-
wise values of r2 between 0.75 - 0.99. The most significant interaction (p=3.3×10-9) was
between rs4582919 at ANK3 and rs4741377 (as before) which simply reflects the finding
above. None of the other interactions survives correction for multiple testing of the post-
pruned data. In the GAIN data markers were available to test 107 of the top 133 significant
interactions (p≤10-5) from the WTCCC un-pruned data. Of these, 6 replicated at the 0.05
significance level, but none survives correction for multiple testing (interaction pmin=0.002,
Table S2 in the Supplement). The top interaction in the unpruned marker dataset between
rs10821729 (ANK3) and rs4741377 was not replicated in the GAIN sample (p=0.825) and
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the same was true for that in the pruned dataset (rs4582919 (ANK3) and rs4741377,
p=0.889).

To evaluate whether the absence of replication for the top interactions might be a type II
error, we estimated the power to replicate the interaction model between rs4582919 (ANK3)
and rs4741377 using simulations of samples sizes available in GAIN. Power at the 0.05
significance level was 61%.

When we limited interaction analyses to pairs containing at least one of the strongly
associated variants markers from meta-analysis (3), that is rs1938526 at ANK3
(Pmeta=1.3×10-8) or rs1006737 at CACNA1C, (Pmeta=7.0×10-8), again, the distribution of
P values for both ANK3 and CACNA1C did not show much, if any, inflation (Figures 3A
(λGC=1.015) and 3B (λGC=1.00)). For ANK3, the most significant interaction result
(p=7.67×10-8) was between rs1938526 (ANK3) and rs7176022 (lectin, mannose-binding, 1
like precursor (LMAN1L)) on chromosome 15 at 75.1Mb. While significant at a Bonferroni
corrected level for this sub-analysis (the threshold is 0.05/297665=1.7×10-7) though not for
multiple sets of interactions examined in this study, this interaction showed no trend for
replication in the GAIN BD dataset (p=0.428). Power to detect this in the GAIN sample was
42% at the 0.05 significance level and 54% at a trend level of 0.1. For rs1006737 at
CACNA1C, the most significant interaction was to rs10090710 (p=8.4×10-7, chr 8, 55. 8Mb)
which is not within 100kb of any known gene. Again, the finding did not replicate in GAIN
(p=0.422, power = 48% at 0.05 significance level). We also found no evidence for any
replication in GAIN for interactions that surpassed p≤10-5 in the WTCCC dataset (n=10, all
available in GAIN; replication P values 0.23-0.46, Table S3 in the Supplement).

3. SNPs in genes encoding dihydropyridine-sensitive calcium channel subunits
We found a slight excess of significant interactions (λGC=1.035) in the WTCCC dataset.
This is more clearly visualized in Figure 4A where we plot the distribution of P values in
windows each representing ∼2% of all (20613) tests. Under the null, a perfectly flat
distribution is expected, contrasting with the observed data where we see a slight excess for
P values <0.01. This is also seen in the Q-Q plot as a deviation from the null at around chi-
square statistic 6.63 (corresponding to P value 0.01, Figure 4B). Of 248 pairs of SNPs with
interaction P values ≤0.01 in the WTCCC, 229 were available in GAIN. Of these, only 11
replicated at the 0.05 significance level, a number that is not significantly greater than
chance (p=0.55). None is significant corrected for multiple testing (Pmin=0.006, Table S4 in
the Supplement). Aiming to see if a similar degree of inflation occurred for all SNPs in this
category in the GAIN data, we ran a full analysis of all SNPs in that dataset but obtained no
inflation in the interaction test statistic (λGC=1.00; Figures S1 and S2 in the Supplement).
We also tested a LD pruned (clumped option) WTCCC dataset for this set of genes (15
SNPs out of 204 after clumping) to investigate if the inflation was attributable to the
inclusion of markers in LD. In that analysis, there was no inflation in the test statistics
(Figure S3 in the Supplement).

4. All pairs of SNPs interaction analysis
From the analysis of all possible SNP-SNP pair-wise, we stored results for the top thousand,
none of which would be significant allowing for multiple testing (range of P values =
3.04×10-10 - 4.2×10-5) (Table S5 in the Supplement). Of the 1000 pairs, 918 were available
in GAIN. Of these, 27 replicated at 5% significance level which does not significantly
deviate from chance (p=0.998). None replicated at a level that would survive correction for
1000 tests (Pmin=0.01).
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Conclusions
While GWAs studies have implicated a small number of strongly supported loci for BD and
other psychiatric disorders, but much larger samples will be required to identify an
appreciable proportion of the common variants involved in these disorders (4,22). In
parallel, it is at least possible that gene-gene interaction analyses might provide an
opportunity for mining GWAS datasets for additional associations that may not be apparent
from single locus tests. Several methods and software implementations are available for
testing for interactions (19), and the conduct of comprehensive pair-wise genome-wide
interaction analyses (23,24) has, as performed in the present study, become computationally
feasible. However, it is unclear whether the interaction effect sizes (should they exist) are of
sufficient magnitude to allow the attainment of the stringent statistical thresholds that are
required to control the type I error rate arising from the vast number of tests involved in
genome wide interaction analyses. One possible solution is to identify sets of variants with
enhanced prior probability for true statistical interaction.

In the present study, we have selected a number of scenarios for constraining the number of
tests. However, for none did we obtain strong evidence that the resultant distribution of
interaction P values in the primary dataset was indicative of an increased prior probability
for interaction, and/or that the distribution of independent replication P values deviated from
that expected by chance. In particular, selecting markers on the basis of their marginal (i.e.
single marker P values) was not an effective approach.

In the case of ANK3, but not CACNA1C, we did obtain initial weak support for the strategy
of selecting markers that map to a locus which is implicated at a genome-wide level of
significance by single marker tests (3), and also by testing the most strongly supported
variant at that locus against the remainder of the genome. Thus, in each of these analyses,
there were more interactions at the extreme level of significance than expected. However,
none replicated even at a nominal level in an independent dataset. Thus, our analysis does
not provide convincing endorsement of these strategies. Although the power for any
individual replication was not estimated to be high, and conclusions may not generalize as
there are only 2 genes at a genome wide significant threshold, this finding is consistent with
recent studies of height and body mass index. Despite samples comprising over 100,000
individuals and large numbers of highly significant variants (e.g. for height, 207 SNPs
P<5×10-6), exploration of the top hits revealed no evidence for interactions that survive
correction for multiple testing (25,26). One speculative explanation is that loci that are
convincingly detectable by univariate analyses are detectable because they do not require
interactions to exert an effect.

Similarly, weak support was initially obtained for selecting SNPs from a closely related
functional category, in this case genes encoding dihydropyridine-sensitive calcium channel
subunits. Here, there was no excess of highly significant interactions, but there was some
mild elevation in the number of weakly significant interactions (∼p=0.01). However, no
individual pair-wise interaction was significant in the WTCCC data allowing for multiple
testing, no interaction for which there was even modest support in the WTCCC dataset
replicated at a level better than chance in GAIN, the set of interactions with p<0.01 in the
WTCCC did not deviate from the null in the GAIN, and, finally, interactions based upon the
full set of variants in this set of genes did not deviate from the null in the GAIN. Thus, we
cannot conclude that the modest inflation in the test statistics we observed in the WTCCC
data supports this selection approach. It be noted that even if the replication analyses
represent type II errors, that is our initial finding represents a true inflation in interactions,
the findings are not interpretable in terms of specific loci.
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We have not undertaken a comprehensive analysis of every possible functional pathway, and
therefore our conclusions here are constrained, but we note we have examined a system with
both genome wide significant variation and in which multiple genes show nominally
significant gene-wide evidence. It is also important to add that a challenge to testing such
functional clusters is that there are no clear boundaries to the numbers of reasonable
groupings of genes. Thus, we could have chosen different ways of defining the category,
used a different classification schemes, or chosen totally different categories (e.g. dopamine
receptors, dopamine receptors plus dopamine metabolizing enzymes, dopamine receptors
plus dopamine metabolizing enzymes, etc). This adds uncertainty to the true extent of
multiple testing that can be achieved through functional group analysis.

In summary, attempting to contain the multiple testing burden required by interaction
analysis of GWAS datasets, we have tested a number of plausible SNP selection strategies in
the hope that by so doing, we can identify groups of SNPs with higher prior probabilities for
displaying significant (statistical) interaction. However, we found no evidence that any of
the approaches we explored achieved that outcome. Our findings could mean a) there are no
true pair-wise statistical interactions to be found b) such interactions do occur but these are
not enriched for by our selection strategies or c) true interactions are enriched for among the
SNPs selected, but these cannot be confidently demonstrated or replicated in currently
available sample sizes. Regardless of the explanation, the issue we aimed to address is
whether these strategies can be demonstrated to increase the prior probability for observing a
true interaction in sample sizes that are currently available. We find they do not. In the
absence of demonstrable enhanced prior probability for association between a disease and
any particular single genetic variant, it has been argued that the threshold for significant
association should not depend on the number of markers tested (10), and that tests of single
markers require the same stringent statistical support as those required by genome wide SNP
tests. This argument has gained acceptance in the genetics community. Since we have failed
to find that the selection strategies we have deployed demonstrably enhance the prior
probability for interaction, until proven otherwise, we suggest that the same considerations
apply to interaction tests. We therefore suggest the use of thresholds reflecting only the
number of tests performed in subsets of SNPs drawn from GWAS data does not afford an
appropriate degree of protection against the potential for interaction studies to generate an
enormous number of false positive interactions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Q-Q plots for SNP-SNP interaction analyses of SNPs with MAF>0.1 (the dotted line
represents 95% confident intervals).
A. All SNPs with association p-values ≥0.95.
B. Top significant SNPs at 5% level and non-independent SNPs at r2≥0.5 removed.
C. Top significant SNPs at 1% level and non-independent SNPs at r2≥0.5 removed.
D. Top significant SNPs at 0.1% level and non-independent SNPs at r2≥0.5 removed.
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Figure 2.
Interactions of SNPs from ANK3 and CACNA1C.
A. Interactions between CACNA1C and ANK3 SNPs (no LD pruning).
B. Interactions of all SNPs from CACNA1C against the whole genome.
C. Interactions of all SNPs from ANK3 against the whole genome.
D. Interactions of top significant (0.1% level) SNPs from ANK3 and non-independent SNPs
at r2≥0.5 removed against the whole genome.
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Figure 3.
Interactions of published genome wide significant SNPs against the whole genome (no LD
pruning).
A. rs1938526 in ANK3 vs the whole genome.
B. rs1006737 in CACNA1C vs the whole genome.
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Figure 4.
Interactions of SNPs in genes encoding dihydropyridine-sensitive calcium channel subunits
(no LD pruning).
A. Histogram of P values.
B. Q-Q plot.
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