
Polygenic Modeling of Genome-Wide Association Studies:
An Application to Prostate and Breast Cancer

John S. Witte and Thomas J. Hoffmann

Abstract

Genome-wide association studies (GWAS) have successfully detected and replicated associations with numerous
diseases, including cancers of the prostate and breast. These findings are helping clarify the genomic basis of such
diseases, but appear to explain little of disease heritability. This limitation might reflect the focus of conventional
GWAS on a small set of the most statistically significant associations with disease. More information might be
obtained by analyzing GWAS using a polygenic model, which allows for the possibility that thousands of genetic
variants could impact disease. Furthermore, there may exist common polygenic effects between potentially related
phenotypes (e.g., prostate and breast cancer). Here we present and apply a polygenic model to GWAS of prostate
and breast cancer. Our results indicate that the polygenic model can explain an increasing—albeit low—amount of
heritability for both of these cancers, even when excluding the most statistically significant associations. In ad-
dition, nonaggressive prostate cancer and breast cancer appear to share a common polygenic model, potentially
reflecting a similar underlying biology. This supports the further development and application of polygenic
models to genomic data.

Introduction

Genome-wide association studies (GWAS) of binary
traits compare hundreds of thousands of single nucleo-

tide polymorphisms (SNPs) in cases to those in controls to
determine whether an association with disease exists (Lander,
1996; Risch and Merikangas, 1996). This approach leverages
the successful sequencing of the human genome (Lander et al.,
2001; Venter et al., 2001) and the identification of millions of
SNPs—a subset of which can capture (‘‘tag’’) common varia-
tion via linkage disequilibrium (Daly et al., 2001; Frazer et al.,
2007; Gabriel et al., 2002; HapMap, 2003, 2005). In conjunction
with this, rapid technological advances have allowed for ef-
ficiently measuring over a million SNPs.

GWAS have detected highly statistically significant asso-
ciations between hundreds of SNPs and a broad range of
phenotypes, as listed in the National Human Genome Re-
search Institute’s ‘‘Catalog of Published Genome-Wide As-
sociation Studies’’ (http://www.genome.gov/gwastudies)
(Hindorff et al., 2009). These results are especially exciting in
light of the previous difficulties replicating genetic findings
for many diseases, such as prostate cancer (Schaid and Chang,
2005). However, the associated SNPs highlighted by most
of these studies explain a limited amount of disease heri-
tability (Donnelly, 2008; Maher, 2008; Manolio et al., 2009;

McCarthyet al., 2008). For example, although GWAS have
detected over a dozen SNPs strongly associated with pros-
tate cancer, these only account for approximately 15% of the
familial risk of this disease (Witte, 2009). This in part reflects
the small magnitude of effect for most SNPs reported by
GWAS and their focus on common variants. Even if large SNP
effects are found (e.g., for combinations of SNPs), these may
not have high penetrance and so do not confer a high risk of
disease.

The lack of heritability explained by GWAS could also re-
flect the focus on a handful of the most strongly associated
SNPs—and the underlying assumption that the remaining
SNPs have no impact on disease whatsoever. That is, only
highly statistically significant findings are generally followed-
up in GWAS due to the large multiple testing burden from
considering so many SNPs (Witte et al., 2000). However, some
diseases may follow a polygenic model whereby a large
number of SNPs, including those with weaker associations,
may explain the heritability of disease (Valdar et al., 2006).
What has previously been termed ‘‘missing’’ heritability in
GWAS may actually only be ‘‘hidden’’ and simply require a
more comprehensive evaluation of genetic variation to detect
(Yang et al., 2010). Moreover, such a model may explain some
common polygenic effects between GWAS of different phe-
notypes (Purcell et al., 2009).
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For example, when applying a polygenic model to GWAS
of schizophrenia, as the number of SNPs considered was ex-
panded to the tens of thousands, an increasing proportion of
heritability was explained (Purcell et al., 2009). They also
found that the polygenic model could be extended to different
psychiatric conditions (e.g., bipolar disease) but not to non-
psychiatric traits (Purcell et al., 2009). As another example,
findings from GWAS of height are said to explain only about
5% of genetic variability; however, a polygenic model that
simultaneously evaluates the effects of all SNPs indicates that
they may actually explain 45% of genetic variability (Yang
et al., 2010). The remaining heritability in human height might
be explained by variants that have been poorly assayed by
current SNP chips due to low LD and/or their being rare
(Yang et al., 2010).

In light of these intriguing results, here we consider the
potential value of polygenic models in GWAS of prostate
and breast cancer. These cancers are simultaneously investi-
gated here because they may share factors in steroid biosyn-
thesis pathways that impact the development of hormone
dependent and independent tumors (Risbridger et al., 2010).
We first describe the data and polygenic model and then
present a detailed application. Our work suggests that a
polygenic model may help further explain the genomic basis
of prostate and breast cancers, and that this type of analysis
may be generally beneficial for GWAS within and across
phenotypes.

Materials and Methods

Prostate and breast cancer GWAS data

For this investigation we used data from the first-stage of
the Cancer Genetic Markers of Susceptibility (CGEMS) GWAS
of prostate and breast cancer (http://cgems.cancer.gov). The
initial stage of the prostate cancer GWAS includes 1,172 cases
and 1,157 controls of European-American ancestry who were
selected from the Prostate, Lung, Colorectal, and Ovarian
(PLCO) Cancer Screening Trial and genotyped using the Il-
lumina 550K array (Thomas et al., 2008; Yeager et al., 2007).
The cases were oversampled for men with more aggressive
prostate cancer, allowing us to stratify our polygenic model-
ing by aggressive and nonaggressive disease. The first stage of
the breast cancer GWAS includes 1,145 cases and 1,142 con-
trols nested in the Nurses’ Health Study (NHS) cohort; these
women were also genotyped using the Illumina 550K chip
(Hunter et al., 2007).

Both of these studies had additional stages and replication
efforts that successfully detected genetic variants associated
with prostate and/or breast cancer (Hunter et al., 2007; Tho-
mas et al., 2008; Yeager et al., 2007). For example, the CGEMs
GWAS of prostate cancer detected associated SNPs in distinct
loci on chromosome 8q24—a region also associated with other
cancers—and a risk SNP in the beta-microseminoprotein
(MSMB) gene (Thomas et al., 2008; Yeager et al., 2007). In-
terestingly, due to limited power, the MSMB risk SNP
(rs10993994) had only the 24,223rd smallest p-value in the
initial CGEMs GWAS, but has been highly replicated (Tho-
mas et al., 2008). This suggests that weakly associated SNPs
may still play an important role in disease, that stringent
significance thresholds could lead to false negative results
(Witte et al., 1996), and supports a polygenic model for
prostate carcinogenesis.

Polygenic model

The standard analysis of GWAS data individually eval-
uates the relationship between each SNP and disease. For
example, one may a fit a logistic regression model to assess the
association between the ith SNP and disease:

logit(Prob (disease j SNPi)¼ bi · SNPi (1)

where SNPi is coded in a log additive manner to reflect the
number of alleles an individual carries at this SNP (i.e., 0, 1, or
2), and bi is the parameter of interest: the log odds ratio re-
flecting the impact of one additional allele in SNP i on disease
risk.

Most common complex diseases do not arise from a single
genetic cause, but rather a combination of genetic and en-
vironmental factors (i.e., they are polygenic) (Witte, 2010).
To assess such joint effects on disease, model (1) can be ex-
tended to include multiple SNPs, as well as nongenetic ex-
posures. Conventional models can only evaluate a limited
number of factors simultaneously, so these are often chosen
for inclusion using some sort of model selection procedure
(e.g., stepwise) (Cordell and Clayton, 2002). Such an ap-
proach, however, assumes with 100% certainty that all ex-
cluded factors have no effect whatsoever on disease; in a
GWAS, this generally encompasses well over 99% of the
SNPs initially considered.

A polygenic approach might first calculate log odds ratios
for each individual SNP in one GWAS [Eq. (1)], and then
apply these values to another GWAS in order to determine
whether increasing numbers of SNPs explain an increasing
amount of heritability (Purcell et al., 2009). Here, an overall
score Sj is determined for the jth individual in the second
GWAS as

Sj¼
Xm

i¼ 1

b̂bi · SNP¢
ij (2)

where b̂bi is the log odds ratio estimate for SNP i from the first

GWAS, and SNP¢
ij is the number of ith SNP alleles individual

j has in the second GWAS (Purcell et al., 2009). That is, a
single global score for each individual in the second GWAS
dataset is constructed from the sum of the number of alleles an
individual possessed at each SNP, weighted by the log odds
ratio estimate from the first GWAS. Then a logistic regression
akin to model (1) but with the vector of weights S in place of
SNPi is fit to compare the scores of cases to controls in the
second GWAS.

We applied this polygenic model to the CGEMs data from
prostate and breast cancer in two ways. First, we assessed
whether an increasing number of SNPs explained more heri-
tability within each cancer type alone. We used a resampling
approach to randomly split the data into two equal sized
subsets, a ‘‘training’’ set and a ‘‘test’’ set. In the training set, we
estimated the univariate odds ratios [i.e., from Eq. (1)]. Then
we used these odds ratios to calculate scores [Eq. (2)], and fit
polygenic models within each cancer type, as well as pros-
tate cancer subsets comprised of men with aggressive and
nonaggressive disease. The second type of analysis assessed
whether a common polygenic component was shared in
breast cancer and prostate cancer. Here we used the breast
cancer GWAS odds ratio estimates as weights for the prostate
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cancer GWAS and vice versa. Again, we stratified the prostate
cancer cases into aggressive and nonaggressive disease. When
looking within such subgroups comparisons were made to all
prostate cancer controls.

For all of our analyses, to evaluate whether the heritability
explained is driven by a small number of strongly associated
SNPs, or more of a combined signal from many common
SNPs, we constructed scores in the second GWAS dataset
based only on SNPs from certain ranges of significance levels
in the first GWAS dataset. If only a few highly significant
SNPs were explaining most of the polygenic effect on disease,
then we would expect only ranges including the most sig-
nificant SNPs to be relevant. In contrast, if scores in the second
GWAS excluding the most significant SNPs from the first
GWAS remain significant, this supports a common polygenic
inheritance model. SNPs were also filtered by pairwise link-

age disequilibrium (LD) (r2¼ 0.5) so that the score would
represent the effect of independent SNPs. Without this filter it
is possible that a number of linked SNPs all reflecting the same
association with disease might drive much of an apparently
polygenic model.

Results

Figures 1 and 2 give the results from our application of the
polygenic model to the CGEMs GWAS data for prostate and
breast cancer. Figure 1 presents findings when evaluating the
models within each cancer type using the resampling ap-
proach, whereas Figure 2 looks at whether there is a common
polygenic model between these cancers. For both figures, the
models considered are highlighted on the horizontal axis, and
the colored bars reflect different p-value ranges for the log

FIG. 1. Polygenic model results for prostate and breast cancer alone, using CGEMs genome-wide association study data.
Within each grouping, data were split in half and one set was used to estimate SNP-specific odds ratios, which were applied
to the other set (following Purcell et al., 2009). The top panel gives the proportion of variance explained by the polygenic
model, and the bottom panel the �log10( p-value) for association between the polygenic score and disease. PT is the range of
SNP association p-values included in the polygenic model. The colored bars reflect different p-value ranges for the log odds
ratios included in the models. Red bars expand the upper p-value threshold with deeper colors indicating a larger range. The
other colors are for p-value ranges that exclude the strongest associations.
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odds ratios included in the weight [Eq. (2)]. The red bars
expand the upper p-value threshold—with deeper colors in-
dicating a larger range—and the other colors are for p-value
ranges that exclude the most statistically significant associa-
tions. The top panel gives the proportion of variance ex-
plained by the polygenic model, and the bottom panel the
�log10( p-value) for association between the polygenic score
[S in Eq. (2)] and disease.

Focusing on Figure 1, the model grouping any type of
prostate cancer to controls shows the most evidence of a
polygenic model ( p< 0.01). The p-values generally become
smaller, and the heritability larger, as more SNPs are intro-
duced into the model. This effect is maintained, although
slightly less so, in the models not including the most statisti-
cally significant SNPs (i.e., from the training set). Aside: note
that values plotted are the means from the 10 resampling it-
erations. These results suggest that in addition to the strongly
associated SNPs, other SNPs that would be deemed ‘‘less
significant’’ are also contributing to the polygenic model. That
said, the variance explained by the model (Nagelkerke, 1991)

is quite low (1%). When looking at the two prostate cancer
subphenotypes, aggressive and nonaggressive, there is also
the suggestion of a polygenic model (Fig. 1). These might be
weaker than that observed for the overall prostate cancer
group simply due to the smaller sample sizes. Breast cancer
alone does not show much evidence for a polygenic model
(Fig. 1).

Figure 2 gives results from our evaluation of a shared
polygenic component in prostate and breast cancer. We see
essentially no evidence of a shared polygenic component be-
tween prostate cancer and breast cancer, and even less sup-
port for a shared component between aggressive prostate
cancer and breast cancer. There is suggestive evidence that
there may exist a shared genetic component between nonag-
gressive prostate cancer and breast cancer ( p< 0.01). We see a
similar pattern here as above in Figure 1: smaller p-values and
higher heritability when more SNPs are introduced into the
model, and less so in the polygenic model that excludes the
most significant SNPs (Fig. 2). As before, however, the heri-
tability explained by this model is quite low.

FIG. 2. Results from considering shared polygenic models between prostate and breast cancer. See Figure 1 legend for
specific details on what is presented in the figure.
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Finally, the number of SNPs contributing to the weighted
score in the polygenic models [Eq. (2)] increased linearly with
the expansion of p-value ranges for inclusion in the model. Of
the 550K SNPs originally measured by the GWAS, the num-
ber incorporated into the models when p< 0.01, 0.05, 0.1, 0.2,
0.3, 0.4, and 0.5 was approximately 2.4K, 11.5K, 23K, 45K,
68K, 90K, and 112K, respectively. When restricting the p-value
range to [0.05, 0.2] or [0.05, 0.5], the number of SNPs included
in the polygenic models was about 34K or 100K, respectively.

Discussion

We found that applying a polygenic model to an increas-
ing number of SNPs from one GWAS to another—within
and across prostate and breast cancer—seemed to explain an
increasing proportion of heritability, but this was quite low.
Nevertheless, there is a growing appreciation that such
common complex diseases may arise from a large number of
genetic and environmental risk factors (Purcell et al., 2009;
Yang et al., 2010). Applying polygenic models to genome-
wide data can help explain a larger proportion of the herita-
bility than simply focusing on the handful of most statistically
significant results.

The strongest common polygenic model resulted from
applying the breast cancer log odds ratios as weights to the
non-aggressive prostate cancer genotypes. A slightly weaker
shared model was observed when reversing this, and apply-
ing the nonaggressive prostate cancer log odds ratios to the
breast cancer genotypes. The differences here may reflect the
larger sample size in the breast cancer GWAS, which would
allow for more accurate estimation of the log odds ratios.
These cancers have biological similarities and common factors
that may control hormone-dependent and -independent tu-
mor development; in particular, there exist similarities in the
key hormone signaling pathways (e.g., steroid biosynthesis)
across these cancers (Risbridger et al., 2010). Why there is only
a relationship between nonaggressive prostate cancer and
breast cancer remains unclear. One possibility is that there
exists a similar hormonal mechanism underlying the devel-
opment of these cancers, but a distinct mechanism for disease
progression. Another is that the CGEMs nonaggressive
prostate and breast and cancer samples might be more similar
because the latter were not selected based on phenotypic
characteristics.

Our findings were only slightly weakened when we re-
moved the most statistically significant associations from the
model, restricting the p-value range to [0.01, 0.2] or [0.05, 0.2].
This suggests that the results are not entirely driven by the
strongest associations, and that variants initially deemed
‘‘nonsignificant’’ in the GWAS of prostate and breast cancer
may still help explain some of the heritability of these dis-
eases. Moreover, the results were little changed when using
different linkage disequilibrium filters to remove variants that
are correlated and thus may reflect the same association with
disease. In particular, when using a more conservative LD
filter of r2< 0.25, more SNPs were removed from consider-
ation leading to slightly weaker results. And when there was
no LD filter the findings were stronger than reported here.
Note that SNPs that exhibit even lower LD (e.g., r2< 0.1) with
a limited number of causal variants could explain some of the
findings observed here; further work will explore this possi-
bility.

Although the proportion of heritability explained increased
with larger numbers of variants in our polygenic model, the
overall heritability remained quite low. This may reflect the
reduced power due to limited sample sizes in the initial stages
of the CGEMs GWAS considered here (Hunter et al., 2007;
Yeager et al., 2007). Larger sample sizes may allow for more
accurate estimation of the log odds ratio weights and for de-
tecting more statistically significant results from the polygenic
model. On a related topic, Nature Genetics is now requiring
that power calculations be included in manuscripts present-
ing results from association studies (Anonymous, 2010).
Calculating power post hoc is a bit nonsensical—because one
has already completed the GWAS—and subject to much de-
bate in the statistical literature (Hoenig and Heisey, 2001).

Although we have focused on common SNPs from GWAS,
polygenic models can also incorporate less common variants
and additional sources of genomic variation [e.g., copy
number variants (CNVs)]. Continued scientific and techno-
logical advances will allow investigators to study less com-
mon and different sources of genetic variation. Results from
the 1,000 Genomes project (www.1000genomes.org) can be
leveraged to assay less common SNPs. Moreover, sequencing
technologies are rapidly decreasing in costs, and eventually
genome-wide sequence studies will become feasible and
provide an unprecedented opportunity to investigate poly-
genic models for disease.

In contrast with the polygenic model considered here, the
conventional approach to GWAS entails evaluating each ge-
netic variant one at a time, and then attempting to replicate
only those most strongly associated with disease. In light of
the enormous number of tests undertaken with GWAS, a very
small alpha-level is generally used to determine ‘‘statistical
significance’’ (e.g., p< 5�10�8). Although adhering to such
strict ‘‘significance’’ cut points helps address issues of multiple
comparisons, they are somewhat arbitrary and do not reflect
the potential clinical or biological importance of an association
(Witte et al., 1996). Moreover, as shown here and elsewhere
(Purcell et al., 2009; Yang et al., 2010), genetic variants that do
not appear strongly associated may actually contribute to the
underlying genomic basis of disease. By taking a broad ‘‘ge-
nome-wide’’ view, a polygenic model may provide a more
complete understanding of the genetic architecture of com-
plex phenotypes such as prostate and breast cancer (Witte,
2010).

Conclusion

We have described and applied a polygenic model that
incorporates information from thousands of SNPs in the
analysis of GWAS data. Prostate cancer may arise from large
numbers of genetic variants with weak effects. Moreover,
there is a potential common polygenic risk between breast
cancer and nonaggressive prostate cancer. This suggests that
there might be a shared biological basis for these cancers, such
as both depending on hormone signaling pathways. If com-
mon complex traits are due to a plethora of genetic and en-
vironmental factors, the use of polygenic modeling may prove
valuable for evaluating large-scale genomic studies.
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