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Abstract
Age-at-onset phenotypes are important traits in genetic association analyses. Often, intermediate
phenotypes that are related to the age-at-onset phenotype are also associated with the marker loci
that are associated with the age-at-onset phenotype. In order to understand the genetic etiology of
the observed associations, statistical methodology is needed to distinguish between a direct genetic
effect on the age-at-onset phenotype and an indirect effect induced by the genetic association with
the endo-phenotype that is correlated with the age-at-onset phenotype. In this communication, we
introduce a new statistical approach to detect causal genetic effects on survival data in the
presence of genetic associations with secondary phenotypes that might influence survival as well
and thereby induce seemingly causal relationships. Derived using causal inference methodology,
the proposed method is based on standard statistical methodology and can be implemented
straight-forwardly, using standard software. Using simulation studies, the theoretical properties of
the approach are verified and the power is assessed under realistic scenarios. The practical
relevance of the approach is illustrated by an application to survival after cardiac surgery, where
genetic components of myocardial infarctions are determined to not influence post-surgery
hospital duration except through the MI-pathway.
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1 Introduction
In order to understand the genetic mechanisms that influence complex traits such as the age-
at-onset of a disease or survival after surgery, it is important to identify endo-phenotypes
that are in the ”genetic path” between the marker locus and the phenotype of interest. Such
endo-phenotypes can be standard phenotypes, e.g. blood measurements, symptom score, etc,
or genomic or epi-genomic data such as expression profiles. The ability to distinguish
between causal genetic associations and seemingly genetic associations that are induced by
causal genetic associations with intermediate phenotypes can provide important clues into
the underlying genetic architecture of the disease. For quantitative traits, VanSteenlandt et al
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[Vansteelandt et al. 2009] proposed a simple regression adjustment procedure that is applied
to the quantitative phenotype of interest, adjusting for the potential presence of an
association between the endo-phenotype and the test marker locus. The adjusted quantitative
phenotype can then be used in standard genetic association tests for quantitative traits. Using
causal inference methodology, VanSteenlandt et al [Vansteelandt et al. 2009] then show that
the rejection of the null-hypothesis of no genetic association by a such modified genetic
association test implies a direct causal effect of the marker locus on the quantitative
phenotype of interest.

In this communication, we develop similar methodology for scenarios in which the
phenotype of interest is a time-to-event trait. Using standard residual approaches for time-to-
onset data, we propose an adjustment principle for causal genetic association testing for such
phenotypes. We derive the methodology and analytically show its validity. Using simulation
studies, we verify the theoretical properties of the approach and assess its power. An
application to survival data after cardiac surgery illustrates the potential of the approach.

2 Materials and Methods
We work under the causal diagram, also known as a Directed Acyclic Graph (DAG)
pictured below in Figure 1. Our main interest is to determine the direct effect of genetic
marker X on survival phenotype T. This effect is complicated by the presence of a
secondary phenotype K (not survival data), which is associated with both the genetic marker
X and the target phenotype T, the latter due to non-genetic reasons, e.g. clinical links,
environmental correlation, etc. In order to test for the direct effect between the marker locus
X to the age-at-onset phenotype T, the standard analysis to simply have marker locus X,
secondary phenotype K, and diagnostic criteria L as covariates in the regression model and
test for the coefficient of marker locus X will lead to biased results. For an explanation of
this phenomenon in terms of properties of the causal diagram, please see ”DAG
Explanation” in the Appendix. However, a simple example can illuminate this point. First
notice that diagnostic criteria L is effected by both marker locus X and unmeasured common
cause U. Suppose the extreme case that the unmeasured common cause U and the genetic
marker X are marginally independent and that diagnostic criteria L has the property that L =
X − U (i.e. complete dependence on X and U). Notice that given L = l, U and X are
perfectly dependent (U = X + l). Therefore, controlling for diagnostic criteria L induces a
spurious association between unmeasured common cause U and genetic marker X. Since U
cannot be controlled for (it is unmeasured), this spurious dependency induces bias in the
estimated effect of X on primary survival outcome T when both marker locus X and
diagnostic criteria L are used as explanatory variables to model primary survival outcome T.
Yet if we do not control for diagnostic criteria L, then the coefficient of marker locus X will
not represent the direct effect of X on primary survival outcome T, because it will also
represent the indirect effects through diagnostic criteria L. The same story holds for
secondary phenotype K, which, if controlled for, may induce a spurious relationship
between marker locus X and diagnostic criteria L [Rothman et al. 2008].

To avoid this problem, we first look to quantify the direct effect of secondary phenotype K
on survival outcome T. We then adjust the survival phenotype by subtracting out the direct
effect of the secondary phenotype. In order to properly quantify the direct effect of the
secondary phenotype on the primary survival outcome, one must model the effect of the
secondary phenotype K on primary survival phenotype T while controlling for marker locus
X and diagnostic criteria L to block all backdoor paths that could induce spurious
associations. By subtracting out the effect of secondary phenotype K on survival outcome T,
we are then under the altered causal diagram in Figure 2. We then test if the genetic locus X
is associated with the adjusted phenotype T̃ by running a simple univariate regression. This
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is possible because there there are no open backdoor paths between genetic locus X and
adjusted phenotype T̃ (and controlling for diagnostic criteria L and secondary phenotype K
may induce spurious relationships as described above), thus testing for a direct causal effect,
i.e. through pathways other than the secondary phenotype.

U represents an unmeasured common cause, P represents factors leading to population
stratification (that have been controlled for in the design stage), X is the marker coding, L
represents the covariates/confounding variables for the secondary phenotype K, and T
represents the target phenotype (survival data).

U represents an unmeasured common cause, P represents factors leading to population
stratification (that have been controlled for in the design stage), X is the marker coding, L
represents the covariates/confounding variables for the secondary phenotype K, and T̃
represents the target phenotype, adjusted for K’s direct effect.

2.1 Survival Models
Our data consists of the pairs (ti, δi), where ti is the time to the event T for person i and δi is
an indicator for observing the event T for person i (i.e. δi = 1 if person i is not censured).
Assuming independent and noninformative censuring, the likelihood function for survival
analysis is:

(1)

where fi is the density function for person i′s time to primary phenotype and Si is the survival
function.

Modeling T: Proportional Hazards Model—Using the DAG introduced above, we
model the hazard function of event T for person i under the proportional hazards framework,
where we enter the appropriate covariates into the model to quantify the arrow from the
secondary phenotype K to the primary outcome T. Thus, for person i, we control for

diagnostic criteria Li and marker coding Xi. The  then quantify the hazard ratio for a one
unit increase in the jth variable while holding other variables constant:

(2)

where h0(t), the baseline hazard, is modeled using a standard survival distribution (e.g.
Weibull). This hazard function then uniquely defines the density function and survival
function in equation (1). Using equations (1) and (2), we can obtain estimates β̂1, β̂2, β̂3 (and
any parameters quantifying the baseline hazard) using maximum likelihood estimation. This
notation will be used throughout the rest of the paper for estimates from this model.

Modeling T: Accelerated Failure Time Model—We may similarly model the hazard

function of event T for person i under the accelerated failure time framework, where the 
quantify the multiplicative change in time to survival outcome T due to a one-unit increase
in the jth variable.:

(3)
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Again, h0(t), the baseline hazard, is modeled using a standard survival distribution. Using
equations (1) and (3), we can obtain estimates α̂1, α̂2, α̂3 (and any parameters quantifying the
baseline hazard) using maximum likelihood estimation. This notation will be used
throughout the rest of the paper for estimates from this model.

2.2 Using Family-Based Data
Under a family-based setting, the above methodology is slightly modified to account for the
fact that we can control for population stratification by using the observable parental
genotypes. Therefore, in Figure 1 and Figure 2, P (the factors that could possibly lead to
population stratification) is replaced by E(Xi|P), the expected marker score given the
parental genotypes and the arrow from E(Xi|P) for Xi is present (not crossed out). In
Equation (2), we add β4E(Xi|P) to the linear predictors in the models; In equation (3), we add
α4E(Xi|P) to the linear predictors in the models. This protects against population
stratification. We also obtain β̂4 and α̂4 using maximum likelihood estimation.

2.3 Phenotype Adjustment
From models (2) and (3), we know that exp(β̂1) estimates the hazard ratio of survival
outcome T due to a one unit increase in secondary phenotype K, while exp(α̂1) estimates the
multiplicative change in time to survival outcome T due to a one unit increase in secondary
phenotype K. Since we blocked on the marker genotype and the diagnostic criteria (and can
control for population stratification in the family-based setting), these functions can be used
to properly quantify the arrow from the secondary phenotype to the survival outcome of
interest. We need to adjust the survival phenotype (ti) by some function of exp(β̂1Ki) or
exp(α̂1Ki) to subtract out the arrow. We then work with the adjusted phenotype to quantify
the direct effect from the genetic marker to the survival phenotype. This is achieved using
the residuals from the above models, as detailed below. Equations discussed relate to
proportional hazards models: similar equations hold for accelerated failure time models,
where β̂i is replaced by α̂i.

2.4 Residuals
In survival analysis, there are three common types of residuals: Cox-Snell residuals,
Martingale residuals, and Deviance residuals. The Cox-Snell residuals estimate –logS(t),
where S(t) is again the survival function. The Martingale residuals quantify the difference
between the observed number of events for the ith individual and the estimated number of
events in (0, ti). The Deviance residuals transform the Martingale residuals to be nearly
symmetric about zero. In addition, they have the standard deviance interpretation in some
situations [Collett, 1994].

2.5 Partial Residuals
In this application, we take the partial Cox-Snell residual rcpi and modify it into a partial
Deviance residual. This function then estimates the direct effect of the secondary phenotype
K on the survival phenotype T. The partial Cox-Snell residual has the form

, the estimated cumulative hazard function.
We then modify it into a partial Martingale residual by rmpi = δi − rcpi. Finally, we have the

partial Deviance residual as needed, defined as 
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3 The Adjusted Phenotype
After identifying the proper form of the residual, we adjust the primary survival phenotype T
using the following, where t̄ is defined as the mean of the survival phenotypes, effectively
removing the secondary phenotype’s direct influence:

(4)

Using simple linear regression and equation (4), we can model the adjusted phenotype using
the following:

(5)

and α̂1 estimates the direct effect of the marker genotype X on the primary phenotype T,
meaning the effect other than through secondary phenotype K.

4 Variance Adjustment
Since there is variability in the parameter estimates that factor into the adjustment of ti to t̃i,
the typical variance calculation of α̂1 is not proper. Following [Vansteelandt et al. 2009], we
have the selected association test τ (e.g. standard score test, Wald test, or likelihood ratio
test) with expectation of zero under the null hypothesis of no association between the
phenotype of interest and the marker genotype, that is of the general form

(6)

where τi denotes the ith subject’s contribution to the test statistic, defined as follows for
population-based and family-based studies, respectively:

(7a)

(7b)

then the statistic

(8)

follows a  distribution under the null hypothesis of no direct effect, where
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where  is the first derivative of equations (7a) or (7b) with respect to t̃i, i.e. for population-
based tests, we have  and, for family-based tests, . The variable εi is

the (full) Deviance residual from equation (2) or (3). In population based designs, μK and 
are obtained by fitting a regression for secondary phenotype Ki with the covariates of
diagnostic criteria Li and marker genotype Xi. For family-based studies, the covariate E[X|Pi]
is included in the regression as well to protect against population stratification. The
predicted value for secondary phenotype Ki is then defined as

 , the fitted values from the regression. The

residual variance of the regression model is denoted by .

5 Simulation Studies
Using simulation studies, we examine the robustness of this approach under realistic
scenarios. In all simulations, we focus on quantitative traits and assume no ascertainment
condition (i.e. no population stratification) and work under a population-based setting.
Results presented are based on 10,000 replicates. A sample size of 1000 probands is
selected. The genotype data, coded additively, are generated with a binomial distribution,
with allele frequency of 0.25. All phenotypic variables are drawn from a normal distribution,
except the primary phenotype (T) is drawn from a weibull distribution with mean between
10 to 15 following [Jiang et al. 2006], and the shape parameter is set at 0.5, 1 (for
exponential distribution), and then 1.5. Genotype to phenotype effect sizes (r2) are roughly
1%, while phenotype to phenotype effect sizes are between 5% and 10%.

5.1 Results - Type 1 Error Calculations
In the situation represented by Figure 1, the null hypothesis exists when the arrow marker
genotype X → primary survival outcome T does not exist. Within this null hypothesis, there
are eight possible scenarios, or models, depending on whether the subset of arrows marker
genotype X → diagnostic factors L, marker genotype X → secondary phenotype K, and
secondary phenotype K → primary survival outcome T are present. These eight null
hypothesis models are outlined in Table 1. Empirical type-1 error rates for testing the
association between marker genotype X and primary outcome T, using the method
developed above, at α = 0.05, are reported below in Table 2. We see that the method has
proper type 1 error rates.

5.2 Results - Power Calculations
Data was simulated under eight alternative hypotheses, under scenarios identical to those
used in type 1 error rates, with genetic marper X also directly affecting primary survival
phenotype T with an effect size (r2) of 1 %. Power calculations at α = 0.05 are listed in
Table 3. We see that method maintains strong power under these realistic scenarios. It is
important to note that the power of the method will depend upon the accuracy of the model
specification, as in all regression techniques.

6 Application: Cardiac Data Results
The methods described above were applied to a cardiac dataset, consisting of 890 caucasian
individuals genotyped at 28 SNPs in gene P2RY12. The patients underwent surgery due to
severe coronary artery disease. During surgery, 10% of patients experienced a myocardial
infarction (MI). In this application, the primary survival outcome of interest T is post-
surgery hospital duration. MI plays the role of the intermediate phenotype K.
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First, MI was modeled using a logistic regression with diagnostic criteria defined in the
Appendix. Effect sizes reasonably matched previous literature (Table 4).

Previous research suggested that gene P2RY12 is associated with MI. When each SNP was
entered into the logistic regression, along with diagnostic criteria to explain MI status, this
previously found association was strongly suggested at SNP 3 (Bonferroni-corrected p-value
= 0.10), seen in Table 5.

In addition, MI status is typically associated with increased stay in hospital post-surgery
(censored at 30 days for 22 subjects), which is a marker for intensity of cardiac disease. This
association is confirmed in table 6, with hospital duration modeled using the Weibull
distribution under the accelerated failure time framework as a function of MI status and
diagnostic criteria. MI status is strongly associated with hospital duration with effect size
e0:2441 = 1:28 and p-value = 2.7e-06. Note that if we entered the SNP’s into this AFT model,
SNP 3 is associated (p=0.009) with hospital duration. However, this association may only be
due to the MI-pathway, hence we need to perform the methods developed in this paper.

The Kaplan-Meier estimate of the hospital duration curve is seen in Figure 3.

In order to test if the SNPs were directly associated (i.e. not through secondary phenotype of
MI status) with hospital duration, the methods of this paper were employed. Results are in
Table 7, which provide no evidence to reject the null hypothesis of no direct effect on
hospital duration.

7 Discussion
Here, we presented a new statistical approach to detect causal genetic effects on survival
data in the presence of a secondary phenotype that might confound the results. The proposed
method is based on standard statistical methodology and can be implemented straight-
forwardly. Using simulation studies, the theoretical properties of the approach were verified
and the power was assessed under realistic scenarios. The practical relevance of the
approach was illustrated by an application to survival after cardiac surgery. There was no
evidence to suggest that the SNPs genotyped within gene P2RY12 directly effect post-
surgery hospital duration (i.e. through pathways other than MI status.)

Acknowledgments
Funding

This work was supported by RO1MH087590 and R01MH081862.

References
Collett, D. Modelling Survival Data in Medical Research. London: Chapman & Hall; 1994. p.

111-117.p. 231-236.
Jiang H, Harrington D, Raby BA. Family-based association test for time-to-onset data with time-

dependent differences between the hazard functions. Genetic Epidemiology. 2006; 30(2):124–132.
[PubMed: 16374805]

Rothman, K.; Greenland, S.; Lash, T. Modern Epidemiology. Philadelphia, PA: Lippincott, Williams
& Wilkins; 2008. p. 185-186.

Vansteelandt S, Goetgeluk S, Lutz S. On the Adjustment for Covariates in Genetic Association
Studies: A Novel, Simple Principle to Infer Direct Causal Effects. Genetic Epidemiology. 2009;
33(5):394–405. [PubMed: 19219893]

Lipman et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



10 Appendix

10.1 DAG Explanation
In order to test for the direct effect between the marker locus X to the age-at-onset
phenotype T in Figure 1, it is not proper to simply have marker locus X, secondary
phenotype K, and diagnostic criteria L as covariates in the regression model. This is because
both secondary phenotype K and diagnostic criteria L are colliders in Figure 1. It is well
known in causal methodology that having colliders as covariates in a regression model does
not ”block” the path of interest, but, in fact, may induce a spurious relationship. Therefore, if
we add secondary phenotype K and diagnostic criteria L into the model, the coefficient for
the marker locus X variable will not only quantify the direct effect from the marker locus X
to the primary phenotype T, but will also quantify the ”opened” paths from marker locus X
(to secondary phenotype K) to diagnostic criteria L to unmeasured common cause U to
primary survival type T. Because of the existence of these colliders, standard regression
techniques fail to quantify the effect of interest from marker locus X to primary phenotype
T.

10.2 Variable Definitions: MI & Diagnostic Criteria
• MI: 1/0, indicator of having a myocardial infarction, 1: yes, in top 10% for cardiac

Troponin I level on day 1 after surgery

• TNI.pre: 1/0 - 1: cardiac Troponin I level before surgery > 0.1

• Institution: 1/0 - 1: Patient was at Texas Heart Institute, 0:Patient was at Brigham
and Women’s Hospital

• Age: quantitative, age of patient

• Gender: 1/0 - 1: male patient, 0: female patient

• Last.mi: 1/0 - 1: yes, patient’s last MI was within 2 weeks of the surgery

• Hospital.duration: quantitative, length of hospital stay after surgery

• Cpb: 1/0 - 1:yes, a cardiopulmonary bypass was used

• Cpb.time: quantitative, the amount of time, in minutes, the cardiopulmonary bypass
was used

• Creatinine: quantitative, the amount of creatinine present in the patient

• Statin use: 1/0 - 1: yes, the patient used statins

• Stenosis: 2/1/0 - 2: 3 vessels with > 50% stenosis, 1: 2 vessels with > 50% stenosis,
0: 0 or 1 vessels with > 50% stenosis

Lipman et al. Page 8

Genet Epidemiol. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Causal DAG
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Figure 2.
Causal DAG for Adjusted Primary Phenotype
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Figure 3.
Kaplan-Meier Survival Curve
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Table 1

null hypotheses models, Y=if arrow is present, N=arrow is not present, corresponding to Figure 1

null #: X → L X → K K → T

1 N N Y

2 Y N Y

3 Y Y Y

4 N Y Y

5 N N N

6 Y N N

7 Y Y N

8 N Y N
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Table 4

logistic regression modeling MI status results, diagnostic criteria defined in Appendix

variable estimate std. error z value p-value

Intercept −2.7311 1.0717 −2.55 0.0108

TNI.pre 1 1.0825 0.3140 3.45 0.0006

Institution 1 0.1221 0.3561 0.34 0.7317

Age 0.0117 0.0116 1.01 0.3121

Gender 1 −0.4783 0.2680 −1.78 0.0743

Last MI 1 0.1161 0.3192 0.36 0.7162

CPB 1 −1.1830 0.5090 −2.32 0.0201

CPB time 0.0142 0.0026 5.56 0.0000

Creatinine 0.1436 0.0393 3.66 0.0003

Statin 1 −0.1670 0.2648 −0.63 0.5283

Stenosis 1 −0.5545 0.4610 −1.20 0.2291

Stenosis 2 −0.5288 0.4300 −1.23 0.2187

Genet Epidemiol. Author manuscript; available in PMC 2012 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lipman et al. Page 16

Table 5

Testing association between SNP and MI status

SNP name number p-value

rs1491980 1 0.2544

rs1466684 2 0.2245

rs3732757 3 0.0037

rs4146770 4 0.6952

rs9877389 5 0.1814

rs7644001 6 0.5211

rs10513393 7 0.8676

rs2307020 8 0.4688

rs13090236 9 0.8551

rs6772253 10 0.0191

rs1565574 11 0.8082

rs13095610 12 0.4672

rs10935839 13 0.3752

rs1352887 14 0.1517

rs6790748 15 0.1868

rs6782212 16 0.3697

rs4679802 17 0.1509

rs12487835 18 0.3149

rs3975404 19 0.1648

rs9849395 20 0.0240

rs6770918 21 0.8801

rs13322120 22 0.8309

rs12497065 23 0.2338

rs17283010 24 0.2926

rs6787801 25 0.6551

rs7429509 26 0.5443

rs1491974 27 0.5835

rs9653953 28 0.3431
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Table 6

Modeling Hospital Duration, accelerated failure time framework

variable coeff sd z p

Intercept 1.7106 0.1468 11.6553 2.155e-31

MI 0.2441 0.0520 4.6906 2.724e-06

TNI pre 1 −0.0192 0.0490 −0.3916 0.6953

Institution1 0.2165 0.0420 5.1582 2.493e-07

Age 0.0118 0.0015 8.0599 7.633e-16

Gender −0.0282 0.0385 −0.7318 0.4643

Last MI 1 0.1544 0.0455 3.3971 0.000681

CPB 1 −0.4921 0.0900 −5.4676 4.561e-08

CPB time 0.0024 0.0004 5.9603 2.518e-09

Creatinine 0.0396 0.0098 4.0446 5.24e-05

Statin 1 −0.0204 0.0356 −0.5722 0.5672

Stenosis 1 −0.1166 0.0630 −1.8491 0.06445

Stenosis 2 −0.0747 0.0607 −1.2322 0.2179

Log(scale) −0.8304 0.0225 −36.8463 3.347e-297
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Table 7

P-values for test of direct effect, 28 SNPS to Hospital Duration

SNP p-value

1 0.59

2 0.66

3 0.22

4 0.34

5 0.57

6 0.71

7 0.65

8 0.64

9 0.34

10 0.67

11 0.86

12 0.81

13 0.75

14 0.72

15 0.75

16 0.71

17 0.60

18 0.36

19 0.57

20 0.89

21 0.24

22 0.71

23 0.89

24 0.92

25 0.99

26 0.98

27 0.95

28 0.39
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